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Abstract

Proactive management of web server farms requires accurate prediction of workload. An ex-

emplary measure of workload is the amount of service requests per unit time. As a time series,

the workload exhibits not only short-term random fluctuations but also prominent periodic (daily)

patterns that evolve randomly from one period to another. A hierarchical framework with multiple

time scales is proposed in this paper to model such time series. It leads to an adaptive procedure that

provides both long-term (in days) and short-term (in minutes) predictions with simultaneous confi-

dence (prediction) bands which accommodate not only serial correlation but also heavy-tailedness,

heteroscedasticity, and nonstationarity of the data.

Key Words: Adaptive, autoregressive, computer network management, filterbank, heavy tail, het-

eroscedasticity, Internet, non-Gaussian, nonparametric, nonstationary, prediction, seasonal time

series, web traffic.



I. I NTRODUCTION

A web server farm is a cluster (or system) of servers shared by several web sites and maintained

by a host service provider. Computing resources are dynamically (rather than statically) allocated

according to the specific needs at different web sites. A service-level agreement is used to define

the quality of service (QoS) for different classes of service requests and the revenue/cost model.

In such an environment, accurate online prediction of server workload, with sufficiently long hori-

zon, is key to ensuring that adequate computing resources are allocatedtimely to meet temporary

increases of service requests of some classes at some sites while achieving certain system-wide

performance objectives such as maintaining the QoS requirements of the entire server farm or

maximizing the total revenue of the server farm under the QoS constraints [1]–[5].

A key measure of server workload is the amount of service requests per unit time (or the request

arrival rate). It can be, for example, the total size or number of files requested per unit time; it can

also be the total number of operations requested per unit time. A time series of such requests

usually fluctuates randomly over time, with different statistical characteristics over different time

windows in different time granularities: A time series of requests can be stationary but self-similar

(long-range dependent) and/or heavy-tailed over a small time window (e.g., in seconds or minutes)

at a fine time granularity (e.g., in milliseconds) [6]–[9]; it can also exhibit strong daily patterns and

nonstationarity over a bigger time window (e.g., in days or weeks) at a coarser time granularity

(e.g., in minutes), where the nonstationarity may occur during weekends and holidays as well as

in different time periods of the day [8]–[11]. Whereas the first type of data has been intensively

studied for the purpose of improving the performance of routing and scheduling (load balancing),

the second type of data plays an important role in designing optimal strategies of dynamic resource

allocation for the purpose of efficiently and smoothly managing web server farms. The focus of

this paper is on the second type of data.

It has been shown that short-term prediction, with prediction horizons less than a few minutes,

is useful in detecting anomalies of workload for early warning of service disruptions [12]–[14]

and in mitigating temporary QoS deterioration by dynamic resource allocation [2]. In this paper,

a hierarchical approach is developed to produce not only short-term prediction but also long-term

prediction, with lead time equaling one day or more, by exploiting the daily patterns in the time
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series of requests. Similar problems occur in other applications, such as electric utility management

[15]–[21]. While the short-term prediction is needed to accommodate rapid fluctuations, the long-

term prediction can be used to enhance the flexibility of dynamic resource management because

it reduces the magnitude (hence complexity) of short-term adjustment and provides sufficient lead

time for strategic planning.

Although several methods have been considered for workload (or traffic) modeling and/or pre-

diction based on traditional techniques such as seasonal autoregressive integrated moving-average

(SARIMA) [22]–[26], the method proposed in this paper has the following desirable properties:

1. It provides not only point predictions but also simultaneous confidence bands (joint predic-

tion intervals) that can be used to support flexible service-level agreements (e.g., probability-

based service guarantees) and the corresponding optimal strategies of resource allocation.

2. It has the capability of automatically handling nonstationarity in both daily patterns and

short-term fluctuations because it allows the model parameters to change with time.

3. It is computationally efficient because it employs fast algorithms to compute the estimates

of time-varying parameters online.

4. Its hierarchical approach allows easy diagnostic checking of model adequacy.

In the proposed method, the time series of requests is decomposed into a long-term compo-

nent and a short-term component, where the former is represented by a linear combination of

certain basis functions with random amplitudes and the latter by a traditional time series model.

The basis functions in the long-term component are selected to compress the daily patterns into a

low-dimensional space suitable for efficient modeling and computation, and the amplitudes of the

basis functions are modeled as random processes to handle the trend and fluctuation of daily pat-

terns. A simple multi-regime model is employed to deal with abrupt changes due to predetermined

events such as weekdays and weekends. Online adaptive algorithms are employed to compute

the estimates of time-varying parameters in both long-term and short-term models that are opti-

mized specifically for the given prediction horizons. Key characteristics of service requests, such

as the time-dependent variability (heteroscedasticity), the heavy-tailed non-Gaussian distribution,
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Fig. 1. Total file sizes (in logarithm of bytes) of HTTP requests in five-minute intervals received at a web

server of an online retail store over 13 days. Vertical dashed lines mark the daily boundary.

and the residual serial dependence (correlation), are taken into account to construct simultaneous

confidence bands for both long-term and short-term predictions.

II. H IERARCHICAL FRAMEWORK

Although the proposed method is applicable in more general situations, let us consider, for

the simplicity of presentation, an exemplary server farm where service requests are measured at

the server level. Assume that the requests are recorded at each server and aggregated in non-

overlapping time intervals of length∆ > 0 to form a time series. An example is shown in Fig. 1

where the time series comprises the logarithm of the total file sizes of Hypertext Transfer Protocol

(HTTP) requests within every five-minute interval (i.e.,∆ = 5 minutes) over a period of 13 days

at a commercial web site. This time series will be employed as a working example throughout the

paper. Note that the log transform is employed here to eliminate, or reduce, the dependence of the

(local) variability on the (local) mean of the untransformed file sizes (the former tends to rise with

the later). In general, letxk(t) ∈ R denote the amount of service requests measured at serverk in

time interval∆t (k = 1, · · · ,s; t = 1,2, · · ·), wheres is the total number of servers available.

As shown in Fig. 1, the time series contains prominent periodic (but not deterministic) daily

patterns. This is a typical characteristic that exists at the web sites of a wide range of industries
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(e.g., retail, finance, and insurance) and for many types of request measurements (e.g., total file

sizes or file counts, total HTTP operations). The periodicity of such periodic patterns (the number

of samples per period) will be denoted byp. For example,p = 288 for the daily patterns shown in

Fig. 1. Note that oncep is given the time indext can be expressed ast = (τ −1)p+ r (r = 1, · · · , p;

τ = 1,2, · · ·), meaning thatt is therth time interval (of length∆) in periodτ.

Motivated by the exemplary time series in Fig. 1, let us consider the following model ofxk(t)

that handles both the periodic patterns and the more rapid fluctuations:

xk(t) = yk(t)+zk(t), yk(t) := ∑
j∈Ck

ξ jk(τ)φ jk(t), (1)

where, for each givenk, Ck is a subset ofIp := {1, · · · , p}, theφ jk(t) arep-periodic functions oft

such thatφφφ jk := vec{φ jk(t)}p
t=1

( j = 1, · · · , p) form a basis (not necessarily orthogonal) of`2(R
p),

theξ jk(τ) are random variables, andzk(t) is a random process with zero mean.

