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Abstract

We describe theSPACE algorithm for translating from one architecture such as PowerPC into
operations for another architecture such as VLIW, while also supporting scheduling, register al-
location, and other optimizations. OurSPACE algorithm supports precise exceptions, but in an
improvement over our previous work, eliminates the need for most hardware registercommit op-
erations, which are used to place values in their original program location in the original program
sequence. The elimination ofcommit operations frees issue slots for other computation, a feature
that is especially important for narrower machines. TheSPACE algorithm is efficient, running in
O(N2) time in the numberN of operations in the worst case, but in practice is closer to a two-pass
O(N) algorithm.

The fact that our approach provides precise exceptions with low overhead is useful to program-
ming language designers as well — exception models in which an exception can occur at almost
any instruction are not prohibitively expensive.
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1 Introduction

Binary translation has attracted a great deal of attention of late [1, 2, 11, 13, 14], and signficant progress
has been made on fast translation, as well as correct and efficient translated code. In our previous work
on theDAISY project [3, 4, 5, 6], we have discussed a variety of techniques for quickly translating
code while extracting high amounts of instruction level parallelism. Much of this work has been geared
towards wide VLIW machines.

Although our techniques work on narrower machines, a significant slowdown is incurred from the
fact that our previously reported approaches use valuable instruction bandwidth forcommit operations,
which move speculative values from registers not architected in the original (e.g., PowerPC) architec-
ture to (PowerPC) architected registers. Such movement was designed to place values in PowerPC
registers in original program order, thus facilitating precise PowerPC exceptions.

In this paper, we describe theSPACEalgorithm which eliminates most of thesecommit operations,
by keeping ashadow tableof commit operations which are not executed, but which can be referenced
when needed, such as when fielding an exception. Our newSPACE algorithm still supports precise
exceptions, and still requires no annotations in original source programs or their compiled binaries. As
well, the approach provides 100% architectural compatibility with existing PowerPC implementations.
SPACE is also efficient, running inO(N2) time in the numberN of operations in the worst case, while
in practice coming closer to a two-passO(N) algorithm. (This is slightly worse than our previous work
which was generally a one-passO(N) algorithm in practice.) Nonetheless, it is probably still suitable
for a dynamic binary translation environment in which the following two criteria must generally be
obeyed:

� An interactive user should observe no erratic performance due to time spent in translation, e.g.,
an application initially taking a long time to respond to keyboard or mouse input.

� As a fraction of the overall runtime, the time spent in translation should be small. Alternatively,
code/translation reuse should be high.

Our approach differs from existing instruction scheduling methods that work on single basic blocks
or super or hyperblocks [10], in the sense that it handles speculative execution on multiple paths, and
produces scheduled code that maintains precise exceptions, even though operations are aggressively
re-ordered. By maintaining precise exceptions we mean the ability to indicate a point n in the original
code after any exception occurs in the scheduled code, such that according to the current contents of
memory and registers at the point of the exception, all instructions before point n have executed, and
no instruction after point n has executed. Not re-ordering instructions when there is a possibility of
an exception could certainly provide the precise exceptions capability in a simple way; our goal is to
aggressively re-order code to obtain better performance, generate efficient scheduled code, and still
maintain precise exceptions.

Scheduling with precise exceptions can be important not only for binary translation for 100% archi-
tectural compatibility and high performance, where the ability to compile and efficiently run all existing
object code software (kernel and user code, including the exception handlers) is required, but also for
traditional compilation environments. Maintaining precise exceptions could be dictated the program-
ming language (exception ranges in C++ or Java), or could be useful for debugging scheduled code. In
this paper we present a new method to generate efficient code (with reduced overhead operations over
prior techniques) that maintains precise exceptions and that can be useful on both narrow and wide
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Figure 1: Tree groupsX andY.

machines . Our technique has low compile time overhead as well. The paper’s presentation will be in
the context ofDAISY , our binary translation system.

DAISY (Dynamically ArchitectedInstructionSet from Yorktown) is a system to make an un-
derlying target architecture 100% architecturally compatible with existing and quite differentsource
architectures [3, 4, 6, 7]. Most of the DAISY work has been in the context of making an underlying
VLIW machine compatible with PowerPC. However, most of the ideas are more generally applicable
and could be used in support of other architectures such asIBM System/390, x86, and theJava Vir-
tual Machine[3, 15]. The underlying VLIW machine is designed with binary translation in mind and
provides features such as speculation support and additional registers over those present in thesource
machine.

The rest of the paper is organized as follows: Section 2 describes ourSPACE algorithm in detail.
Section 3 provides some early results using it. Section 4 discusses related work and Section 5 concludes.

2 SPACE Algorithm

Our algorithm for reducing the number ofcommit operations in dynamic binary translation is designed
for efficient use in a system in which operations from abase architecture, are dynamically recompiled
for execution on anothertarget architecture. In this paper we focus on PowerPC as thebase archi-
tecture, and a VLIW machine as thetarget architecture. This is in keeping with our earlierDAISY
work [3, 4, 6].

OurShadow Commit Table Algorithm for Precise Exceptions(SPACE) 1 assumes that a separate
algorithm has grouped operations from thebase architecturetogether intree groups[3, 4]. Tree groups
have no join points – any code beyond a join point is replicated on two or more paths, yielding atree
group, as illustrated by groupsX andY in Figure 1.

The target architecture (in our case, a VLIW architecture) is assumed to have significantly more
registers (e.g., 64 or 128 registers) than thebasearchitecture (in our case, a PowerPC architecture with
32 integer registers).

During translation from PowerPC to VLIW, several cheap optimizations are performed. Of partic-
1In the spirit of out of order execution, the authors have taken the liberty to not only reorder instructions, but apply

similar priniciples to the reordering of letters in acronyms. . .
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Figure 2: Example of improvement fromSPACE.

ular interest in developing theSPACE algorithm is scheduling. As reported in our earlier work [3, 4],
DAISY aggressively speculates and renames results, while still supporting precise exceptions. Previous
DAISY work has accomplished this by reserving a set of hardware registers in thetargetarchitecture
to hold the architected state of thebasearchitecture. Updates to thebasearchitected state are then per-
formed by using hardwarecommit operations to move speculative results from registers not identified
with architected PowerPC state (i.e., target architecture registersr32 and above) to those onto which
PowerPC registers have been mapped (belowr32 ) in original program order.

The in-order commit approach is illustrated in Figure 2. Figure 2(a) shows a small fragment of
PowerPC code comprising agroup. Figure 2(b) shows old-styleDAISY code for this group. The
mul is reordered with its result placed inr63 . At the end there is acommit of r63 to r3 so that
all PowerPC registers are updated in their original program order, which in turn facilitates support
of precise exceptions, as described below. However, using instruction bandwidth for thesecommit
operations can reduce performance, particularly in narrower machines. TheSPACE algorithm we
propose here is a technique for removing suchcommit operations.

