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Abstract

A study of measure expressions occurring in web pages is presented. It is shown that the expressions
can be automatically parsed and evaluated with an error rate of<10%. Quantitative statements in web
pages, embodied in measure expressions, are an important source of information for the semantic web
and other applications. The web also provides a source of measure expressions that allows the idioms
commonly used for such expressions to be identified. We call the language used in these expressions
the informal language of measure expressions, and the extent to which it diverges from the forms of
expression sanctioned by standards bodies is described using the quantitative results of the analysis. The
data used in the study consists of 5,165 expressions divided into development and test sets. The syntax
of the expressions is discussed, and elements of a grammar that describes it are presented. Heuristics
for dealing with ambiguities in the expressions are described, as are means for dealing with embedded
HTML markup and other features of the data.
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1 Introduction

Quantitative information about the physical world is expressed in measure expressions. In their simplest

form, measure expressions can consist simply of a number and an associated unit of measurement, for ex-

ample “6 feet”, but more complex expressions containing several units as well as numbers and operators

are often encountered, for example “20 liters per 100 km”. Measure expressions play a particularly im-

portant role in technical domains such as science and engineering, where quantification is of fundamental

importance. A number of general and domain-specific standards specify how measure expressions should

be constructed and represented in typeset documents (examples are [1, 2, 3]) and in flat text [4, 5]. Taken

together, these in effect define a standard language for measure expressions. The standards specify the sym-

bols used in this language, including the allowable names and abbreviations of units and prefixes. They also

specify capitalization conventions, typographic representations, and the allowable syntax of the expressions.

In the present study, we focussed on measure expressions discovered in web pages written in

HTML, a source of measure expressions that use the idioms that are in common use. Information about

these idioms was derived from analysis of the expressions. It was found that the language used in measure

expressions from the web is significantly different from that defined in the applicable standards. We call

this language that is actually in use on the web theinformal languageof measure expressions, and the goals

of this study were to describe it, to determine with what accuracy it can be analyzed, and to assess how it

differs from the standard language.

Information about the informal language is expected to be of use in designing applications that

must deal with measure expressions in their input. These include data integration [6], IT systems monitor-

ing [7], information extraction from text [8, 9], question answering [10] and the semantic web [11], as well

as numerous applications used in all branches of the physical sciences and engineering. To facilitate these

applications it is clearly desirable to be able to accurately interpret measure expressions through automatic

analysis of them.

The automatic analysis of measure expressions presents some challenges. First and most obvious,

the surface form specified by the standards is designed to be read and understood by people, not computers.

As a consequence, the standards emphasize the typographic details of the representation, so as to ensure
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comprehensible and unambiguous representation of measure information on the printed page, in a browser,

or in a flat text file. The more relaxed conventions of the informal language increase the range of possible

forms of expression, and make automatic analysis even more difficult. For semantic web applications, an-

other challenge is dealing with the variety of markup that is used in HTML to approximate to the standard

representation when the page is rendered in a browser. In addition, all measure expressions convey quanti-

tative information, which the analysis must extract. As we have already seen from the examples given, they

can contain numbers, unit names and other symbols that have magnitudes, as well as operators. This indi-

cates that their analysis must include some kind of evaluation, similar to that of an arithmetic expression or

an expression in a programming language. Thus, an analysis system that can deal with measure expressions

should accept as input a string representing an expression and should output numerical data containing the

reulsts the evaluation, and perhaps also other information about the expression.

Overall, then, measure expressions in the informal language combine some of the characteristics

of a natural language (designed for human comprehension; variety of expression; and, as we will see,

ambiguity), and of computer languages (syntax is constrained; can be evaluated quantitatively). Some of

the issues involved in automatic analysis of measure expressions have already emerged in previous work on

applications that address the problem of conversion from one set of measurement units to another, a tedious

and error-prone task which is common in science and engineering. While the majority of such applications

are menu-driven, some can parse and analyze free-form input: measure expressions that are entered by

users [12, 13]. It is clearly desirable that this kind of conversion application should accept and be able to

process measure expressions that are written in a natural way, rather than require users to learn a special

syntax Such applications therefore are developed to support a broad range of input syntax. But, how many

different forms of input should they support, and of what sort?

Previous work on information extraction from text has also dealt with measure expressions. In-

formation extraction consists of three steps: recognition of a measure expression in text; analysis of the

expression (the subject of this paper); and assignment of class labels and other annotations to its mention

in the text. The latter step bridges to the ideas of the semantic web, for which the semantics of all kinds of

information on web pages must be specified with respect to ontologies. In the work done to date on measure

expressions the ontology has been fairly simple. In the Message Understanding Conference (MUC) named
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entity task [14], the NUMEX class included only money amounts and percentages. the Tipster annotation

architecture [15] recognized the following classes of Measure annotation: WEIGHT, LENGTH, COUNT,

AREA, VOLUME, CURRENCY, TEMPERATURE, and PERCENT. In the PIQUANT question-answering

system [16, 17], text is annotated with 95 semantic categories [18], among which are MONEY, POWER,

LENGTH, AREA, VOLUME, TEMPER (temperature) and WEIGHT. Ultimately, information extraction

systems, especially those contributing to the semantic web, will have to annotate with respect to much more

complete ontologies of quantification and measure, such as the Ontology of Engineering Mathematics [19],

or the revisions suggested by Pinto and Martins [20] to the draft IEEE Upper Ontology (the Standard Upper

Ontology, SUO [21]). They suggested as examples 34 named subclasses of units of measure to replace

the nine originally in SUO. Other named subclasses exist, and the number of subclasses is essentially un-

bounded. The difficulty of the classification step will be considerably increased in these more complex

ontologies, which again highlights the desirability of accurate analysis.