In this model, the periodic, long-term, patterns are represented byyk(t) as a linear combination

of a subset of basis functions whose amplitudes fluctuate randomly from one period to another; the

remaining intra-period, short-term, fluctuations are represented byzk(t) = xk(t)−yk(t) as a zero-

mean random process. A general discussion on this model and its comparison with traditional

models such as SARIMA and periodic AR (PAR) can be found in [27].

Although more sophisticated models (e.g., general state-space models and nonlinear dynamic

models) are possible alternatives, it is assumed in this paper thatξξξ (τ) := vec{ξ jk(τ): j ∈ Ck, k =

1, · · · ,s} andz(t) := vec{zk(t)}s
k=1 are both AR processes, not only because the AR models can

approximate more complicated linear models but also because the optimal AR parameters required

for prediction can be easily obtained by computationally efficient algorithms.

If ξξξ (τ) is a stationary process, then the long-term componentyk(t) is a cyclostationary process

with a p-periodic mean function, i.e., it satisfies

E{yk(t + p)} = E{yk(t)} and Cov{yk(t + p),yk(t
′+ p)} = Cov{yk(t),yk(t

′)}

for all t and t ′. This constraint onyk(t) can be relaxed for greater flexibility by allowing the

parameters ofξξξ (τ) to change with time. For example, by allowing the mean ofξξξ (τ) to vary with

τ, one can introduce inyk(t) a periodic or nonperiodic trend that evolves more slowly relative top,

even though the model in (1) does not explicitly contain an additive term to represent such a trend
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(e.g., a linear growth function or an annual cycle). Similarly, certain nonstationary characteristics

in the short-term fluctuation can be handled by allowing the parameters ofz(t) to change over time.

Once the parametric model structure is specified, it is possible, at least in theory, to estimate the

unknown parameters jointly from observations ofxk(t) by, for example, the Gaussian maximum

likelihood method or the Bayesian method. A drawback of this joint estimation approach is that

the computation of the parameter estimates can be difficult, even under the Gaussian and stationary

assumptions.

In this paper, a simpler, hierarchical, approach is taken because it requires less computation

and is easier for diagnostic checking. In the hierarchical approach, the long-term and short-term

components in (1) are dealt with separately in a hierarchy: the long-term componentyk(t) is con-

sidered first under some simplified working assumptions about the short-term componentzk(t);

after the long-term component is modeled and predicted, the short-term component is modeled on

the basis of the long-term prediction error. Moreover, adaptive algorithms are employed to track

the model parameters, which may change slowly with time, without explicitly modeling them.

It is not unusual that n a time series of service requests the daily patterns of weekdays behave

significantly differently from the daily patterns of weekends, as is shown clearly in Fig. 1. One

way of handling such a phenomenon of multiple regimes, in which the time of regime shift is

known a priori, is to consider the weekly periodicity instead of the daily one; but in doing so,

the computational cost will grow exponentially with the increase ofp. Another possibility is to

modelξξξ (τ) as an AR process in which the parameters take different values whenτ belongs to

different regimes; however, unless the order of the AR model is very high (i.e., higher than the

maximum run-length of the regimes), this method has the disadvantage of possibly relying solely

on the immediate observations of the previous regime to predict a new regime, as it happens when

predicting Saturday’s requests with an AR(1) model forξξξ (τ), while in fact the data in the new

regime are more resemblant to the observations of the same regime many periods older (e.g.,

observations from the last weekend).

In this paper, different regimes are modeled separately to handle the between-regime change

while taking advantage of the within-regime resemblance. It is done by cascading the original data

that belong to the same regime to form a set of new time series, one for each regime. For example,

all weekday observations shown in Fig. 1 are collected to form a new weekday time series and
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all weekend observations are collected to form a new weekend time series. Each time series is

modeled by (1) with a regime-dependent long-term component, some parameters of which, e.g.,

the mean ofξ jk(τ) for some values ofj, may be shared among all regimes to ensure a smoother

transition when the regime shifts. Long-term predictions are made by using one of the regime-

specific models, depending on which regime the prediction target belongs to. The same method

can be applied to the short-term modeling and prediction. However, it is more convenient, and

in many cases justifiable, to merge the short-term components of all regimes in the original order

to form a single time series for modeling and prediction under the assumption that the combined

component does not change significantly with regime shift.

The remainder of the paper is devoted to detailed exposition of model identification, estimation,

and forecasting steps. The case of a single server(s= 1) is considered for simplicity. In this case,

the subscriptk can be dropped so that (1) becomes

x(t) = y(t)+z(t), y(t) = ∑
j∈C

ξ j(τ)φ j(t). (2)

Extension of the methodology to the case ofs> 1 is straightforward and therefore is omitted.

III. L ONG-TERM MODELING AND PREDICTION

Since multiple regimes are handled separately for long-term modeling and prediction, it suffices

to consider the case of a single regime and assume that the statistical properties ofy(t) andz(t)

in (2) do not change abruptly with regime shift. Assume further that the basis functionsφ j(t) in

(2) are givena priori (e.g., sinusoids, wavelets, polynomials, etc., depending on the particular type

of daily patterns) and the subsetC does not change with time. In the following, two remaining

issues are discussed: (a) determination ofC from historical observations ofx(t) and (b) long-term

prediction ofx(t) via modeling and prediction of theξ j(τ).

A. Determination ofC

The purpose of selecting a subsetC ⊂Ip is two fold. First, it is to reduce the dimensionality

and hence the required computational and data resources in the subsequent procedure of modeling

and prediction. Second, it is to reduce the sensitivity to estimation errors and ensure more robust
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modeling and prediction. The first point is obvious because the higher the dimension of

ξξξ (τ) := vec{ξ j(τ), j ∈ C }. (3)

the more parameters are there to be estimated. The need for dimension reduction is especially

prominent in web server management, as compared to, for example, electric utility management

[15]–[21] or economic forecasting [28] [29], because it operates on a much smaller time granularity

(in the magnitude of minutes rather than hours or months) which results in a very large value ofp

(e.g.,p = 288 for five-minutely data andp = 1440 for minutely data, as compared top = 24 for

hourly data andp = 12 for monthly data). The second point is justified by the statistical theory of

regression analysis [30, pp. 268–269] which asserts that in the presence of inherent statistical error

in parameter estimation, the mean-square error of both modeling and prediction can be reduced by

simply ignoring the “minor” components even if they exist in reality.