In Figure 2(b) — the code generated by the oldDAISY algorithm — the indications in black boxes
such as “Excep A” denote at what point in the original PowerPC code one could correctly restart, if an
exception occurs at this point in the scheduled code. In the code generated using theSPACEalgorithm
in Figure 2(c), these indications include not only where to restart in the original code, but also what
mapping to use to correctly recover the PowerPCr registers from the physicalp registers in the event
of an exception. Notice that thecommit operation in Figure 2(b) has been eliminated in the code
generated by theSPACEalgorithm in Figure 2(c).

SPACE does so by maintaining a softwareshadow tableindicating which PowerPC register is in
whichphysical registerat all points in the original program. In Figure 2(c), the mapping upon entry to
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Figure 3: PowerPC to physical register mappings must be consistent at all locations.

the group is theidentity, i.e., PowerPCr0 maps to physical registerp0 , r1 to p1 , etc. However, at the
end of the group, the mapping changes to mapr3 to p63 instead of top3 . When the code is run, the
commit need not be performed, and theshadow tableis consulted only in the rare event of an exception.
(All PowerPC exceptions first go toDAISY system code. This system code consults theshadow tables
so as to place PowerPC registerr0 in physical register0 (pr0 , PowerPC registerr1 in pr1 , etc., as
expected by the VLIW translation of the PowerPC exception handler.) The fact that precise exceptions
can be supported with low overhead is useful to programming language designers as well — exception
models in which an exception can occur at almost any instruction are not prohibitively expensive.

There are several difficulties to implementing thisshadow tableapproach efficiently as is required
in a run-time compiler/translator. Most particularly, a group may have multiple predecessor groups,
and if care is not taken, each predecessor group may have a different mapping of PowerPC registers to
physical registers.

TheSPACE algorithm takes a tree group as input and schedules operations from that group while
maintaining consistentshadow tables. For example in Figure 3, both groupsA andB have groupX as
one of their successors. Thus the mapping from PowerPC to physical registers must be the same (at
least for live registers) whenA exits toX, whenB exits toX, and whenX starts.

SPACEhas 4 basic steps, as outlined below:

1. As illustrated in Figure 4, compute the destination registers for operations in groupQ based on
live PowerPC registers in successor groups such asR. As illustrated in Figure 5, destination
registers are also based on exits from other groups, e.g.,P that share successor groups withQ.
This step isO(N) in the numberN of PowerPC operations.

2. As illustrated in Figure 6, determine the mapping of PowerPC registers to physical registers at
the start of the group, e.g., (R). This is based on the mappings inR’s predecessor groups such
asQ. This step requires a hash lookup based on a PowerPC address. In the worst case, this is
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Figure 4: Ensure writes to PowerPC registers go to correct physical registers where successor groups
expect them.

r1 =

= r1

R

Q

physical register, p9.

2register p9.

When translate PowerPC Group Q:
- Make sure r1 writes to correct

goto R

P

r1 =

goto R
r1 -> p9

1
Translate PowerPC Group P first.
P writes to r1 and puts it in physical

Figure 5: Ensure writes to PowerPC registers go to correct physical registers where other predecessor
groups put them.
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Figure 6: Ensure reads from PowerPC registers come from correct physical registers where predecessor
groups put them.

2

No way to reconcile mappings here and at Y for r3 and r4.

1
r31->p31r30->p30
r8->p22r7->p21

Initial Mapping

r4->p15

add  p14=p15,p15add  r14=r3,r4

add  r12=r7,r8
copy r3=r4
xor  r29=r30,r31

PowerPC Code

add  p17=p21,p22

xor  p29=p30,p31

Y:

DAISY Code

Z:

r12->p17
r3->p15
r29->p29

Mapping Change

r4->p15
r7->p21 r8->p22

Final Mapping

r29->p29r3->p15

r12->p17

r30->p30 r31->p31

Mapping Change

Initial Mapping

Mapping Change

addi r3=r4,1 addi p15=p17,1 r3->p15

r14->p14

b    Y Final Mapping

r4->p17r3->p15

r4->p17
Initial Mapping

3
4

5 6

7

b    Y b    Y_translation

b    Y_translation

X:

Figure 7:“Aliasing” between mappings of PowerPCr3 andr4 to physical registers.
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Figure 8: Different successor groups may expect a PowerPC register to be in different physical registers.

O(M) in the sizeM of the address space, although in practice, it is more likely a constant time
operation.

3. Schedule all ops in groupX using the mapping information fromStep (1)for choosing destina-
tion registers, and fromStep (2)for knowing where to find input registers. Like many heuristic
scheduling algorithms, our approach isO(N2) in the numberN of PowerPC operations, since
in the worst case an operation may conflict with all its predecessors. In practice, we do not see
many conflicts, and hence average performance is close toO(N).

4. At the end of each group, insert hardwarecommit operations to move any registers where one
of two problems exist: (1) Multiple PowerPC registers map to the same physical register, thus
causing potential“aliasing” problems as illustrated in Figure 7 and described in more detail in
Section A.3. (2) The PowerPC to physical register mapping at the end of this group does not
match that in a successor group. This is illustrated in Figure 8. GroupQ has two successor
groups:R andS, andr1 is live in both, but expected to be inp9 in R and inp5 in S. If the Q’s
path leading toR is judged to be more likely, then theQ initially writes ther1 value top9 . A
copy operation movingp9 to p5 is then required on the exit going toS.

Like Step 2, this step requires a hash lookup based on a PowerPC address. Thus, in the worst
case, it isO(M) in the sizeM of the address space, although in practice, it is more likely a
constant time operation.

Figure 9 contains the entry point (space (op) ) to a more formal description of theSPACE al-
gorithm provided in pseudo notation.Steps 1 – 4roughly correspond with the function calls inspace .
More specificallyStep 1is performed by the calls toclear bits (written) andcalc pref regs
(op, written) . Steps 2and3 are performed in the call toschedule all ops (op) . The ac-
tions ofStep 4are handled by the call toset exit mappings () .
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/***********************************************************************
* *
* space *
* ----- *
* *
* Entry: Shadow Commit Table Algorithm for Precise Exceptions (SPACE).*
* *
***********************************************************************/

space (op)
OP *op; /* First PowerPC op in group */
{

/* 32 PowerPC integer registers */
int written[32]; /* Boolean */

/* Compute whether each operation in this group has a preferred */
/* destination, and if so, what it is. */
clear_bits (written);
calc_pref_regs (op, written);

/* Schedule all operations in the group, keeping in mind the */
/* PowerPC to physical register mappings. */
schedule_all_ops (op);

/* Make sure the register mappings at group exits match those */
/* expected at successor groups. Create an expected mapping */
/* for the successor group address if none currently exists. */
set_exit_mappings ();

}

Figure 9: Entry point forSPACE.
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(b) Stylized group G with  Input and Output Register Mappings

and probabilty of reaching each exit.
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(a) PowerPC Code for group G

add  r1,r8,r9

add  r2,r6,r7

add  r3,r4,r5

bc   12,CR0_EQ,L_1

bc   12,CR1_EQ,L_Y

b    Z

b    Y

bc   12,CR2_EQ,L_W

add r1,r8,r9

add r2,r6,r7

add r3,r4,r5

bc  CR0_EQ

bc CR2_EQbc CR1_EQ

and r2,r14,r15

and r3,r16,r17

xor r1,r10,r11

xor r3,r12,r13

b Z b Y b X b W

G:

10% 20% 30% 40%

r1->p61
r2->p62
r3->p63

r1->p51
r2->p52
r3->p53

r1->p41
r2->p42
r3->p43

and  r2,r14,r15

and  r3,r16,r17

b    X

Figure 10:PowerPCGroupG: input toSPACE.