The structure of this paper is as follows. First, we discuss the numerical representation of measure

expressions that is the result of analysis, the test collections gathered from the web and the system used to

analyze them. Next, we present a description of the informal language as it is used in the data, and how it

differs from the standards, followed by a discussion of how it can be analyzed. We show that the analysis

can be done with an error rate of<10%, and we describe the characteristics of the measure expressions in

the data deduced from the analysis. Finally, we discuss the results.

2 A Standard Form for Measure Expressions

Evaluation of a measure expression produces a numerical result that includes information about the mag-

nitude of the expression and also a specification of what it measures. We call this result thevalueof the

expression. Following much previous work, for example [22, 23], the value of a measure expression is

characterized by scalar magnitude (called here itssize), and an associated ordered tuple of integers called

here itsdimensions:

E = {s,D}. (1)
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HereE is an expression,s is its size, andD its dimensions:

D = {di}. (2)

Thedi are the exponents of a set of base quantities to which the expression can be reduced through analysis.

It is a basic results of dimensional analysis (see for example [1, 24]) that any physical measurement can be

expressed by Equations 1 and 2 with an appropriate choice of base quantities. In the SI system, the seven

base quantities are mass, length, time, electric current, thermodynamic temperature, amount of substance,

and luminous intensity. In the present work the nine base quantities used were the SI base quantities plus

plane angle and solid angle, which were formerly known as supplementary quantities in the SI system. The

SI units of these base quantities are kilogram, meter, second, ampere, kelvin, mole, candela, radian and

steradian, and thedi are therefore the exponents of these units when the measure expressionE is expressed

in terms of them, i.e.

{di} ≡ {kilogramd1 , meterd2 , secondd3 , ..., steradiand9}. (3)

Thus, for example, the measure expression “25 meters per second” in terms of Equations 1 and 2 is:

25 meters per second= 25
meter
second

= {25, {0, 1,−1, 0, ..., 0}} (4)

Here, the exponent ofÄmass is zero, the exponent oflength(whose unit here is meter) is 1, and the exponent

of time(whose unit is second) is -1.

The choice of what size to use in Equation 1 is made as follows. It is convenient to use the

convention that the size of a simple unit is the conversion factor from that unit to the equivalent SI unit. For

example, the unitinch has the size 0.0254, since one inch equals 2.54 centimeters or 0.0254 meters. Thus

by Equation 1 we have

E(inch) = {0.0254, {0, 1, 0, ..., 0}} (5)

In this way a simple unit can be expressed as a measure expression. The size of a number is its magnitude,

with zero dimensions, i.e.di = 0 ∀i. Evaluation of a measure expression determines the size and dimensions
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of the value of the expression by applying the operations in Table 1 to the operands within the expression,

each of which has the form of Equation 1.

Table 1: Operations defined for measure expressions

Name Symbol Definition

Multiplication ∗ U1 ∗ U2 = {s1s2, {d1i + d2i}}
Division / U1/U2 = {s1/s2, {d1i − d2i}}
Exponentiation ˆ Up = {sp, {di + p}}
Equality = U1 = U2 ⇐⇒ s1 = s2 and d1i = d2i ∀i

3 Methods

For this investigation we used a test collection of several thousand measure expressions that were manually

extracted from web pages, and an expression analyzer that was used to parse and evaluate the expressions.

3.1 Test Collection

Web pages likely to contain measure expressions were collected from the Internet by issuing queries to

a set of Internet search engines1 and downloading the pages returned as search results. The queries are

shown in Table 2. They included the names of some units of measure that are likely to be common in

technical domains, as well as some like gallon and pound that were expected to be fairly common in ordinary

documents.

Table 2: Search queries used to retrieve test data

Query Pages returned

1 +coulomb +second 583
2 +pascal +newton 1121
3 +farad +ohm 1169
4 +rad +joule 1098
5 +watt +erg 1178
6 +gallon +pound 914
7 +dyne +gram 1135
8 +mole +millilitre 964

1In May 2002.
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After some filtering to remove PDF, postscript and other formats, 4,207 HTML files were retrieved.

From these, 100 documents were randomly selected and further divided into a development test collection

and an unseen test collection, each of 50 documents. After some furthering filtering (for example to remove

pages that were found to be listings of source code), these test collections had the characteristics summarized

in Table 3.