To selectC , the filterbank approach proposed in [27] is readily applicable. First, consider the

“complete” model that includes all basis functions. In this case, it is obvious from (2) that

ξξξ 0(τ) := vec{ξ j(τ)}p
j=1 = ΦΦΦ−1

0 x(τ) (τ = 1,2, · · ·), (4)

whereΦΦΦ0 := [φφφ1, · · · ,φφφ p] is the complete matrix of basis functions and

x(τ) := vec{x((τ −1)p+ r)}p
r=1

is the vector of observations obtained in periodτ. Eq. (4) defines a transform fromx(t) to ξ j(τ)

that has a filterbank interpretation. Indeed, lettingψψψ ′
j := [ψ j(p−1), · · · ,ψ j(0)] be the jth row of

ΦΦΦ−1
0 so thatΦΦΦ−1

0 = [ψψψ1, · · · ,ψψψ p]′, Eq. (4) can be expressed as

ξ j(τ) =
p−1

∑
i=0

ψ j(i)x(τ p− i) ( j = 1, · · · , p; τ = 1,2, · · ·), (5)

which shows thatξ j(τ) can be obtained by applying tox(t) a filterbank that consists ofp finite

impulse response (FIR) filters, with{ψ j(i)}p−1
i=0

being the impulse response of thejth filter, and

subsampling (decimating) the output of thejth filter at timet = τ p (i.e., one sample per period

taken at the end of each period).

With ξ j(τ) so defined,x(t) can be expressed as

x(t) =
p

∑
j=1

wj(t), wj(t) := ξ j(τ)φ j(t), (6)

7



for t := (τ −1)p+ r. In this expression,x(t) is decomposed intop component waveformswj(t)

( j = 1, · · · , p); the amplitude of these waveforms is constant within each period and is varying

randomly from one period to another; the basic shape of these waveforms are determined by the

basis functionsφ j(t).

Since the long-term model will be employed for long-term prediction, a proper subsetC should

be selected by examining the long-term behavior ofξ j(τ). Givenn periods of historical observa-

tions{x(τ)}n
τ=1, one can obtain{ξξξ 0(τ)}n

τ=1 from (4) or (5). The long-term effect ofξ j(τ) as a

function ofτ can be quantified by thecoherencemeasure [31]

ĉj :=
µ̂2

j

µ̂2
j + σ̂2

j

, (7)

whereµ̂ j andσ̂2
j are the sample mean and variance of{ξ j(τ)}n

τ=1 defined as

µ̂ j := n−1
n

∑
τ=1

ξ j(τ), σ̂2
j := n−1

n

∑
τ=1

{ξ j(τ)− µ̂ j}2. (8)

Of the p component waveforms ofx(t) defined by (6), some are characterized by high coherence,

i.e., large value of ˆcj ; these waveforms, called the high-C components ofx(t), are good candidates

for use in the long-term prediction because they have long-lasting effect due to the fact that for a

high-C component, the correspondingµ̂ j , as an estimator of the long-term average

µ j := lim
n→∞

n−1
n

∑
τ=1

ξ j(τ),

is significantly different from zero. A statistical test was suggested in [27] to help identify the

high-C components. In addition, one may also consider the component waveforms ofx(t) that

have large amplitude. These waveforms can be identified by theenergymeasure

êj := n−1
n

∑
τ=1

{ξ j(τ)}2 = µ̂2
j + σ̂2

j (9)

and may be referred to as the high-E components ofx(t). The subsetC should contain both high-C

and high-E components in order to effectively model the inter-period dynamics ofx(t).

As an example, Fig. 2 shows the plot of ˆcj and êj associated with the filterbank of discrete

Fourier transform (DFT) for the weekday data in Fig. 1. Note that the DFT-based ˆej is just the

average of the periodograms ofx(τ) (τ = 1, · · · ,n). As Fig. 2 suggests, the subsetC should contain
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at least the mean (zero frequency) and the first three frequencies (the fundamental frequency and

its first two harmonics). Since each nonzero frequency corresponds to two coefficients, one for sine

and one for cosine, the dimensionality ofC andξξξ (τ) is equal to 7. This represents a tremendous

compression of the original dimensionp = 288.

One may also determineC by employing various model-selection techniques developed for

regression analysis [30] [32] under the working assumption of white noise. OnceC is determined,

the ξ j(τ) ( j ∈ C ) can be simply obtained from (4) or (5) as before. Alternatively, they can be

obtained by least squares (LS). Clearly, the LS solution coincides with that defined by (5) if the

basis functions are orthonormal.

B. Modeling ofξ j(τ) for Long-Term Prediction

Because Eq. (4) defines an equivalence relationship betweenξξξ 0(τ) andx(τ), the d-period-

ahead (long-term) prediction of{x(t)} at timet = np can be obtained from thed-step-ahead pre-

diction of{ξξξ 0(τ)} at τ = n, i.e.,x̂(n+d |n) = ΦΦΦ0ξ̂ξξ 0(n+d |n), or equivalently,

x̂((n+d−1)p+ r |np) =
p

∑
j=1

ξ̂ j(n+d |n)φ j(r) (r = 1, · · · , p).

This predictor can be simplified as

x̂((n+d−1)p+ r |np) = ∑
j∈C

ξ̂ j(n+d |n)φ j(r) (r = 1, · · · , p) (10)

under the assumption thatξξξ 1(τ) := vec{ξ j(τ), j /∈ C } is a zero-mean white noise process and

is statistically uncorrelated with the processξξξ (τ) in (3). SinceC , by construction, contains all

components ofx(τ) that are significantly relevant to long-term prediction, the simplified predictor

(10) should be able to capture the periodic patterns inx(t) as long asξξξ (τ) is well predicted.

Moreover, if theφ j(t) are chosen judiciously, the dimension ofξξξ (τ), denoted bym, is much

smaller thanp. Therefore, the simplification enables us to focus on the modeling and forecasting

of a low-dimension vector process and thus considerably reduces the complexity of the problem.

The following is devoted to the simplified predictor (10) and the modeling ofξξξ (τ).

The purpose of modelingξξξ (τ) is to derive optimal predictions. It is desirable that the model

be easy to identify, estimate, and derive predictions from. Although standard AR models satisfy
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these requirements, it is advantageous, as explained later, to employ thehorizon-specific multistep

AR(d,κ) modelof the form

ξξξ (τ) = µµµ +
κ

∑
i=1

A i {ξξξ (τ −d− i +1)−µµµ}+εεε(τ), {εεε(τ)} ∼ IID(0,ΣΣΣ), (11)

whered ≥ 1 is the given horizon of prediction andκ is the order of the model. Under this assump-

tion, the best (linear) prediction ofξξξ (n+d) given{ξξξ (τ)}n
τ=1 (n > κ) can be expressed as

ξ̂ξξ (n+d |n) := µµµ +
κ

∑
i=1

A i {ξξξ (n− i +1)−µµµ} (12)

and the covariance matrix of the prediction errorεεε(n+d) = ξξξ (n+d)− ξ̂ξξ (n+d |n) is equal toΣΣΣ.

This, coupled with the assumption that{ξξξ 1(τ)} is white noise and is uncorrelated with{ξξξ (τ)},

implies that Eq. (10) gives the best (linear) prediction ofx(n+d) based on{x(τ)}n
τ=1.

Note that without the white-noise assumption ofξξξ 1(τ), Eq. (10) only gives the best prediction

of the long-term componenty(n+d) := x(n+d)−z(n+d). Therefore, the white-noise assumption

is equivalent to the assumption thatz(t) does not have long-term dependence. In practice, it suffices

that the sample autocovariances of{z(t)}np
t=1

become negligible when the lag of correlation exceeds

p−1. Checking this condition is another way of assessing the adequacy of the long-term model.