In Appendix A we discuss each of these functions in detail and show pseudo-code for each. Here,
we illustrate their function via an example.

Figure 10(a) shows the PowerPC code for a tree group,G, that is used as input toSPACE. This
code is shown in more stylized fashion in Figure 10(b).G has 4 exits atW, X, Y, andZ, with each exit
having a different successor group. Consequently each of the exits has a different preferred mapping of
PowerPC registers to physical registers, as also shown in Figure 10(b).

SPACEdiscovers each of these exits by recursively descending through the group from its entry at
G. Upon reaching each exit,SPACE checks to see if there is a preferred mapping. In the case ofW,
X, andY, such a mapping exits, while forZ there is no such mapping. (The lack of such a mapping
indicates that no group has yet been translated starting from PowerPC addressZ.)

After noting the register preferences for each path,SPACE begins to go back towards the start of
G on each path by moving backwards along the same recursive route by which it reached each exit.
As operations writing a result to a register are encountered, a preferred destination is noted. Thus, as
noted in Figure 11(a), the operation,xor r3,r12,r13 is marked as havingp43 as its preferred
destination, since the successor group atW expectsr3 ! p43 . Likewise xor r1,r10,r11 is
marked as havingp41 as its preferred destination, as noted in Figure 11(a). If writes to PowerPC
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r3->p63
r2->p62
r1->p61

r3->p63
r2->p62

add r1,r8,r9
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(b) Propagating preferred registers up past conditional branches.

bc CR2_EQbc CR1_EQ

and r2,r14,r15

and r3,r16,r17

xor r1,r10,r11

xor r3,r12,r13

b Z b Y b X b W

G:

10% 20% 30% 40%
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r2->p52
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r2->p42
r3->p43

add r1,r8,r9
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and r2,r14,r15

and r3,r16,r17

xor r1,r10,r11

xor r3,r12,r13

b Z b Y b X b W

G:

10% 20% 30% 40%

r1->p51
r2->p52
r3->p53

r1->p41
r2->p42
r3->p43

(a) Preferred physical destination registers at bottom of group.

Figure 11: Propagating destination preferences up through groupG.

registersr1 and r3 are encountered prior to this point inG (as they will be), there would be no
preferred mapping for them coming from the path exiting atW, since such writes would be dead along
the path toW.

Similarly, along the path exiting atX, Figure 11(a) shows thatp53 is the preferred destination
register forand r3,r16,r17 andp52 is the preferred destination register forand r2,r14,r15 .

Following the return of the recursive trail a little bit higher, the operationbc 12, CR2 EQ,L W
is encountered. At this point, the preferences of the two paths leading toW andX must be merged.
SPACEdoes this on a register by register basis:

� PowerPC registerr1 is dead on the path toW, but not on the path toX, hence the preferred
mapping (r1 ! p51 ) along the path toX is chosen as the preferred mapping above thebc , as
shown in Figure 11(b).

� PowerPC registerr2 is dead on the path toX, but not on the path toW, hence the preferred
mapping (r2 ! p42 ) along the path toWis chosen as the preferred mapping above thebc , as
shown in Figure 11(b).

� PowerPC registerr3 is dead on both the path toWandX. Hence there is no preferred mapping
for r3 , as shown in Figure 11(b).

� All other PowerPC registers are live on both paths and hence take their preferred mapping from
the path toW, since it is judged to have a 40% likelihood of being reached from the start ofG
versus only a 30% likelihood for the path toX, as shown in Figure 11(b)2.

2DAISY interprets code 30 times before translating it and can gather statistics such as the likelihood of reaching partic-
ular exits.
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As can be seen in Figure 10(b), there are no ALU operations writing to registers on paths immedi-
ately adjoining the exits atY andZ. As a consequence, when these paths merge atbc 12,CR1 EQ,L Y,
the preferred mappings above thebc are all chosen from the path toY, which is judged to have a 20%
chance of being reached versus only a 10% chance for reachingZ. More precisely the following pref-
erences are usedr1 ! p61 , r2 ! p62 , andr3 ! p63 .

The preferences from all four paths through the group are merged at the precedingbc 12,CR0 EQ,L 1:

� On theW/X path,r1 has a preferred mapping ofr1 ! p51 , and an associated 30% probability.
On theY/Z path,r1 has a preferred mapping ofr1 ! p61 , and an associated 10% probability.
Thus the preferencer1 ! p51 is chosen.

� On theW/X path,r2 has a preferred mapping ofr2 ! p42 , and an associated 40% probability.
On theY/Z path,r2 has a preferred mapping ofr1 ! p62 , and an associated 10% probability.
Thus the preferencer2 ! p42 is chosen.

� On theW/X path,r3 is dead. Thus the mapping,r3 ! p63 from theY/Z path is chosen.

� All other PowerPC registers are live on both paths and hence take their preferred mapping from
the more likelyW/X path (which amounts to theW path in this case).

The preferred physical destination registers for the three ALU operations at the top ofG can now
be chosen:

add r1,r8,r9 # r1 -> r51 Preferred
add r2,r6,r7 # r2 -> r42 Preferred
add r3,r4,r5 # r3 -> r63 Preferred

The preferred mappings for input registers in groupG can now be computed. Since none of the
registers written inG are later read inG, the input mappings for all registers are those shown in Fig-
ure 10(b) at the start ofG. (This input mapping forG was previously set by the output preferences of
some group which branched toG.) If registers written inG were later also read inG, the value would
of course be read from the physical register to which the value was written, i.e., from the a destination
register computed in the manner illustrated above.

OnceSPACE has computed preferred destination registers, it is ready to schedule operations. The
basicSPACE scheduling heuristic is the same as in early incarnations ofDAISY , namely greedily
move operations as early as dependence constraints allow subject only to the availability of a function
unit on which to compute the value and a destination register in which to put the result. Further details
can be found in Appendix A.

Since all of the operations inG are independent, they can all be scheduled into a single VLIW
instruction, assuming a sufficiently wide machine. This is illustrated in Figure 12(a). (Despite the su-
perficial similarity of Figure 12 with Figures 10(b) and 11, Figure 12 depicts VLIW instructions where
all operations execute in parallel, whereas Figures 10(b) and 11 are merely graphical represenations of
sequential PowerPC code.)

Simply scheduling operations can leave values in the wrong physical registers, as is the case for
the exit toY in Figure 12(a), where the required mapping isr1 ! p61 and r2 ! p62 , but the
actual mappings arer1 ! p51 andr2 ! p42 . As depicted in Figure 12(b),SPACE remedies this
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copy p61<-p51

copy p62<-p42

b VY

V2:

add p63,p104,p105

bc  CR0_EQ

bc CR2_EQbc CR1_EQ

V1:

xor p43,p112,p113

xor p41,p110,p111
and p43,p112,p113

and p52,p114,p115

b VZ b VX b VW

bc  CR0_EQ

bc CR2_EQbc CR1_EQ

V1:

xor p43,p112,p113

xor p41,p110,p111
and p43,p112,p113

and p52,p114,p115

b VZ b VY b VX b VW b V2

(a) VLIW code for group G - one instruction.