Table 3: Test collections
Collection Pages Measure Expressions

Development 47 1731
Unseen 49 3434

Combined 96 5165

Measure expressions occurring in the pages in the test collections were manually identified and

recorded as standoff annotations of the HTML text of the pages by using the Gate tool [25]. The annotation

policies are described in the Appendix. The numbers of measure expressions in the test collections are shown

in Table 3, and the distribution of their frequency in the web pages is plotted in Figure 1. The figure shows

that about a third of the web pages in each collection contained no measure expressions. These included, for

example, pages that were biographies of Blaise Pascal or Isaac Newton (c.f. Table 2). At the other extreme,

some pages contained hundreds of measure expressions. Some of these pages were tables of conversion

factors. It might be thought that such pages were produced by professional scientists or engineers who are

trained in the standards of representation of measure expressions and that therefore these pages would not

be representative of the most common idioms used by untrained authors. However inspection of the pages

showed that many, perhaps most, contained many eccentricities, including errors in the conversion factors

and non-standard syntax, that indicated that their authors were not professionally trained. From inspection,

it appeared that such pages included many idioms characteristic of pages containing fewer expressions. An

example of a page that contained many measure expressions but was not a table of conversion factors was

a transcript of bulletin board postings by many different builders of models of medieval seige engines. In

their postings they compared information about the ranges, throw weights and dimensions of their creations.

Web pages of recipes also contained many measure expressions.

To facilitate evaluation of the measure expression analyzer that is described in the next section,
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Figure 1: Logarithmic frequency distribution of measure expressions in web pages in the combined and
unseen test collections. The measure expressions were found by manual annotation.

ground truth was added to a feature structure associated with each annotation. The truth was in the form

of a text string containing an expression that was equivalent to the annotated expression, in that it used

the same units and had the same syntactic structure, but which was known to be parsable, and contained

more standard language. Thus for example, if the annotated expression was “btu’s/min. ” then the truth

expression was “BTU/minute ”, i.e. without the plural, the abbreviation or the trailing period. In measuring

the accuracy of the expression analyzer, the truth expression and the measure expression from the data were

both analyzed, and the results compared. If either analysis failed, or if the comparison indicated that the

results did not satisfy the equality operation of Table 1, then the analysis was judged to have been in error.

The truth expressions were entered manually, but to assist the human annotator an application

was used to enter them that used the expression analyzer described in the next section. The analyzer first

attempted to analyze the measure expression in the data. If this analysis was successful, the expression

recreation feature of the analyzer was used to propose an equivalent expression to the annotator for use as

the truth expression. If the annotator rejected the proposal, or if the analysis failed, the annotator entered the

correct truth expression. To help to determine the intent of the author of the expression, the annotator was

able to view it in its original context in the HTML of the web page. A normalized form of the original ex-

pression was also added to the annotation; the normalization consisted only of replacing new line characters
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Figure 2: Block diagram of the Measure Expression Analyzer

with spaces. It was this normalized form that was analyzed during the evaluation of the expression analyzer.

3.2 The Measure Expression Analyzer

The measure expression analyzer accepts as input a string representing a measure expression, and returns

the value of the expression that was described earlier in Equation 1. Optionally, the analyzer can return

other information, such as the parse tree for the expression, or a string containing a recreated version of the

expression.

The architecture of the measure expression analyzer, which is implemented in Java, is shown

in Figure 2. Before parsing, the input string is subjected to a series of transformations, discussed below,

according to transformation rules. The transformed string is then passed to the parsing engine, which is a

simple table-driven top-down parser of conventional design that is driven by a grammar. As is usual, the

grammar consists of a series of productions, each of which names a single syntactic category on the left,

and specifies a sequence of constituent categories on the right. Alternative productions in the grammar for a

given non-terminal syntactic category are attempted consecutively in the order of their specification. When

a syntactic category that is a terminal is encountered, the parser calls the scanner with the identifier of the

category and the current position in the input string. If the terminal is found, the scanner advances the

current position to the next character beyond it, and returns information about it (such as the unit) to the

parser. The scanner incorporates a number of heuristics in its terminal checking routines, as described later.
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This allows the grammar to be considerably smaller than would otherwise be the case.

If the scanner fails to find the terminal in the input at the specified position, the current production

fails and the parser resets the current position to the value it had at the beginning of the production. Since

the grammar is not left-factored, the same terminal is often sought at the same position in consecutive

productions. The intrinsic inefficiency of this design is alleviated by using a cache in the scanner. If all

possible productions are exhausted without matching the input then the parse fails.

The dictionary contains lexical information about units – their names, abbreviations and permitted

variant forms – as well as semantic information, in particular the size and dimensions of the units as in

Equations 1 and 2. It contained 476 unit names, variant names and abbreviations. The dictionary can also

be modified by the analyzer by adding alternative names for existing units.

If a parse is successful, the parser outputs a parse tree in which each terminal is assigned a value

according to Equation 1 as well as a syntactic category. An example of a parse tree is shown in Figure 3.