The parameters in (11) need to be estimated from historical data in order to compute the pre-

dictions given in (12) and (10). Let the historical data be available up to timet = np. Then,µµµ can

be estimated simply by the sample mean

µ̂µµ := n−1
n

∑
τ=1

ξξξ (τ). (13)

With µ̂µµ in place ofµµµ , A := [A1, · · · ,Aκ ] can be estimated by the LS method that minimizes

∑n
τ=1εεε(τ)′εεε(τ). Note that the LS estimator also minimizes∑n

τ=1εεε(τ)′ΣΣΣ−1εεε(τ) for any givenΣΣΣ

[33, p. 76] and can be expressed as

Â := ΞΞΞΓΓΓ−1, (14)

where

ΞΞΞ :=
n

∑
τ=1

ξ̃ξξ (τ)γγγ(τ)′, ΓΓΓ :=
n

∑
τ=1

γγγ(τ)γγγ(τ)′, (15)

γγγ(τ) := vec{ξ̃ξξ (τ −d− i +1)}κ
i=1,
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with ξ̃ξξ (τ) := ξξξ (τ)− µ̂µµ . Givenµ̂µµ andÂ, ΣΣΣ can be estimated bŷΣΣΣ := n−1 ∑n
τ=1ε̂εε(τ) ε̂εε(τ)′, where

ε̂εε(τ) := ξ̃ξξ (τ)− Âγγγ(τ) = ξ̃ξξ (τ)−∑κ
i=1 Â i ξ̃ξξ (τ −d− i +1).

As in ordinary AR models [33, p. 129], the orderκ in (11) can also be chosen to minimize

AIC(κ) := −2logL(κ)+2(κm2+1), where

L(κ) := (2π)−mn/2|Σ̂ΣΣ|−n/2exp

{
− 1

2

n

∑
τ=1

ε̂εε(τ)′ Σ̂ΣΣ−1ε̂εε(τ)
}

is the Gaussian likelihood. Since∑n
τ=1 ε̂εε(τ)′ Σ̂ΣΣ−1ε̂εε(τ) = mn, it follows that

AIC(κ) = nlog|Σ̂ΣΣ|+2(κm2+1)+{1+ log(2π)}mn. (16)

It is clear that AIC attempts to balance the goodness of fit, measured bynlog|Σ̂ΣΣ|, and the com-

plexity of the model, measured by 2(κm2 + 1), which penalizes high-order models. Under the

assumption thatξξξ (τ) is, in reality, a nondegenerate AR(∞) process, it can be shown [34] [35] that

AIC is asymptotically efficient in selectingκ for optimal d-step-ahead linear prediction (in the

sense of minimum mean-square error). Several alternative criteria for order selection, including

FPE, AICC, and BIC, are given in [33, Sec. 4.3] and [36, Sec. 9.3]. They are distinguished from

AIC by the employment of different penalty functions. To check for model adequacy, one may

analyzeε̂εε(τ) for possible serial correlation [36, Sec. 9.4].

Note that ifξξξ (τ) in reality is an ordinary AR(κ) process satisfying

ξξξ (τ) = µµµ +
κ

∑
i=1

A i {ξξξ (τ − i)−µµµ}+εεε(τ), {εεε(τ)} ∼ IID (0,ΣΣΣ), (17)

then, instead of (12), the bestd-step-ahead prediction should be

ξ̂ξξ (n+d |n) = µµµ +
κ

∑
i=1

A i {ξ̂ξξ (n+d− i |n)−µµµ}, (18)

whereξ̂ξξ (n+d− i |n) := ξξξ (n+d− i) for i ≥ d. Both being linear predictors, the major difference

between (18) and (12) lies in the way in which the parameters are optimized in practice. Assuming

that both models are estimated by LS, it is easy to see that theA i in (18) are optimized by minimiz-

ing theone-stepprediction error while thed-step prediction is derived from forward projections of

the assumed AR model (17) with zero forcing. On the other hand, theA i in (12) are optimized by

directly minimizing thed-step prediction error without using model-based projections. When the

AR model (17) is incorrect, as will be most likely the case in practice, the model-based projections
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can result in poord-step prediction ford > 1 even though the model is optimized for one-step pre-

diction. On the other hand, thed-step predictions given by (12) tend to be more reliable (e.g., more

robust to modeling errors), as demonstrated in many analytical and empirical studies [37]–[43].

The model (11), which is forξξξ (τ), can be transformed into a model fory(t). As an example,

consider the case whered = 1 andC = {1, · · · ,m} for some 0< m < p. In this case, one can

write y(τ) = ΦΦΦξξξ (τ) andξξξ (τ) = ΨΨΨy(τ), whereΦΦΦ := [φφφ1, · · · ,φφφm] andΨΨΨ := [ψψψ1, · · · ,ψψψm]′. If ξξξ (τ)

satisfies (11) withd = 1, theny(τ) must satisfy

y(τ) = ννν +
κ

∑
i=1

Bi y(τ − i)+ζζζ (τ), {ζζζ (τ)} ∼ IID (0,ΛΛΛ), (19)

where

ννν := ΦΦΦ
(

I −
κ

∑
i=1

A i

)
µµµ , Bi := ΦΦΦA iΨΨΨ, ΛΛΛ := ΦΦΦΣΣΣΦΦΦ′. (20)

Therefore,y(τ) is a special AR(κ) process in which the parametersννν, Bi , andΛΛΛ are constrained

by (20) in lower-dimensional manifolds.

An alternative long-term model, which is widely used in econometrics, is the seasonal random

walk [28, p. 143] [39]

y(t) = ν0+ ỹ(t),
p−1

∑
i=0

ỹ(t− i) = ζ (t), {ζ (t)} ∼ IID (0,σ2
ζ ). (21)

Note that if y(t) is a deterministicp-periodic function, then it would satisfy (21) withν0 :=

p−1 ∑p
i=1

y(t) andζ (t) ≡ 0. In general, a random perturbationζ (t) is employed in (21) to model

the fluctuation of the periodic patterns. To compare (21) with (19), it suffices to note that (21) can

be rewritten in the form of (19), withκ = 1 and with

ννν := ν0(I −B1)1, B1 :=


 0 1′

0 I


 , (22)

ΛΛΛ := σ2
ζ




1 symmetric

−1 2
... ...

0 −1 2




. (23)

As can be seen, although the random-walk model (21) does not make explicit assumptions on the

basic shape of the periodic patterns, it is, in effect, less flexible than the model in (19)–(20) because
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all, except two, parameters in (22)–(23) are fully specified in advance, whereas more parameters

in (19)–(20), includingκ , are allowed to be determined from the data.

C. Adaptive Estimation

The LS estimator is preferred over the joint maximum likelihood estimator described in [36,

Sec. 8.7] because (a) the LS estimator can be easily modified for adaptive estimation and (b) the

LS estimator can be easily computed by fast online algorithms that simply update the current value

upon arrival of a new observation rather than repeatedly solving the optimization problem using

the entire set of historical data.