(b) Fix mapping on Y path.

add p51,p108,p109

add p42,p106,p107

add p63,p104,p105

add p51,p108,p109

add p42,p106,p107

Figure 12: Translated VLIW code for groupG.

problem by inserting twocopy/commit operations on the exit path. Thecopy/commit operations
require an additional VLIW instruction since they are dependent on values computed in the first VLIW
instruction. (This reconciling problem is similar to rpelacing SSA� nodes by a set of equivalent move
operations [12].)

The PowerPC to physical register mappings used in translating groupG are saved bySPACE in a
shadow tablefor use both during exceptions (as was illustrated in Figure 2), and for use in determining
preferred register mappings when translating later groups such as that starting atZ.

3 Results

In this section we show the approximate improvement possible withSPACE. We obtain these estimates
from the current implementation ofDAISY by using a machine model in whichcommit operations do
not consume any resources, such as issues slots or ALUs. Sincecommit operations do not consume
any resources, these resources are free to be used for “productive” computation, just as they would be
with SPACE.

These estimates probably overstate slightly the performance ofSPACE, since a fewcopy/commit
operations are still needed bySPACE when the register mapping at the exit of one group does not
match the desired mapping at the start of the next group. SinceSPACEworks to minimize the number
of suchcopy/commit operations, we do not expect many of them. On the positive side,SPACE can
eliminatecopyoperations in the original PowerPC code by making them merely an entry in theshadow
table, a benefit not taken in account by this estimation technique.

Our results are for the SPECint95 benchmark suite and the TPC-C transaction processing bench-
mark, and use sampled traces as input. Our SPECint95 traces were collected on IBM RS/6000 systems
based on the PowerPC architecture. Each trace consists of 50 segments of 2 million consecutive opera-
tion samples, uniformly sampled over a run of the benchmark. The TPC-C trace is slightly longer, but

14



 Hardware commits use Resources

 Sidetable commits use no Resources 

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2 IL
P

compress gcc go ijpeg li m88k perl vortex tpcc

Figure 13: ILP with and withoutcommit operations consuming resources.

similarly obtained. The machine that we model can issue up to 4 operations per cycle, has 4 integer
ALUs, 2 load/store pipelines, and 1 floating point unit.

Figure 13 depicts the (infinite-cache) ILP attained with and withoutcommit operations consuming
resources. Whencommit operations do not consume resources, ILP improves by up to 18%, and by an
average of 10%, thus showinging thatSPACEhas considerable potential to improve performance over
the currentDAISY withoutSPACE.

4 Related Work

Like DAISY , a number of other translation systems use renaming of registers to maintain precise excep-
tions. In [8], Transmeta describes an emulation system which uses a hardware backup/restore mech-
anism to create a checkpoint of the processor state at the beginning of each translation unit. This is
combined with a gated store buffer which allows the undoing of memory store operations. Checkpoint-
ing is achieved with a singlecommit operation which copies the entire architected register file and
commits the conditionally executed store instructions.

In [9], Le describes a binary translator which uses a software based renaming scheme. Similar to
DAISY , target registers are renamed to support precise exceptions. Register mappings are preserved in
a register map within a single translation unit, but are commited to their “natural” locations on group
boundaries by compensation code. This can lead to performance degradation if excessive amounts of
copy back operations need to be performed between group transitions.
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While machine-to-machine binary translation with precise exceptions imposes significant require-
ments, many of these requirements can be relaxed when translating according to some programming
language exception model. Programming languages make fewer guarantees about what state will be
accessible and precise in the case of exceptions, and scoping rules (such ascatch/try blocks in Java
and C++) allow analysis of exactly what state will be inspected in the event of an exception.

For example, Moon and some of the authors of this paper [15] describe a register allocation scheme
for Java that tries to match register mappings between translation units. However, that work involves
register allocation alone, and does not do scheduling as is done inSPACE.

5 Conclusion

We have described theSPACEalgorithm for scheduling operations from one architecture such as Pow-
erPC into operations for another architecture such as VLIW. TheSPACE algorithm supports precise
exceptions, but eliminates the need for most hardware registercommit operations, thus freeing slots
for other computation, a feature that is especially important for narrower machines. Preliminary results
indicate that up to an 18% improvement may be possible over the previousDAISY algorithm. The
SPACEalgorithm is efficient, running inO(N2) time in the numberN of operations in the worst case,
but in practice is closer to a two-passO(N) algorithm.
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[6] K. Ebcioğlu, E. Altman, S. Sathaye, M. Gschwind,Execution-based Scheduling for VLIW Archi-
tectures, Proceedings of Europar’99, Toulouse, France, 1999.
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A Details of SPACE

This appendix discusses theSPACE algorithm in detail with pseudo-code for each of the major func-
tions. Reading this appendix is not necessary to understand the paper, but may be helpful in providing
extra details ofSPACE. To help keep this appendix self-contained and to aid the clarity of our expos-
tion, we begin by repeating a small amount of the information from Section 2.

/***********************************************************************
* *
* space *
* ----- *
* *
* Entry: Shadow Commit Table Algorithm for Precise Exceptions (SPACE).*
* *
***********************************************************************/

space (op)
OP *op; /* First PowerPC op in group */
{

/* 32 PowerPC integer registers */
int written[32]; /* Boolean */

/* Compute whether each operation in this group has a preferred */
/* destination, and if so, what it is. */
clear_bits (written);
calc_pref_regs (op, written);

/* Schedule all operations in the group, keeping in mind the */
/* PowerPC to physical register mappings. */
schedule_all_ops (op);

/* Make sure the register mappings at group exits match those */
/* expected at successor groups. Create an expected mapping */
/* for the successor group address if none currently exists. */
set_exit_mappings ();

}

Figure 14: Entry point forSPACE.

Figure 14 contains the entry point (space (op) ) of the SPACE algorithm in pseudo-C. (Fig-
ure 14 is the same as Figure 9 in Section 2.) As outlined in Section 2,space has four basic functions:

1. Compute the destination registers for operations in a group based on live PowerPC registers in
successor groups and other groups with the same successor groups as this one.

2. Determine the mapping of PowerPC registers to physical registers at the start of the group. This
is based on the mappings at the exit of predecessor groups.

3. Schedule all ops in groupX using the mapping information fromStep (1)for choosing destina-
tion registers, and fromStep (2)for knowing where to find input registers.
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4. At the end of each group, insert hardwarecommit (or copy) operations to move any registers
where one of two problems exist: (1) Multiple PowerPC registers map to the same physical
register, thus causing potential“aliasing” . (2) The PowerPC to physical register mapping at the
end of this group does not match that in a successor group.