The names of many of the categories used in this example are discussed in later sections of this paper. The

evaluation module uses the information in the parse tree to determine the value of the expression. A separate

module is optionally used to recreate a valid measure expression from the parse tree. This expression is

created simply by doing a pre-order traversal of the parse tree, and outputting a string representation of each

terminal when it is encountered. The syntax of the re-created expression allows it to be accurately re-parsed

by the analyzer. This is the feature that was used to propose truth expressions during annotation of the test

collections.

4 The Language of Measure Expressions

In this section we describe the informal language as it was used in the test data. The description evolved

through the use of the development test set to refine the grammar, the dictionary, and the heuristics embedded

in the analyzer. These were all improved over time in the development phase in such a way as to iteratively

reduce the proportion of measure expressions which were in error, until further improvement was considered

impractical. At the same time, the description of the language on which the analysis was based was refined.
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4.1 Simple Expressions in the Informal Language

The data contained both simple expressions and more complex expressions such as range expressions and

other types. The latter, which we call sequence expressions, are described in the next section. Simple

expressions, like “100 acre-feet per year” can be reduced to a single value. Most expressions were of this

type. Here we focus on the operators and operands in the grammar of simple expressions. These are the

terminal symbols of the grammar.

Table 4: Operands in the syntax

Operand Example Description

BASE UNIT NAME meter, m The name or abbreviation of a unit
PREFIXUNIT millimeter, mm A unit name or abbreviation prefixed

by a prefix name or abbreviation
PREFIX SEQUENCE mega, millimicro A contiguous sequence of one or more

prefix names spelled out in full
REAL 127, 12.75, 1.6E-10,12 , 13

4 Real number
WORD INT one hundred and three A spelled out integer
EXPON INT cm3 An integer suffix denoting exponentia-

tion
FRACTION quarters, half, Spelled-out fractional numbers
OFA of a, an Optional appendage to a fraction
LOG RATIO bel, dB A dimensionless unit denoting the log-

arithm of a power or voltage ratio
EXP WORD squared, cubic A word that denotes an integer in the

context of exponentiation

4.1.1 Operands

The operands required to fully describe the informal language of measure expressions are listed in Table 4.

We now present the rationale for the choice of this set of operands.

Occurrences of unprefixed unit names or their abbreviations were represented by the operand

whose syntactic category was BASEUNIT NAME. A separate operand, PREFIXUNIT, was used to iden-

tify names or abbreviations with a contiguous prefix in order to allow the scanner to consider the prefix and

the unit together. By doing so it could apply a number of heuristics used to resolve ambiguities involving

prefix+unit combinations, as further discussed below. Prefixes in the test data were sometimes separated
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from the unit name by a space. A different terminal category, PREFIXSEQUENCE was used for these

cases, for reasons described below when the operator PREFIXMULT is discussed.

Real numbers occur in most measure expressions. The REAL operand is used both for numbers

that are expressed numerically and for numbers which include proper fractions that are represented in text by

special Unicode characters, and in a browser by glyphs such as “1
2 ”. Spelled-out numbers are not allowed

in the standard language, but were fairly common in the test data. Of these, spelled-out integers present

no particular problem and are represented by the single operand WORDINT. A sub-grammar for these

numbers was not needed as they can be parsed by components in standard software libraries [26]. However,

the data also contained spelled out numbers with a fractional part, for example “half a meter”, “three and

seven eights”, ”12-and-a-half”, “meter and a half” and so forth. To describe the syntax of these forms in the

grammar it was found necessary to define the operand FRACTION as well as the special operators ANDA

and MULT ANDA (see Table 5).

Exponentiation of unit names in the standard language is allowed though constructs like “meters

per second squared” and “cubic meters”, which motivate the definition of the EXPWORD operand. A

special category of integer, EXPONINT, is used to distinguish those integers that occur in expressions like

“cm3” where they signify exponentiation (this is allowed in the standard language for applications where

a limited character set is available [4, 5]). Lastly, a special category of operand, LOGRATIO, will be

discussed when the POSTANTILOG operator is introduced.

4.1.2 Operators

The operators used in measure expressions are listed in Table 5. Explicit multiplication and division signs

are assigned the categories MULTSIGN and DIVSIGN. Note that the period is used as a multiplication

symbol. Because it plays several other syntactic roles as well, it can be described as being a polysemous

symbol, as further discussed later. Whitespace is another polysemous symbol. Its role as an implied mul-

tiplication operator is represented by the syntactic category MULTWHITESPACE in the grammar. This

operator is allowed in all contexts where an explicit multiplication symbol is allowed. Although a separate

syntactic category is not strictly required, it serves to make the role of whitespace explicit in the syntax.
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Table 5: Operators in the syntax.

Name Examplesa,b Description

MULT SIGN newton.meter, N·m,
amps×volts

Multiplication

DIV SIGN miles÷hour, gm/cm3 Division

EXP OPER in∧3, cm
...3,

hour<sup> -1</sup>
Exponentiation

MULT WHITESPACE 12 meters, three
quarters

Multiplication implied by whitespace.