One way of modifying the LS estimator for adaptive estimation is to put more emphasis on

the newer data by replacing the constant weightn−1 in (13) with an exponential weight function

c(λ ,n)λ n−τ (τ = 1, · · · ,n), whereλ ∈ (0,1] and

c(λ ,n) :=




1−λ if 0 < λ < 1,

n−1 if λ = 1.

The resulting estimator can be computed online by the recursive algorithm

µ̂µµ(τ) = d(λ ,τ) µ̂µµ(τ −1)+c(λ ,τ)ξξξ (τ) (τ = 1, · · · ,n) (24)

with the initial valueµ̂µµ(0) := 0, whered(λ ,τ) := λ c(λ ,τ)/c(λ ,τ −1) = 1− c(λ ,τ) can be in-

terpreted as a discount factor of the previous estimatorµ̂µµ(τ −1) andc(λ ,τ) can be regarded as a

contribution factor of the new observationξξξ (τ). Forλ = 1, µ̂µµ(n) becomes the sample mean in (13),

and for 0< λ < 1, it is known as the exponentially weighted moving-average (EWMA) estimator of

µµµ(n) := E{ξξξ (n)}. Note that EWMA can also be initialized by a known nonzero valueµ̂µµ(0) := βββ0

and the resultinĝµµµ(n) can be interpreted as the maximuma posteriori(MAP) estimator ofµµµ(n)

under the assumption that the prior distribution ofµµµ(n) is N(βββ0,λ
−nV) and that givenµµµ(n), the

ξξξ (τ) (τ = 1, · · · ,n) are independently distributed withξξξ (τ) ∼ N(µµµ(n),(1−λ )−1λ τ−nV), where

V is an arbitrary positive definite matrix.

Similarly, an exponential weight functionλ n−τ can be introduced into (15) with̃ξξξ (τ) :=ξξξ (τ)−
µ̂µµ(τ). The resulting estimator, denoted byÂ(n) := [Â1(n), · · · , Âκ(n)], satisfies (14) and can be

computed online by the recursive least-squares (RLS) algorithm [44]:

Â(τ) = Â(τ −1)+e(τ)G(τ), (25)
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where

e(τ) := ξ̃ξξ (τ)− Â(τ −1)γγγ(τ), (26)

G(τ) :=
γγγ(τ)′P(τ −1)

λ +γγγ(τ)′P(τ −1)γγγ(τ)
, (27)

P(τ) := λ−1P(τ −1)−λ−1P(τ −1)γγγ(τ)G(τ). (28)

The corresponding estimator ofΣΣΣ can also be computed online by

Σ̂ΣΣ(τ) = d(λ ,τ)Σ̂ΣΣ(τ −1)+c(λ ,τ) ε̂εε(τ) ε̂εε(τ)′, (29)

whereε̂εε(τ) := ξ̃ξξ (τ)− Â(τ)γγγ(τ). To avoid inverting the matrixΓΓΓ(1) = γγγ(1)γγγ(1)′, which is re-

quired to obtain the initial valueP(1), RLS is usually started atτ = 1 (instead ofτ = 2) with

predetermined initial valueŝA(0) := A0 andP(0) := P0. The resultingÂ(n) satisfies (14) with

ΞΞΞ := ∑n
τ=1 λ n−τ ξ̃ξξ (τ)γγγ(τ)′ + λ nA0P−1

0 andΓΓΓ := ∑n
τ=1 λ n−τ γγγ(τ)γγγ(τ)′ + λ nP−1

0 . This estimator

coincides with the MAP estimator ofA(n) := [A1(n), · · · ,Aκ(n)] under the assumption thatξ̃ξξ (τ) =

A(n)γγγ(τ)+εεε(τ) (τ = 1, · · · ,n), where the prior distribution of vec{A(n)} is N(vec(A0),λ
−nP0⊗

ΣΣΣ) and, conditioning onA(n), theεεε(τ) are independently distributed withεεε(τ) ∼ N(0,λ τ−nΣΣΣ).

Note that the smaller isP0 the more important is the role of the prior meanA0. A convenient

choice forP0 is P0 = (1/σ2
0) I , whereσ2

0 > 0 is a tuning parameter which, ideally, would approxi-

mate Var{ξ j(τ)} ( j ∈ C ).

As an example, Fig. 3 shows the one-day-ahead predictions made at the end of each day for

the time series in Fig. 1 where the weekday and weekend are modeled separately. The predictions

are derived from the DFT filters withC containing, as suggested by Fig. 2, the zero frequency,

the fundamental frequency and its first two harmonics. For each regime, the corresponding 7

coefficient seriesξ j(τ) are modeled as independent AR processes of the form (11) withd = 1 and

κ = 1. The remaining parameters of each series are estimated separately by the one-dimensional

version of EWMA in (24) and RLS in (25)–(28), where the former is initialized by the DFT of

the average daily pattern and the latter byA0 = 0 andP0 = (1/0.01)I . The forgetting factorλ is

equal to 0.2 for the zero frequency and 0.99 for the nonzero frequencies. The resulting predictions

account for 89.6% of the total variability of the original time series, with the root mean-square

error (RMSE) equal to 0.1035.
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Fig. 3. One-day-ahead predictions (red) made at the end of each day with 80% (blue) and 90% (cyan) daily

simultaneous confidence bands. Dots represent actual observations. RMSE of the predictions is equal to

0.1035. Actual coverage of the confidence bands is equal to 76% and 86%, respectively. Median width of

the confidence bands is equal to 0.2338 and 0.2970, respectively.

D. Long-Term Prediction Error and Confidence Band

In addition to the point predictions, uncertainty measures such as the variance of prediction

error and the confidence band are also needed to obtain a more complete picture of future requests

which is critical to web server management. The proposed hierarchical approach provides a simple

framework for deriving the uncertainty measures for long-term prediction.

First, consider the variance of prediction error. Lett := (n+d−1)p+ r (r = 1, · · · , p) and let

the error ofd-period-ahead prediction ofx(t) be defined by

eL(t) := x(t)− x̂(t |np). (30)

Then, it follows from (2) and (10) thateL(t) can be decomposed as

eL(t) = z(t)+η(t), (31)

wherez(t) represents the error of long-term modeling and

η(t) := y(t)− ŷ(t |np) (32)

is the error ofd-step-ahead prediction of the long-term componenty(t), with

ŷ(t |np) := ∑
j∈C

ξ̂ j(n+d |n)}φ j(t)
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denoting the prediction ofy(t) based on the model (11). Under the assumptions in Section III-B,

z(t) andη(t) are statistically uncorrelated. Therefore,

Var{eL(t)}= Var{z(t)}+Var{η(t)}. (33)

Given the historical data up to timenp, Var{z(t)} can be predicted by the EWMA estimator

σ̂2
z (t) := c(λ ,n)

n

∑
τ=1

λ n−τ σ̃2
z ((τ −1)p+ r), (34)

whereσ̃2
z ((τ −1)p+ r) is an estimator of Var{z((τ −1)p+ r)} and may be obtained nonparamet-

rically by smoothing the observed long-term modeling error squares{z2((τ −1)p+ r)}p
r=1

. Note

that σ̂2
z (t) can be computed online by a recursive algorithm similar to (24). Moreover, under the

model assumption (11),η(t) = ϕϕϕ(t)′εεε(n+d), so that

Var{η(t)} = ϕϕϕ(t)′ΣΣΣϕϕϕ(t),

whereϕϕϕ(t) := vec{φ j(t), j ∈ C }. Therefore, Var{η(t)} can be predicted by

σ̂2
η(t) := n(n−κm2−1)−1ϕϕϕ(t)′ Σ̂ΣΣ(n)ϕϕϕ(t), (35)

with Σ̂ΣΣ(n) given by (29). Combining the results in (33)–(35) suggests that

σ̂2
L(t) := σ̂2

z (t)+ σ̂2
η(t) (36)

can be employed as a predictor of Var{eL(t)}.