Steps 1 – 4roughly correspond with the function calls inspace . More specificallyStep 1 is
performed by the calls toclear bits (written) andcalc pref regs (op, written) .
Steps 2and3 are performed in the call toschedule all ops (op) . The actions ofStep 4are
handled by the call toset exit mappings () .

The following sections provide more detail on each of these functions.

A.1 Function Calc Pref Regs

The primary function ofcalc pref regs () in Figure 15 is to compute a preferred destination
register (op->pref reg ) for eachop in the current group. (Opsare primitives of theDAISY machine,
and in most cases are the same as PowerPC operations, although some complex PowerPC operations
such aslwzu – load and updatearecrackedinto multiple simplerDAISY operations such asload
followed byaddi .)

The calculation of preferred registers bycalc pref regs () is done by recursively following
all the paths through this (tree) group. At the end of any path through the group, thepref regs
are thepref regs for the group starting immediately after the last instruction in this group, i.e., the
group starting at the branch target if the current group ends in a branch, and the group starting at the
successor instruction otherwise, as depicted in the functiongroup end () in Figure 16. If no group
starts immediately after this one and no other group shares successors with this group, there are no
pref regs .

Thepref regs information is then passed back up to the beginning of the group. In a group with
no conditional branches, for all those registers not killed in the current group,pref regs is the same
at the beginning as at the end of the group.

Conditional branches have two sets ofpref regs information, one corresponding to thefall-
through path, the other to thetaken path. These two sets ofpref regs information are merged into
one set by using the preferences of the path judged more likely to execute.

Sincecalc pref regs () uses the functionand wr regs () when merging thewritten
registers from two sides of a conditional branch, registers are treated as killed only if they are killed
on all paths. Themerge prefs function (Figure 17) ensures that the preferred register assignment
comes from a path in which the register is live.

Note thatcalc pref regs (op, written) is initially called byspace with the first (Pow-
erPC)op in group. Note also that the array ofwritten PowerPC registers is zeroed byspace prior
to its call tocalc pref regs .

A.2 Function ScheduleAll Ops

Figure 18 depicts pseudo-code for the functionschedule all ops . Five basic steps are performed
in schedule all ops (op) :

1. Determine via the call toget reg mapping if there is an existing mapping of PowerPC to
physical registers for a group beginning atop->addr .
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/***********************************************************************
* *
* calc_pref_regs *
* -------------- *
* *
***********************************************************************/

calc_pref_regs (op)
{

/* pref_regs = 32 PPC Regs: Preferred PPC -> Physical Register Mapping */
/* has_pref = 32 PPC Regs: Is there a preferred mapping */
/* pref_prob = 32 PPC Regs: Probability take path of preferred mapping */

if (is_condbranch (op)) {

/* Does group end here for branch taken path? */
if (!op->right)

{rpref_regs, has_rpref, rpref_prob} = group_end (op, RIGHT);
else {rpref_regs, has_rpref, rpref_prob} = calc_pref_regs (op->right);

/* Does group end here for branch fall-thru path? */
if (!op->left)

{lpref_regs, has_lpref, lpref_prob} = group_end (op, LEFT);
else {lpref_regs, has_lpref, lpref_prob} = calc_pref_regs (op->left)

{pref_regs, has_pref, pref_prob} =
merge_prefs (rpref_regs, has_rpref, rpref_prob,

lpref_regs, has_lpref, lpref_prob);
}
else {

if (!op->left)
{pref_regs, has_pref, pref_prob} = group_end (op, LEFT);

else {pref_regs, has_pref, pref_prob} = calc_pref_regs (op->left);

op->has_pref = has_pref[op->dest];
op->pref_reg = pref_regs[op->dest];

has_pref[op->dest] = FALSE;
}

return {pref_regs, has_pref, pref_prob};
}

Figure 15: Pseudo code forcalc pref regs .
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/***********************************************************************
* *
* group_end *
* --------- *
* *
* Return the preferred register mapping at the exit of the group *
* specified by "op". *
* *
***********************************************************************/

group_end (op, dir)
{

/* Branch target is always "right" successor */
if (is_branch (op) && dir == RIGHT) succ_addr = br_targ_addr (op);
else succ_addr = op->addr + 4;

{pref_regs} = get_reg_mapping (succ_addr);
{pref_prob} = get_reach_prob (op);

if (pref_regs) has_pref[0..31] = TRUE;
else has_pref[0..31] = FALSE;

return {pref_regs, has_pref, pref_prob};
}

Figure 16: Pseudo code forgroup end () .

2. If not, create anIDENTITY such mapping via the call tocreate id map () .

3. Schedule all ops in the (tree) group beginning withop , as done by the repeated calls toschedule op
in thefor loop.

4. As each exit/leaftip from the group is encountered, add it to a list of such tips via the call to
add to leaf tips .

5. When scheduling of all ops is complete, createshadow tablesfor use on exceptions.

Step 3requires some elaboration. Operations are scheduled along a path until a conditional branch
is encountered. At this point, both continuations — taken and fall-through — are added to a heap of
continuations (via a call toadd continuation ). Scheduling always resumes at the highest priority
continuation as determined by calls toget continuation in thefor loop.

Get continuation returns three values,cont tip , op , andaddr . Op is the first opera-
tion to schedule in the current continuation, andaddr is the PowerPC address from whichop came.
Cont tip represents thetip or endof the VLIW scheduling path. It is thus roughly equivalent toop ,
which represents the tip of the PowerPC scheduling path.

Figure 19 illustrates a series oftip’s that could have been generated in creating groupX in Figure 1.
Each dashed line in Figure 19 represents atip at a given point during scheduling. In this case, 7tip s are
created, corresponding to each call toget continuation . Since continuations occur at conditional
branches, roughly speaking, all the ALU and memory operations between conditional branches are
associated with a particular tip.

The reality is slightly more complicated. The essence of a tip is as follows:

21



/***********************************************************************
* *
* merge_prefs *
* ----------- *
* *
* Merge the preferences from the taken and fall-thru paths of a *
* conditional branch. The more likely path's preferences win, *
* assuming they are live, e.g.: *
* *
* R1 Killed R3 Killed *
* ____*____________*____________ Path W (Prob = 40%) *
* ___B/ *
* / \____*____________*____________ Path X (Prob = 30%) *
* / R2 Killed R3 Killed *
* ENTRY___A/ *
* \ *
* \ ______________________________ Path Y (Prob = 20%) *
* \___C/ *
* \______________________________ Path Z (Prob = 10%) *
* *
* Thus, between the ENTRY and conditional branch A: *
* -- a write to R2 takes the preference for R2 from path W *
* -- a write to R1 takes the preference for R1 from path X *
* -- a write to R3 takes the preference for R3 from path Y *
* *
* Thus different registers in the same basic block can obtain their *
* preferred mapping from different paths. *
* *
***********************************************************************/

merge_prefs (path1_pref_regs[32], path1_has_pref[32], path1_prob[32],
path2_pref_regs[32], path2_has_pref[32], path2_prob[32])

{
int pref_regs[];
int has_pref[]; /* Boolean */
double pref_prob[];