NO WHITESPACEMULT 1.25
...meters,

(kg)
...(meter/second)

Absence of whitespace implies multi-
plication

PREFIX MULT milli meters, kilo-watt Multiplication between a prefix and a
unit (see text).

MULT WORD meters timesmegahertz Multiplication
DIV WORD miles perhour Division
ADJ EXPON squarecentimeters Exponentiation implied by whitespace
EXP WHITESPACE meterscubed Exponentiation implied by whitespace
ANDA three and aquarter Addition of numbers
MULT ANDA meter and ahalf x〈mult anda〉y = x(1 + y)

POSTANTILOG 3 dB, +10
...dB Special for bels and decibels; see text

LEFT PAREN,
RIGHT PAREN

litres/(100 kilometers) Parentheses

a. The character(s) representing the operator are underlined.

b. The symbol
... denotes the position of an implied operator in a string of contiguous characters.
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When separating a PREFIXSEQUENCE and a unit, as in “milli meters”, whitespace also represents mul-

tiplication but in this role is assigned the separate category PREFIXMULT so that if the expression is

re-created this operator can be elided, so that the prefix and the unit are concatenated for a more pleasing

result. Another role of whitespace is to separate EXPWORDs from units. In this case the whitespace rep-

resents the special exponentiation operators ADJEXPON and EXPWHITESPACE, which apply where the

EXP WORD precedes or follows the unit, respectively.

Whitespace plays yet another syntactic role when it occurs between a number and a LOGRATIO

operand, as in expressions like “10 dB”. This follows from the special nature of units like the bel (B) or its

prefixed form decibel (dB), which refer to the logarithm of a ratio of electrical powers (the neper refers to a

ratio of two voltages). For example, if the magnitudes of two powers have the ratio 100, this is expressed as

2 B, or 20 dB. Conversely, a power ratio described as “3 dB” corresponds to the numerical factor100.3. Thus

the whitespace between the number and a LOGRATIO unit represents a binary operator, POSTANTILOG,

which is defined by the equation

r 〈post antilog〉 l = 10r|l| (6)

wherer is a real number,l is a LOGRATIO unit, and|l| signifies the Size of the LOGRATIO operand as

in Equation 1.

Yet another role for whitespace in measure expressions is as a thousands separator in numbers.

This is handled by the scanner as part of its recognition of real numbers, as described below. Finally, if

whitespace does not play any of the syntactic roles described above, it is ignored.

There are many cases in the test data of an operator being implied by theabsenceof whitespace

in a certain syntactic context. The use of an integer suffix to a unit to imply exponentiation, as in “cm3”,

has already been mentioned; in this case the presence of an EXPOPER is implied by the integer suffix on a

unit or a prefixed unit. Another example arises when the space between a number and a unit is omitted, as

in “10mm”. The omission of the space is deprecated in the formal language but was found to be common in

the data. The operator NOWHITESPACEMULT was used to describe these situations. The same operator

was used for cases where parenthesized sub-expressions were concatenated without an explicit operator.

Finally, although addition as a binary operator in general is not allowed in the standard language,
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it occurs in the data embedded in spelled out real numbers such as “one and a half”. The operator ANDA

was used to describe these situations. Addition is also implied in mixed numbers like “11
2 ”, but these con-

structs could be handled in the scanner rather than being made explicit in the grammar, as further discussed

later. An interesting hybrid occurs in expressions like “inch and a half”, meaning 1.5 inches. The operator

MULT ANDA was defined as in Table 5 to handle this construction.

4.2 Sequence expressions

Certain composite measure expressions are sanctioned by the standards and occurred in the data. We call

thesesequence expressions. They take the form of a sequence of simple expressions separated by special

symbols that indicate the type of the expression. The syntax of sequence expressions is described by the

regular expression

〈sequence expression〉 := 〈simple expression〉(〈separator〉 〈simple expression〉)+ (7)

To give the dimensions2 of a three-dimensional object using the standard language an expression

such as “12.5 mm× 12.5 mm× 50 mm” is used. We call this abox dimensionexpression. These, and the

two-dimension analogue which we call asheet dimensionexpression (e.g. “4 × 6 feet”) are quite common

in the test data. In such expressions, the units must be of length, and the〈separator〉 symbol is typically

“×” or an equivalent symbol.Range expressionslike “4 to 6 weeks” are also part of the standard language

and occurred in the data. Here any units are permissable. The separator symbol in the standard language is

the word “to”, but in the informal language variations on the hyphen are more common, as in “10-15 mm”.

4.3 Grammar

The grammar that describes the syntactic structure of simple measure expressions in the informal language

incorporates the terminals already described. In addition, it includes productions that ensure that the dif-

ferent syntactic roles of certain symbols, notably whitespace, are correctly identified during parsing. The

syntactic structure of measure expressions generally resembles that of expressions in computer languages,

2This usage of “dimensions” is different from that in the discussion of Equation 1.
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Figure 3: The parse tree of the expression “1E4 cm3 per 100 km”.

and the starting point for constructing the grammar followed standard approaches [27]. The final result is a

context-free grammar (CFG) in the classification proposed by Chomsky. Currently the language it describes

is non-regular. One reason is that it allows arbitrarily deep nesting of parentheses, though since the depth

of nesting found in the data was limited, the grammar could be modified to avoid this. However there is

the further question of whether the grammar could in principle be re-factored into a regular form given the

ambiguity of many of the symbols used in the language. This is a topic for future research.