As an example, Fig. 4 showŝσL(t), the predicted standard deviation (SDV) of long-term pre-

diction error, for the one-day-ahead predictions given in Fig. 3, whereσ̂2
L(t) is calculated according

to (34)–(36). Also shown in Fig. 4 is the actual SDV, denoted byσL(t), of long-term prediction er-

ror obtained by applying to the time seriese2
L(t) a nonparametric procedure of adaptive smoothing,

known assuper smoother[45], with smoothing bandwidth 0.1p (2.4 hours). The super smoother

is also used to obtaiñσ2
z ((τ −1)p+ r) in (34), where the smoothing bandwidth is selected adap-

tively by cross-validation. The forgetting factorλ in (34) is equal to 0.9, which is chosen to

minimize the average value of the symmetrized Kulback-Leibler divergencef (σ̂L(t),σL(t)), with

f (x,y) := 1
2(x/y+y/x)+1 for x,y> 0, which serves as a goodness-of-fit measure ofσ̂L(t). More-

over,Σ̂ΣΣ(n) in (35) is a diagonal matrix in which the diagonal elements are calculated independently

according to the one-dimensional version of (29) withλ = 0.9.
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Fig. 4. Solid line represents the predicted SDV of the long-term prediction erroreL(t) obtained according to

(36). Dotted line represents the actual SDV of the long-term prediction error obtained by smoothinge2
L(t).

To construct simultaneous confidence bands (or joint prediction intervals, to be more precise)

for the long-term prediction, it suffices to consider the following “signal-plus-noise” model with

time-varying noise variance (heteroscedasticity):

x(t) = x̂(t |np)+ σ̂L(t) ẽL(t),

whereẽL(t) := eL(t)/σ̂L(t) is thestandardizederror. Under this model, a symmetric simultaneous

confidence band ofx(t) for t = (n+d−1)p+ r andr = 1, · · · , p is given by

x̂(t |np)±θ(α) σ̂L(t), (37)

where 1−α is the prescribed level of confidence andθ(α) satisfies

Pr
{|ẽL((n+d−1)p+ r)| < θ(α), ∀ r = 1, · · · , p

}
= 1−α. (38)

Asymmetrical confidence bands can be constructed similarly.

The critical valueθ(α) depends on thejoint distribution of the random vector

ẽL(n+d) := vec{ẽL((n+d−1)p+ r)}p
r=1.

This distribution can be estimated by the empirical distribution of the historical data{ẽL(τ)}n
τ=1.

A disadvantage of this method is that it requires a tremendous amount of training data, especially

whenp is large. To alleviate the predicament, one may assume that the components inẽL(τ) are in-

dependent and identically distributed (i.i.d.), so that only the one-dimensional marginal distribution
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of ẽL(t) needs to be estimated. Unfortunately, the i.i.d. confidence band may result in erroneous

coverage probabilities in situations where the components inẽL(τ) are actually correlated.

As a trade-off between the feasibility of computational and data resources and the need for

accommodating correlated data, consider the following method which may be termed asanalysis-

by-synthesisor ABS. In the ABS method, the intra-period serial correlation of ˜eL(t) is handled

by a one-dimensional AR model fitted to the historical data{ẽL(t)}np
t=1

. Pseudo random samples

of ẽL(n+ d) are generated from the model by using simulated excitations which are now i.i.d.

random variables drawn from a distribution, selected in a library of parametric families of distri-

butions, that best fits the one-dimensional marginal distribution of the historical residuals of the

model. Of course, when historical data are sufficiently abundant, the i.i.d. excitations can also be

simulated nonparametrically by bootstrapping (e.g., sampling historical residuals with or without

replacement). Finally, the critical valueθ(α) is determined according to (38) from the empirical

distribution of the pseudo random samples ofẽL(n+d). Note that by the theory of binomial dis-

tributions, the standard error in estimating the probabilityα would be less than a given precision

δ if one uses more thanα(1−α)/δ 2 random samples.

Fig. 5 shows the time series ˜eL(t) and its partial autocorrelation function corresponding to the

long-term predictions in Fig. 3 and the SDV estimates in Fig. 4. As can be seen, ˜eL(t) is not a

white noise process, but the serial correlation of ˜eL(t) is predominantly short-term and of the AR

type; the regime shift, which is so apparent inx(t), does not seem to play a significant role in ˜eL(t).

This justifies the application of the ABS method with a single AR model for all regimes.

The confidence bands shown in Fig. 3 are constructed by the ABS method according to (37)

on the basis of 10,000 simulation runs of a zero-mean AR(9) process fitted to the time series ˜eL(t).

The i.i.d. excitations of the AR(9) model are simulated from theT distribution with 5 degrees of

freedom, denoted byT5. The order of the AR(9) model is determined by AIC. TheT5 distribution

is selected from the families ofT and Gaussian distributions by first estimating the parameters of

these distributions to obtain the best fit in each family and then choosing the distribution that has

the minimum absolute quantile deviation from the data. As shown by the QQ plot in Fig. 6(b),

theT5 distribution fits the residuals reasonably well, although a distribution with heavier tails may

provide a better fit. Note that theT distributions are always rescaled to match the variance of the

data and the degrees of freedom are estimated from the data by equating the kurtosis.
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Fig. 5. Top, standardized error̃eL(t) of one-day-ahead prediction. Bottom, partial autocorrelation function

of ẽL(t) with 90% pointwise confidence interval (dashed line).

The actual coverage of the ABS confidence bands in Fig. 3 is 76% and 86%, respectively.

These numbers are much closer to the nominal values than the actual coverage of 64% and 76%

for the confidence bands (not shown) constructed under the i.i.d. assumption of ˜eL(t) using theT14

distribution, even thoughT14 fits the marginal distribution of ˜eL(t) very well, as can be seen from

Fig. 6(a). The i.i.d. confidence bands are too narrow. The utilization of serial correlation is largely

responsible for the better performance of the ABS confidence bands.