/* 32 PowerPC integer registers */
pref_regs = alloc (32);
has_pref = alloc (32);
pref_prob = alloc (32);

for (reg = 0; reg < 32; reg++) {

if (path1_has_pref[reg] && path2_has_pref[reg]) {
/* Both paths have preference for "reg". Use prefs on most likely */
/* path to group exit on which "reg" is live. */
has_pref[reg] = TRUE;
if (path1_prob[reg] > path2_prob[reg]) {

pref_regs[reg] = path1_pref_regs[reg];
pref_prob[reg] = path1_pref_prob[reg];

}
else {

pref_regs[reg] = path2_pref_regs[reg];
pref_prob[reg] = path2_pref_prob[reg];

}
}
else if (path1_has_pref[reg]) {

/* Only path1 has a preference */
has_pref[reg] = TRUE;
pref_regs[reg] = path1_pref_regs[reg];
pref_prob[reg] = path1_pref_prob[reg];

}
else if (path2_has_pref[reg]) {

/* Only path2 has a preference */
has_pref[reg] = TRUE;
pref_regs[reg] = path2_pref_regs[reg];
pref_prob[reg] = path2_pref_prob[reg];

}
else has_pref[reg] = FALSE;

}

return {pref_regs, has_pref, pref_prob};
}

Figure 17: Pseudo code formerge prefs .
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/***********************************************************************
* *
* schedule_all_ops *
* ---------------- *
* *
***********************************************************************/

schedule_all_ops (op)
OP *op;
{

initial_tip = make_null_tip ();

/* Find out how registers are set by any predecessors of this group */
initial_tip->h = get_reg_mapping (op->addr);

/* If there are no predecessors, associate the IDENTITY mapping with */
/* the start of this group. If any predecessors are later scheduled, */
/* their outputs must adhere to this IDENTITY mapping. The IDENTITY */
/* mapping puts PowerPC R0 in Physical Register 0, PowerPC R1 in P1, */
/* etc. */
if (!reg_map) initial_tip->h = create_id_map (op->addr);

add_continuation (initial_tip, op, op->addr, 1.0);

for ( {cont_tip, op, addr} = get_continuation ();
(cont_tip, op, addr} != {0, 0, 0};
{cont_tip, op, addr} = get_continuation ()) {

last_tip = schedule_op (cont_tip, op, addr, prob);
if (last_tip) add_to_leaf_tips (last_tip);

}

build_shadow_table (initial_tip);
}

Figure 18: Pseudo code forschedule all ops .
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Figure 19:Tips in group construction.

typedef struct {
TIP *prev_tip; /* Previous tip in tree of tips */
TIP *left_tip; /* Fall-thru tip in tree of tips */
TIP *right_tip; /* Target tip in tree of tips */
OP *op_list; /* List of ops associated with this tip */
VLIW *vliw; /* VLIW instruction to which tip belongs */

} TIP;

Theprev tip , left tip , andright tip fields connecttip s together to form a tree group.
Theop list field tracks those operations to be performed on thistip , and thevliw field is used to
track information associated with the VLIW instruction of whichtip is a part. For example,vliw
tracks the time (number of VLIW instructions) since the start of the group.Vliw also tracks the total
number of ALU operations performed in this instruction, so as to ensure that it does not exceed resource
limits.

Following this point, it is not actually true that all the ALU and memory operations between con-
ditional branches are associated with a particular tip. Resource constraints and data dependences may
not allow all ALU and memory operations between conditional branches to execute simultaneously on
the sametip / in the same VLIW instruction. In such cases,tip mmay be ended and anothertip n
begun. In this case

tip_m->left = tip_n; /* Successor / Fallthru tip is n */
tip_n->prev = tip_m; /* Predecessor tip is m */
tip_m->right = NULL; /* Successor / Target tip not exist */
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/***********************************************************************
* *
* schedule_op *
* ----------- *
* *
* RETURNS: Last "tip" on path if the last op scheduled is the last *
* on this path through the group, otherwise 0. *
* *
***********************************************************************/

schedule_op (tip, op, addr, prob)
OP *op;
unsigned addr;
double prob;
{

if (!op) { tip->succ_addr = addr; return tip; }

if (is_store (op)) earliest = tip->time;
else if (is_branch (op)) earliest = tip->time;
else earliest = 0;

forall (op inputs)
if (tip->avail[input] > earliest) earliest = tip->avail[input];

for (time = earliest; time <= tip->time; time++)
if (schedule_op_at_time (tip, op, time)) break;

/* Did we fail in scheduling op? */
if (time == tip->time+1) {

if (earliest > tip->time+1) max_time = earliest;
else max_time = tip->time+1;

/* Add VLIW instructions until we are at the desired time for op */
/* When a new VLIW is added, all physical registers currently in */
/* use, stay in use. At the "tip" of the path, there should */
/* always be 32 registers in use, one for each PowerPC register. */
for (; time <= max_time; time++)

tip = make_new_vliw (tip);

/* o All function units available in new VLIW. */
/* o All PowerPC architected regs consume phys reg in new VLIW, */
/* but nothing else ==> If 64 total regs, 32 should be free. */
assert (schedule_op_at_time (tip, op, time));

}

/* The path bifurcates at a conditional branch. Duplicate from
"tip" to "target_tip", all the scheduling information such as
"avail" times. Pass on the same scheduling information from
"tip" to "fallthru_tip". (Passing the information on is
efficient, as there is no need to duplicate all the fields and
then free them for "tip".

*/
if (!is_condbranch (op))

return schedule_op (tip, op->left, op->addr + 4, prob);
else {

target_tip = duplicate_tip (tip);
fallthru_tip = inherit_tip (tip);
tip->left = fallthru_tip;
tip->right = target_tip;
target_tip->prev = tip;
fallthru_tip->prev = tip;

ptake = prob * op->prob_taken;

add_continuation (target_tip, op->right, br_targ_addr (op), ptake);
add_continuation (fallthru_tip, op->left, op->addr + 4, 1.0-ptake);

return 0;
}

}

Figure 20: Pseudo code forschedule op .

Likewise, speculatively scheduled operations are assigned to earlier tips, which are easily reached
from the end of the current path by following theprev field of each tip until a tip is reached, whose
VLIW instruction has the time at which we wish to speculatively schedule the operation.
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/***********************************************************************
* *
* schedule_op_at_time *
* ------------------- *
* *
* RETURNS: Non-zero if successfully scheduled, zero otherwise. *
* *
***********************************************************************/

schedule_op_at_time (tip, op, time)
{

if (!is_fu_avail (tip, time, op)) return 0;
if (!is_phys_reg_avail (tip, time, op, &phys_reg)) return 0;
else {

tip->h[op->dest] = phys_reg;
mark_phys_reg_used (tip, phys_reg, time);
mark_fu_used (tip, time, op);
return 1;

}
}

Figure 21: Pseudo code forschedule op at time .

All of this is put to direct use in theschedule op function which is illustrated in Figure 20 and
which is called fromschedule all ops .