The grammar currently contains a total of 81 productions. Many of these are needed to constrain

the syntactic context in which certain symbols are allowed to occur, in order that ambiguous symbols can

be disambiguated. A much smaller grammar is required to describe the unambiguous language of measure

units proposed by Schadow et al. [23]. Their grammar contains only 6 productions, involving 4 categories

of terminal symbols. To make this possible, their language is even more constrained than the standard

language.

An example of a production whose main role is to disambiguate a symbol, in this case whitespace,

is

〈term〉 := 〈term〉〈mult whitespace〉〈term〉 (8)

which describes expressions like “5 inches”. Here, both “5” and “inches” parse as instances of the category

〈term〉, while the space between them is assigned the category〈mult whitespace〉. Another example of a
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production that disambiguates whitespace is

〈term〉 := 〈real〉〈post antilog〉〈log ratio〉 (9)

which matches input like “-3 dB”. Here the “-3” parses to a〈real〉, the “dB” parses to a〈log ratio〉, and

the space is recognized as the operator〈post antilog〉.

Some productions of the grammar are in order to make an implied operator explicit. For example,

consider the following fragment:

〈term〉 := 〈primary〉〈exponent〉

〈exponent〉 := 〈exp oper〉〈expon int〉 (10)

〈exp oper〉 := ∧|** |〈no whitespace〉.

This ensures that an integer following a unit name without an intervening explicit operator can only signify

exponentiation if there is no intervening whitespace, as in “m3” meaning cubic meters. If there is intervening

whitespace, as in “newton 12 ”, then the production in Equation 8 applies, in order that expressions like

“6 newton 12 meters ” should parse to be equivalent to “6 newton× 12 meters”.

As a consequence of the large number of alternative productions in the grammar, back-tracking

during parsing is common. In this respect the task of parsing measure expressions is similar to the task of

parsing natural language. As already noted, the use of a cache in the scanner helps to overcome the potential

inefficiency of the analysis.

5 Analyzing the Informal Language

While the grammar provides the basis for correctly parsing the syntactic structure of measure expressions,

a full analysis that culminates in evaluation requires additional configuration of other components of the

analyzer in order to deal with the surface representations of the expressions. Some relevant features of the

dictionary, scanner and pre-processor will be described in this section, followed by a brief discussion of the
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evaluation of the expressions. Finally, a measurement of the accuracy of the analyzer will be presented.

5.1 Name Ambiguity

Considerable ambiguity in the names of units and abbreviations, especially when combined with prefixes,

was found in the test collection. Schadow et al. [23] point out that even in the standard language the

names of units are ambiguous to some degree, and propose that the ambiguities be classified into five types.

Additional ambiguities are introduced by the more relaxed conventions of the informal language. However,

most ambiguities could be resolved by the application of certain rules in the scanner. These are summarized

in Table 6, where the number of times the rule fired in parsing the combined test collection is also shown.

Table 6: Occurrence of name ambiguities in the combined test set.

Ambiguity Count Example

US/UK definition 322 gallon (US) vs. gallon (UK)
Case of abbreviations 867 S (siemens) vs. s (second)
Abbreviation collides
with prefix+unit

1445 gm (gram) vs. Gm (gigameter)

Ambiguous plurals of
certain abbreviations

145 ms (meters) vs. ms (millisecond)

5.1.1 Differing unit systems

Schadow et al.’s Type I name ambiguity arises when the same name symbol can refer to units in more than

one system. A significant source of ambiguity of this kind, calledUS/UK definitionin Table 6, is caused

by the fact that the US and British systems of non-metric units include several, like “gallon”, “pint”, “ton”

etc., whose magnitude in the two systems is different [28]. In a small number of cases the author provided a

disambiguating qualifier, such as “gallons (UK)”. However, in the great majority of cases this was not done,

and the expression analyzer could not resolve the ambiguity from evidence in the expression alone. The

strategy adopted to resolve ambiguities of this kind is to coerce the analyzer’s interpretation of such unit

names to be either the US or the British one if, for example, information that is extrinsic to the expression

being analyzed is available. In the present work, evidence from outside the expression was not used, and it

was assumed in annotating truth and in analysis that the US definition of such units was appropriate, unless
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the author’s intention was apparent and different.

A very similar situation arises for certain symbols used as abbreviations. For example “12′ ” can

mean 12 feet, or 12 minutes of time or 12 minutes of angle. Here again the ambiguity cannot be resolved

with intrinsic information. In the analysis, such symbols were coerced to refer to units of length (foot and

inch) by entering them as alternative names of these units in the dictionary.