Note that the confidence bands do not necessarily have a constant width becauseσ̂L(t) varies

with t, even if ẽL(t) is a stationary process. Note also that the event of actualx(t) exceeding a

confidence band can occur in clusters over time because of serial correlation.

IV. SHORT-TIME MODELING AND PREDICTION

Since the short-term componentz(t) in (2) cannot be obtained from partial observations ofx(t)

within a period, the long-term prediction erroreL(t) defined by (30) is employed instead as the raw
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Fig. 6. (a) QQ plot of the standardized errorẽL(t) of one-day-ahead prediction versus theT14 distribution.

(b) QQ plot of the residuals from an AR(9) fit ofẽL(t) versus theT5 distribution.

material for short-term modeling and prediction. Note thateL(t) is an unbiased estimator ofz(t) if

ξξξ (τ) is assumed to satisfy (11) and the error of parameter estimation is ignored.

As remarked in the introduction, one can handle the short-term components separately for each

regime or combine them to form a single time series under the assumption that the statistical prop-

erties do not change abruptly with regime shift. A visual examination of the long-term prediction

error shown in Fig. 7 seems to justify the latter approach for this example.

Fig. 7 also shows that the serial correlation ofeL(t) is predominantly short-term and of the AR

type. The absence of the strong periodicity, which is contained in the original time series, indicates

that the long-term prediction is quite adequate in handling the periodic patterns. As a consequence,

the procedure of short-term modeling and prediction becomes straightforward.

More specifically, it suffices to model and predicteL(t) in the same way thatξξξ (τ) is modeled

and predicted except that (11) becomes a horizon-specific multistep AR(h,q) model

eL(t) = µ +
q

∑
i=1

ai {eL(t−h− i +1)−µ}+ ε(t), {ε(t)} ∼ IID(0,σ2
ε ), (39)

whereh≥ 1 is the given horizon of short-term prediction. Under this model, the besth-step-ahead
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Fig. 7. Top, one-day-ahead prediction erroreL(t). Bottom, partial autocorrelation function ofeL(t) with

90% pointwise confidence interval (dashed line).

(short-term) prediction ofeL(t +h) on the basis of{eL(1), · · · ,eL(t)} is given by

êL(t +h| t) := µ +
q

∑
i=1

ai {eL(t− i +1)−µ}, (40)

with σ2
ε being the variance of the prediction error. The estimation procedures discussed in Sec-

tion III, including the order selection and the adaptive estimation, can be applied directly to (39).

Given the short-term predictions ofeL(t), the short-term predictions ofx(t) can be easily ob-

tained by combining (40) with (10). More specifically, fort := (n+d−1)p+ r (r = 1, · · · , p), the

short-term prediction ofx(t +h) at timet is given by

x̂(t +h| t) := x̂(t |np)+ êL(t +h| t). (41)

As an example, Fig. 8 shows the five-minute-ahead predictions constructed according to (41) from

the one-day-ahead predictions in Fig. 3 and the one-step-ahead predictions ofeL(t) given by (40)

with h = 1 andµ = 0. In (40), the orderq = 7 is selected by AIC (16) and the coefficientsai

are calculated by RLS (25)–(28) withλ = 0.9999,A0 = 0, andP0 = I . The five-minute-ahead
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Fig. 8. Five-minute-ahead predictions (red), obtained by revising the one-day-ahead predictions in Fig. 3

according to (41), with 90% confidence band (blue). Dots represent actual observations. RMSE of the

predictions is equal to 0.0590. Actual coverage of the confidence band is equal to 89%. Median width of

the confidence band is equal to 0.1618.

predictions in Fig. 8 account for 96.6% of the total variability of the original time series in Fig. 1,

with RMSE equal to 0.0590.

The effectiveness of short-term modeling and prediction can be assessed by examining the time

series of short-term prediction error

eS(t) := x(t)− x̂(t | t −h) = eL(t)− êL(t | t −h),

which is shown in Fig. 9, along with its partial autocorrelation function, for the five-minute-ahead

predictions in Fig. 8. As can be seen, the short-term prediction is quite effective in utilizing the

serial correlation remained in the long-term prediction error shown in Fig. 7.

Confidence bands for the short-term predictions ofx(t) can be constructed by an assessment

of the statistical properties ofeS(t). As in the case of long-term prediction, it is assumed thatx(t)

satisfies the following “signal-plus-noise” model with time-varying noise variance:

x(t) = x̂(t | t −h)+ σ̂S(t) ẽS(t),

whereẽS(t) := eS(t)/σ̂S(t) is the standardized error andσ̂2
S(t) is a predictor of Var{eS(t)}.

SinceeS(t) = ε(t) under the assumption (39) and in the absence of estimation error, an estima-

tor of σ2
ε in (39) can be used aŝσ2

S(t) to predict Var{eS(t)}. In constructing the confidence band
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Fig. 9. Top, five-minute-ahead prediction erroreS(t). Bottom, partial autocorrelation function ofeS(t) with

90% pointwise confidence interval (dashed line).

shown in Fig. 8,σ̂2
S(t) is obtained by RLS in a way similar to (29), withλ = 0.99. The forgetting

factor is determined by minimizing the average value off (σ̂S(t),σS(t)), whereσ2
S(t) is the actual

variance ofeS(t) obtained by applying the super smoother to the time seriese2
S(t) with smooth-

ing bandwidth 0.4p (9.6 hours). Examination of the resulting ˜eS(t) and its partial autocorrelation

function (not shown but similar to Fig. 9) reveals no significant serial correlation in ˜eS(t). Fig. 10

shows thatT5 fits the marginal distribution of ˜eS(t) reasonably well except at the extreme of left

tail. As in the case of long-term prediction, theT distribution is selected optimally from the library

of T and Gaussian distributions.

The 90% confidence band in Fig. 8 is constructed using theT5 distribution under the i.i.d.

assumption of ˜eS(t). The actual coverage is 89%, which is quite accurate, indicating that the i.i.d.

assumption is plausible in this case. Note that the median width of the confidence band in Fig. 8 is

approximately a half of that of the corresponding confidence band in Fig. 3.

As an example of multistep-ahead forecasting, Fig. 11 shows the twenty-minute-ahead predic-

24



−10 −5 0 5

−10

−5

0

5

MODEL QUANTILE

D
A

T
A

 Q
U

A
N

T
IL

E

STD SHORT−TERM ERR

Fig. 10. QQ plot of the standardized errorẽS(t) of five-minute-ahead prediction versus theT5 distribution.

tions made according to (41) from the one-day-ahead predictions in Fig. 3 and the four-step-ahead

predictions ofeL(t) based on (40) withh = 4. While the coefficientsai are estimated adaptively by

RLS, all other parameters, including the orderq, the tuning parameters in RLS, and the smooth-

ing parameters for the confidence band, remain the same as they are forh = 1. Moreover, theT5

distribution is still the optimal choice for the marginal distribution of the standardized short-term

error and provides an acceptable fit, as can be seen from Fig. 12(a). The corresponding 90% i.i.d.

confidence band (not shown) remains reasonably accurate, yielding an actual coverage of 88%.