Schedule op initially determines theearliesttime at whichop may execute based on the avail-
ability of its inputs. Store and branch instructions are exceptions and are always scheduled in order, i.e.,
at the last or currenttip on the path. Function unit and register constraints are checked at each VLIW
instruction on the path from theearliestuntil the current VLIW via a call toschedule op at time ,
which is depicted in Figure 21. Ifop cannot be scheduled at any of these times, new VLIW instruc-
tions / tips are appended to the current path until theop can be scheduled. Multiple (empty) VLIW
instructions may need to be appended ifop must wait for a long latency operation to finish3.

At the endtip of any path, only PowerPC registers are live. Since the VLIW machine has more
registers than PowerPC, there is always a physical register for the result ofop . Likewise, when a new
VLIW instruction is added at the endtip of the path it is always empty of instructions, and hence there
is guaranteed to be a function unit available on which to executeop .

Returning toschedule op at time in Figure 21, it can be seen that the register and function
unit checks just described are performed. Of particular interest is the call tois phys reg avail ,
which is depicted in Figure 22.

Is phys reg avail first determines all physical registers which are available for use along the
entire path from whereop is scheduled until the endtip of the path. It does so with byOR’ing the bit
vector of registers in use at each point (tip) along the path.

Then via a call tois preferred phys reg , is phys reg avail checks if there is a pre-
ferred physical register for this destination, as was calculated in Section A.1. As can be seen in Fig-
ure 23, this is a trivial check after the work of Section A.1.

3Depending on the actual implementation of the VLIW machine, empty VLIWs may be eliminated during afinal as-
sembly pass

26



/***********************************************************************
* *
* is_phys_reg_avail *
* ----------------- *
* *
* RETURNS: Non-zero if a physical register ("phys_reg") is available, *
* zero otherwise. *
* *
***********************************************************************/

is_phys_reg_avail (tip, time, op, phys_reg)
int time; /* Earliest time to check -- Typically tip->time */
int *phys_reg; /* Output */
{

int pref_reg;
BIT_VECTOR regs_used[];

clr_allbits (regs_used);

/* After this loop, all 0 bits in "regs_used" represent free phys regs */
tip = end_tip;
while (TRUE) {

or_bits (regs_used, tip->reg_usage);
if (tip->time <= time) break;
else tip = tip->prev;

}

if (is_preferred_phys_reg (op, &pref_reg)) {
if (is_bit_clr (regs_used, pref_reg)) {

/* There is a preferred register, and it is free. */
*phys_reg = pref_reg;
return 1;

}
else if (*phys_reg = get_first_zero_bit (regs_used) >= 0) {

/* There is a preferred register, it is not free, but another */
/* physical register is free. */
/* */
return 1;

}
/* There is a preferred register, it is not free, and no other */
/* physical register is free. */

else return 0;
}

/* There is no preferred reg, and a physical register is free. */
else if (*phys_reg = get_first_zero_bit (regs_used) >= 0) return 1;

/* There is no preferred reg, but no physical register is free. */
else return 0;

}

Figure 22: Pseudo code foris phys reg avail .
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/***********************************************************************
* *
* is_preferred_phys_reg *
* --------------------- *
* *
* RETURNS: Non-zero if preferred reg ("pref_reg") exists, 0 otherwise *
* *
***********************************************************************/

is_preferred_phys_reg (op, pref_reg)
OP *op; /* PowerPC op */
int *pref_reg; /* Output */
{

if (!op->has_pref) return 0;
else {

*pref_reg = op->pref_regs[op->dest_reg];
return 1;

}
}

Figure 23: Pseudo code foris preferred phys reg .

/***********************************************************************
* *
* set_exit_mappings *
* ----------------- *
* *
***********************************************************************/

set_exit_mappings ()

forall (leaf_tips) {
hw_regmap = get_reg_mapping (leaf_tip->succ_addr);

if (!hw_regmap) hw_regmap = create_reg_map (leaf_tip->succ_addr, leaf_tip->h);

make_pref_reg_assignments (leaf_tip, hw_regmap)
}

}

Figure 24: Pseudo code forset exit mappings .

If is preferred phys reg indicates that there is a preferred register (pref reg ), is phys reg avai
uses it, if it is available over the whole time range. Ifpref reg is not available,is phys reg avail
chooses an arbitrary physical register. If none are available, failure is indicated. Ifis preferred phys reg
indicated that there was nopref reg , an arbitrary choice is also tried with failure indicated if no phys-
ical registers are available.
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A.3 Function Set Exit Mappings

Recall from the start of Section 2 thatset exit mappings () ensures that register mappings at
group exits match those expected at successor groups, and that it creates an expected mapping for the
successor group address if none currently exists.

Pseudo code forset exit mappings is given in Figure 24.
Set exit mappings iterates through the set ofleaf tips or (exit tips of the group). The set

of leaf tips is set inschedule all ops in Figure 18. At eachleaf tip , a check is made via
a call toget reg mapping , as to whether a register map exists for a successor group of this exit.

If there is no successor to this exit and no other group exiting to the same successor,create reg map
associates the current register mapping with the successor address of this tip. Actually, there is an ex-
ception to using the current register mapping, as is outlined by the code forcreate reg map in
Figure 25. If multiple PowerPC registers e.g.,R3 andR4, both map to the same physical register, e.g.,
P9 only one ofR3 and R4 is assigned toP9. Such as situation could arise in a group if there is a
PowerPC operation which copiesR3 to R4. No DAISY code is generated for this PowerPCcopy, only
DAISY ’s internal mapping tables are updated.

Whichever ofR3 or R4 is not assigned toP9 is assigned to some free physical register, e.g., P17. A
DAISY copy operation fromP9toP17will be generated during the call tomake pref reg assignments .
We will return tomake pref reg assignments in more detail shortly.

This special handling of multiple PowerPC registers mapping to the same physical register is done
in case another path to this successor group is later encountered in whichR3 andR4 are not mapped
to the same physical register. In this circumstance ifR3 andR4 mapped to the same physical register,
there would be no way to make the register assignment for the later path compatible with this path.

More generally, if a successor group is later scheduled starting or ending at thisPowerPC successor
address, their register mapping must adhere to the mapping set here. Since we employ this algorithm
at runtime, there is a reasonable chance that this exit will be the primary predecessor to any successor
group that is eventually created. Even if it is not the primary predecessor, any other predecessors will
be created with this mapping in mind, thus helping ensure that performance is good in all cases.

If a mapping already exists at this PowerPC successor address, then hardwarecopy operations are
added via the call tomake pref reg assignments to make sure the register mapping matches
(1) the successor group and (2) any other group exits which branch to this successor group. As noted
above, the call tomake pref reg assignments also generatescopy operations if the mapping at
the exit to this group does not match the requiredhw regmap , as when two PowerPC registers would
otherwise be mapped to the same physical register at group exit.

Make pref reg assignments is depicted in Figure 26.
Make pref reg assignments determines which physical registers need to be moved to new

physical registers in order to make the mapping at the end/tip of one group consistent with the mapping
for the successor group. Only 32 physical registers are in use at eachtip — one for each PowerPC
register. Those not in use, can of course be ignored. We have endeavored when creating the group
ending attip to place values in physical registers consistent with where the successor group(s) want
them. Thus a common case is like that for PowerPC registerR4 in Figure 26, i.e.,R4 maps to physical
registerP62 at both thetip and successor group, and hence no copies need be generated.