5.1.2 Case of abbreviations

Another kind of Type I name ambiguity arises in the informal language when the abbreviations of two units

are distinguished only by case, such as the standard abbreviation “a” (annum) for year, and the standard

abbreviation “A” for ampere. These potentially collide in the informal language since case is usually not

significant there. This ambiguity is calledcase of abbreviationsin Table 6, and occurred frequently in the

combined test collection. The most common example was “s” (second) which potentially collides with “S”

(siemens). To resolve this ambiguity, the dictionary flags the abbreviations whose case must be respected in

input.

5.1.3 Prefix+unit collisions

Several types of name ambiguities in Schadow et al.’s scheme arise when a prefix+unit combination collides

with a unit name or abbreviation. In Type II ambiguities both units are metric, in Type III ambiguities the

prefixed non-metric unit collides with the name of a non-metric unit, in Type IVa ambiguities it collides

with a metric unit, and in Type IVb the name of a non-metric unit collides with the combination of a prefix

with a metric unit (e.g. “nm” could be nautical mile or nanometer). In the standard language, the names of

metric units and their standard abbreviations have been chosen so that Type II ambiguities can occur only

when case-sensitivity is not enforced, but this is the case in the informal language. An additional source of

Type II ambiguities in the informal language is that many authors use non-standard abbreviations for metric

units. For example “gm” as an abbreviation for gram is common in the informal language, where in the

absence of case enforcement is collides with “Gm” (gigameter). Furthermore, even in the standard language

ambiguities arise when the names or abbreviations of non-metric units are involved, as is the case for the
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“nm” example just quoted. Collisions of abbreviations with prefix+unit combinations were very common in

the test collection, with the total of 1445 occurrences of all types (see Table 6).

A number of strategies were used to resolve prefix+unit name ambiguities. The first was to prefer

an abbreviation of a unit to the colliding prefix+unit combination, i.e. to prefer a BASEUNIT NAME to a

PREFIXUNIT. Thus “ft” was interpreted as foot rather than as femtotonne, and “min” as minute rather than

milliinch. However, for some combinations a different strategy was used: the abbreviation was selected only

if its case matched that of the corresponding entry in the dictionary. In these cases the dictionary contained

a flag that indicated that the case of the entry had to be respected in order for it to be matched. This

allowed “gm” (which was marked as case sensitive) to be interpreted as gram, but “Gm” to be interpreted

as gigameter (the upper case “G” is the standard abbreviation of the prefix giga). The third strategy was

simply to omit from the dictionary the unit abbreviation that collided with a common prefix+unit if the

abbreviation occurred rarely. This was done in the case of “nm” as an abbreviation of nautical mile; this

input was therefore interpreted by the analyzer as meaning nanometer. In another corpus nautical miles

might be mentioned more often, and mentions of nanometers might be rare. In this case “nm” could be

registered with the dictionary as a alternative name of nautical mile, with the result that this meaning would

become the preferred one.

5.1.4 Plurals of abbreviations

Yet another source of naming ambiguity arises because in the plurals of abbreviations are common in the

informal language, though they are not allowed in the standard language. It was found for example that

many authors would write “6 ins ” to mean six inches. Some plural abbreviations are ambiguous because

they collide with prefix+unit combinations where the unit is “second”, as in “ms” (meters or millisecond),

“gs” (grams in the informal language, but gigasecond in the standard language without case enforcement),

or “ts” (tons or terasecond). These mostly involve type II ambiguities since there are many metric units

whose abbreviation is the same as that of a prefix, though a few of type III such as “hs” (hours in the

informal language, but hectosecond in the standard language) are also possible. To avoid such cases, the

abbreviations that cannot be suffixed by “s” to form plurals were flagged in the dictionary. The scanner’s

logic to respect this marking was invoked 145 times (see Table 6).
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5.1.5 Case of prefixes

An additional potential source of ambiguity is introduced by the prefixes mega (M) and milli (m). In practice,

authors successfully distinguished between the abbreviations by giving them the correct case. In annotating

truth, the intention of the author was respected where it could be determined from the context. With this

approach, only two expressions were found where case errors in these prefixes would have caused an equality

error in the analysis, but it happened that they both occurred in expressions where parsing failed for other

reasons.

Lastly, Type V ambiguities arise from the collision of prefix+non-metric unit combinations with

prefix+metric unit combinations. There was no occurrence of a collision of this kind in the test data.

5.2 The Symbols of the Language

A striking feature of the informal language found in the test data is the range and variety of the surface

forms of the terminals in the expressions. In many cases the authors of web pages were clearly trying to

reproduce the typographic conventions recommended in the standards that define the standard language. In

other cases, they used or invented new conventions. In analyzing the measure expressions in the data, a

combination of approaches had to be used to deal with this.

5.2.1 Special characters

The authors used a number of approaches to represent special characters. In most cases they used HTML

markup, including numeric and character entity references. These and other characters were all converted

to Unicode in the analyzer’s preprocessor.