A more careful way of constructing the confidence band should take into account the fact that

the errors of multistep-ahead prediction are no longer uncorrelated. In fact, it can be proven that

the errors ofh-step-ahead prediction constitute an MA(h−1) process. Owing to this observation,

the ABS method can be employed again, now with an MA(h−1) model fitted to ˜eS(t). Estimates

of the MA parameters can be obtained from the sample autocovariance function of ˜eS(t) by using

the innovations algorithm [36, p. 172]. Residuals of the MA model can be obtained by inverse

(AR) filtering. Fig. 12(b) shows that theT4 distribution, which is the optimal choice amongT

and Gaussian distributions, fits the residuals reasonably well except for some extreme values. The

resulting 90% confidence band, based on 10,000 simulation runs, is shown in Fig. 11, which yields

an actual coverage of 91% — one percentage point better than the i.i.d. confidence band.

Finally, Fig. 13 shows the RMSE of short-term prediction for different values ofh. In obtaining
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Fig. 11. Twenty-minute-ahead predictions (red) with 90% ABS confidence band (blue). Dots represent

actual observations. RMSE of the predictions is equal to 0.0726. Actual coverage of the confidence band is

equal to 91%. Median width of the confidence band is equal to 0.2259.

the predictions forh> 1, all parameters, except theai which are estimated by RLS, remain the same

as they are forh = 1. As expected, the RMSE increases with the increase ofh until it reaches,

and possibly exceeds, the RMSE of long-term prediction. In this example, the three-hour-ahead

(h = 36) predictions continue to achieve a smaller RMSE than the one-day-ahead predictions.

V. CONCLUDING REMARKS

A hierarchical framework has been proposed for modeling and forecasting the time series of

web service requests which consists of strong daily patterns and more rapid fluctuations. In this

framework, the daily patterns are modeled as parsimonious linear combinations of basis functions

with random coefficients and the short-term fluctuations are represented as an autoregressive pro-

cess. Both long-term (in days) and short-term (in minutes) predictions have been derived along

with simultaneous confidence bands constructed by the analysis-by-synthesis method. Adaptive

algorithms, EWMA and RLS, have been employed to provide online estimation of the model pa-

rameters that may vary slowly with time due to the nonstationarity of web service requests.

The proposed method is not limited to the time series of request arrival rates such as the five-

minute total file sizes employed to demonstrate the method. Indeed, other statistical parameters,

such as the standard deviation of file sizes shown in Fig. 14, that describe different aspects of
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Fig. 12. (a) QQ plot of the standardized errorẽS(t) of twenty-minute-ahead prediction versus theT5 distri-

bution. (b) QQ plot of the residuals from an MA(3) fit ofẽS(t) versus theT4 distribution.

the stochastic behavior of service requests within the time intervals of length∆ may also contain

strong daily patterns in addition to more rapid fluctuations. Online prediction of these parameters

using the proposed method provides additional features useful in characterizing the future server

workload and performance for optimal dynamic resource allocation.

Although RLS has been found adequate in the numerical examples of this paper, it is possible

that the model parameters may change too rapidly for RLS to handle. In this case, the Kalman

filtering techniques can be employed to estimate the model parameters as the hidden state vector

of simple state-space models (e.g., random walk) [28] [46]. The state-space models may contain

some unknown constants that may be treated as tuning parameters, similar to the forgetting factor

in RLS, or estimated jointly by, for example, the Gaussian maximum likelihood method. Note that

RLS is a special case of Kalman filtering where the state vector is constant and the observation

noise is a zero-mean Gaussian white noise process with a time-varying variance which grows as

power function of the forgetting factorλ . If, for example, the state vector is assumed to be a

Gaussian random walk in which the (zero-mean) perturbation has a time-varying variance which is

equal toρ times the variance of the observation noise, then it can be shown that the corresponding

Kalman filter coincides with (25)–(28) except that (28) includes an extra termρ I . In this case,ρ
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Fig. 13. RMSE of short-term prediction as a function of horizonh. Dashed line represents RMSE of

one-day-ahead prediction in Fig. 3.

can be viewed as an additional tuning parameter interpretable as the system-noise-to-observation-

noise ratio of the state-space model. For the data sets considered in this paper, the random-walk

assumption did not lead to improved performance for either long-term or short-term prediction,

which suggests that the fluctuation (if any) of the parameters in (12) and (40) is slower than a

random walk.

In constructing the confidence bands, it is important that the time-varying variance of the pre-

diction errors be estimated accurately, especially in long-term prediction. The estimation has been

done in this paper by using nonparametric smoothing and EWMA. Parametric methods based on

the autoregressive conditional heteroscedastic (ARCH) and generalized ARCH (GARCH) models

[28][29] may also be used to handle the time-varying variance. Moreover, it has been found that the

marginal distribution of the prediction errors tends to have heavy tails. Indeed, theT distribution

has always been chosen over the Gaussian distribution by the automatic selection criterion of min-

imum absolute quantile deviation for both long-term and short-term prediction errors. Parametric

distributions with heavier (symmetric or asymmetric) tails may be more helpful.

It is not surprising that both long-term and short-term components in a time series of service

requests may contain outliers – the observations that dramatically exceed the normal range of
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Fig. 14. Standard deviation (in logarithm) of the log file sizes in five-minute intervals corresponding to the

example of HTTP requests shown in Fig. 1.

fluctuation for a short period of time relative to the prediction horizons. While outliers in the short-

term component exist for many reasons, outliers in the daily patterns may also occur due to special

events, such as sales promotions and holidays, for which the increase of requests is dramatic but

temporary, as can be seen from the example shown in Fig. 15. Such outliers cannot be predicted

accurately for the given prediction horizon, unless similar events occurred repeatedly in the past,

or the prediction horizon is shortened, as shown in Fig. 15, where the short-term predictions dra-

matically improve the one-day-ahead prediction for day 8. The inaccurate predictions caused by

outliers will produce anomalies in the time series of prediction error which must be dealt with

judiciously in order to prevent them from contaminating the modeling and prediction in the future

when the outliers disappear. Robust estimation techniques can be used to handle the outliers. For

example, in EWMA and RLS, one may update the parameters only if the increments are within the

“normal” range. The results in Fig. 15 are obtained in this way.

Finally, the prediction methods discussed in this paper are essentially linear. Nonlinear methods

should be explored in future research, not only for short-term prediction [47]–[49], but also for

long-term prediction, with proper simultaneous confidence bands, and with efficient mechanisms

to handle nonstationarity.
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Fig. 15. Another example at a different commercial web site. Top, total file sizes of HTTP requests

(black dots) and one-day-ahead predictions (red) with 80% (blue) and 90% (cyan) confidence bands, where

RMSE = 0.0967 and actual coverage = 77% and 87%, respectively, with median width 0.2010 and 0.2488.

Middle, five-minute-ahead predictions (red) with 90% confidence bands (blue), where RMSE = 0.0464 and

actual coverage = 86% with median width 0.1132. Bottom, twenty-minute-ahead predictions (red) with 90%

confidence band (blue), where RMSE = 0.0513 and actual coverage = 92% with median width 0.1560.
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