More generally however, physical registers can be mapped differently at atip and successor group.
A simple version of this case is shown in Figure 26 for PowerPCR0, which maps toP9 at thetip and to
P7 in the successor group. In this case a simplecopy operation is generated to moveP9 to P7 prior to
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/***********************************************************************
* *
* create_reg_map *
* -------------- *
* *
* Associate a register mapping with "ppc_ins_addr" and return it. *
* Match "preferred_map", unless "preferred_map" maps more than one *
* PowerPC register to the same physical register -- make sure all *
* PowerPC registers are mapped to different physical registers. *
* *
***********************************************************************/

create_reg_map (ppc_ins_addr, preferred_map)
{

/* 32 PowerPC integer registers */
rtn_map = map[ppc_ins_addr] = alloc (32);
unassigned_ppc_reg = alloc (32);

phys_reg_used = alloc_and_clear (NUM_PHYS_REGS);

/* Where possible, assign PPC regs to phys regs according to preference */
unassigned_cnt = 0;
for (ppc_reg = 0; ppc_reg < 32; ppc_reg++) {

phys_reg = preferred_map[ppc_reg];
if (phys_reg_cnt[phys_reg]++ == 0) {

rtn_map[ppc_reg] = phys_reg;
phys_reg_used[phys_reg] = TRUE;

}
else unassigned_ppc_reg[unassigned_cnt++] = ppc_reg;

}

/* Handle cases where multiple PPC regs mapped to same physical register */
for (i = 0; i < unassigned_cnt; i++) {

ppc_reg = unassigned_ppc_reg[i];
phys_reg = get_free_phys_reg (phys_reg_used);
rtn_map[ppc_reg] = phys_reg;
phys_reg_used[phys_reg] = TRUE;

}

free_mem (phys_reg_used);
free_mem (phys_reg_used);

return rtn_map;
}

Figure 25: Pseudo code forcreate reg map.
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/***********************************************************************
* *
* make_pref_reg_assignments *
* ------------------------- *
* *
* Put COPY ops at end of group to reconcile its PowerPC to physical *
* register mapping with the mapping for the successor group, e.g.: *
* *
* Mapping at *
* Group End Group Start Chains/Cycles of Physical Reg Moves *
* --------- ----------- *
* R0 -> P9 R0 -> P7 P9 -> P7 => One COPY op *
* R1 -> P54 R1 -> P43 --+ *
* R2 -> P43 R2 -> P17 |- P54 -> P43 -> P17 -> P54 *
* R3 -> P17 R3 -> P54 --+ *
* R4 -> P62 R4 -> P62 P62 -> P62 => No COPY op *
* --- ---- --- ---- *
* PPC Phys PPC Phys *
* *
* P54 -> P43 -> P17 -> P54 => COPY P54 -> Scratch *
* COPY P17 -> P54 *
* COPY P43 -> P17 *
* COPY Scratch -> P43 *
***********************************************************************/

make_pref_reg_assignments (tip, pref_regs)
int pref_regs[32]; /* 32 PPC integer regs: Prefs at tip successor */
{

tip_to_succ[0..NUM_PHYS_REGS-1] = NO_MAPPING;
succ_to_tip[0..NUM_PHYS_REGS-1] = NO_MAPPING;

for (ppc_reg = 0; ppc_reg < 32; ppc_reg++) {
curr_phys = tip->h[ppc_reg];
new_phys = pref_regs[ppc_reg];

tip_to_succ[curr_phys] = new_phys;
succ_to_tip[curr_phys] = curr_phys;

}

seen[0..NUM_PHYS_REGS-1] = FALSE;
for (phys_reg = 0; phys_reg < NUM_PHYS_REGS; phys_reg++) {

if (seen[phys_reg]) continue;

pred_reg = succ_to_tip[phys_reg];

if (pred_reg == phys_reg) continue;
if (pred_reg == NO_MAPPING) continue;

first_reg = find_chain (succ_to_tip, pred_reg, &is_cycle);
dump_copies (tip, succ_to_tip, tip_to_succ, seen, first_reg, is_cycle);

}
}

Figure 26: Pseudo code formake pref reg assignments .

31



exiting the group attip. More complicated sequences can arise, however as illustrated by the mappings
for PowerPC registersR1, R2 andR3. As illustrated in Figure 26, the updates needed to keep their
physical registers consistent form a cycle:P54 ! P43 ! P17 ! P54. This cycle can be broken by
first copyingP54 to a scratch register – many of which are available since only 32 physical registers
are in use by the translated code. Then as illustrated in Figure 26, a sequence ofcopy operations can
be placed on thetip so as to obtain the mapping required at the start of the successor group.

Most of the work ofmake pref reg assignments goes into finding thesechainsandcycles
of physical register mappings. Thefind chain function in Figure 27 searches for the head of a
chain or a cycle, and also determines whether a group of updates is cyclic. When all of this is finally
determined,dump copies in Figure 27 is invoked.Dumpcopies finds the end of a chain or cycle,
so as not to corrupt the values, and then generates a sequence ofcopy operations on thetip to update
the mappings, in a manner similar to that illustrated in Figure 26.Make pref reg assignments
and its subroutine calls run in time linear with the number of registers.
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/***********************************************************************
* *
* find_chain *
* ---------- *
***********************************************************************/

int find_chain (pred_map, base_reg, is_cycle)
boolean *is_cycle; /* Output: True for sequence like X->Y->Z->X */
{

/* Search backward until find first register in chain of copies, */
/* or until we determine there is a cycle. */
curr_reg = base_reg;
while (TRUE) {

prev_reg = pred_map[curr_reg];

if (prev_reg == NO_MAPPING) {
*is_cycle = FALSE; /* X=curr_reg starts chain of copies: */
return curr_reg; /* X->Y->Z->nothing. */

}

if (prev_reg == base_reg) {
*is_cycle = TRUE;
return curr_reg; /* Have a cycle of copies: X->Y->Z->X */

}

curr_reg = prev_reg;
}

}

/***********************************************************************
* *
* dump_copies *
* ----------- *
***********************************************************************/

dump_copies (tip, pred_map, succ_map, seen, first_reg_in_chain, is_cycle)
{

if (is_cycle) {
curr = pred_map[first_reg_in_chain];
tip = gen_copy_op (tip, curr, scratch_reg);

}
else {

curr = first_reg_in_chain;
while (TRUE) { /* Find end of chain */

next = succ_map[curr];
if (next == NO_MAPPING) break;
else curr = next;

}
}

/* Make COPY's from end of chain/cycle, e.g. W->X->Y->Z ==> */
/* COPY Y->Z, COPY X->Y, COPY W->X */
while (TRUE) {

seen[curr] = TRUE;
prev = pred_map[curr];
tip = gen_copy_op (tip, prev, curr);

if (prev == first_reg_in_chain) break;
else curr = prev;

}

seen[prev] = TRUE;
if (is_cycle) tip = gen_copy_op (tip, scratch_reg, prev);

}

Figure 27: Pseudo code forfind chain anddump copies .
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