5.2.2 Unit names and abbreviations

Multi-word unit names in the data were usually represented with embedded whitespace, as in “foot

pound ” or “ nautical mile ”, but other variants, such as “foot-pound ” and “foot_pound ” were

also found in the data. These were recognized during scanning for BASEUNIT NAME by appropriately
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normalizing them in the scanner before looking them up in the dictionary. Specifically, if the string “foot

pounds seconds ” was encountered, this would first be normalized to “foot pounds seconds ”, but

of course this would not be found in the dictionary, in which case the last token would be dropped, and

“ foot pound ” would be looked up, which would return a match. The same matching would be done

for input such as “foot-pound-seconds ”. In this particular case it is important that the first hyphen

should not be interpreted as multiplication, since “pound” represents the unit pounds (force), not a mass unit.

The expression “foot-pound-second ” must therefore be parsed as “foot pound × second ”. By

handling multi-word unit names as has been described, the correct parsing was achieved.

A number of non-standard prefix names occurred in the test data, such as “mk” for “micro”, and

“Meg” for “mega” (as in “Meg. ohm”). The prefix “micro” was also abbreviated as “u”, as in “um”

(micrometer), but this is part of the standard language that is allowed for applications using constrained

character sets [4, 5]. Several special symbols and entities were used by authors to represent the Greek ”µ”

to mean the prefix “micro”. All these variations were accommodated by adding them to the dictionary of

prefixes used by the Analyzer.

5.2.3 Numbers

There was considerable variability in the way numbers in the data were expressed. As an example, the same

number could be expressed in a number of ways, as “1 234.567 89 ”, “ 1 234,567 89 ”, ” 1,234.56789 ”,

“1.23456789E3 ”, “ 1,23456789x10<sup>3</sup> ” and so forth. These examples include the use

of the space as a thousands separator (as recommended for the standard language), alternative uses of the

comma as a thousands separator and as a decimal separator, and various approaches to writing powers of

10. The conventions for the use of the comma are locale-dependent, but in the development test data there

were examples of numbers formatted according to different locales occurring in the same web page, for ex-

ample where authors from different countries had contributed to a discussion database whose postings were

rendered in a single HTML page. Where possible, therefore, the use of locale information was avoided. It

was found possible in almost all cases to normalize numbers unambiguously into a single format in the pre-

processor for subsequent parsing, eliminating nearly all need for the scanner to know the locale. The only

exception was numbers like “1,234 ”, where it cannot be determined by inspection whether the comma is
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a decimal or a thousands separator. This form was interpreted according to the conventions of the locale

specified to the Analyzer when it was initialized, which in this work meant that the comma in such numbers

was interpreted as a thousands separator.

5.2.4 Proper fractions and mixed numbers

Proper fractions and mixed numbers were represented in a variety of ways. Certain Unicode characters

represent proper fractions, and certain 8-bit ASCII characters also render in a browser as proper fractions.

The test collection contained examples of both. The scanner for the REAL terminal used a list of these, and

returned the corresponding real number in each case. Mixed numbers, consisting of an integer with a proper

fraction, were written in a variety of ways in the data. For example, it was found that the number13
8 might

be written “13/8 ”, “ 1-3/8 ” or “ 1 3/8 ”. The first of these examples might be confused with “13
8 ”, and

given that the hyphen and the space in other contexts signify multiplication, the second and third might be

confused with “1× 3
8 ”. The key to correct interpretation of the mixed numbers in the data was found to be the

recognition that the authors expected certain combinations of digits and solidus to be interpreted as proper

fractions whatever their context might be. Only certain combinations of numerator and denominator were

used in this way, including “1/4 ”, “ 1/2 ”, “ 3/4 ”, “ 1/8 ” and so forth. Most of thesecanonical fractions

that were found in the data are in fact recognized in Unicode by being granted distinct character codes.

They were handled in the Analyzer by being replaced by their corresponding Unicode characters, using

the FRACTION rule described later. Then, the combination of the integer and the fraction character could

be recognized by the REAL scanner, as already described. Other canonical fractions were subsequently

discovered in the unseen test set; these caused evaluation errors since the scanner was not programmed to

recognize them. Examples were “1/1000” and “1/3600”.

5.2.5 Operators

The symbols for multiplication operators that are permitted in the standard language are the multiplication

sign, the raised dot (as in “N·m”), and the period. In the test collection it was found that authors used a

variety of markup to represent multiplication, including the HTML entity&times; and the letters “x” and
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“X”. For the raised dot authors often used the HTML markup “<sup>.</sup> ” or more rarely one of

several HTML entities that render in a similar way. In addition to these explicit symbols, whitespace or its

absence could also imply the presence of a multiplication operator as already discussed. Division operators

in the standard language are the solidus “/” as in “5 m/s ”, and the word “per”, as in “coulomb per

kilogram ”. In the informal language, authors also use the division sign “÷”, which they obtained from

the HTML named entity&divide; . The informal language also was found to include the use of the caret

character “ ˆ ” as an exponentiation operator. Superscript integers, which imply exponentiation, were

represented in a number of ways. In many cases, HTML markup achieved the typographic effect, using the

<sup> ... </sup> element. The HTML entities&sup2; and&sup3; also occurred, as did ASCII

characters that also render as superscript 2 and 3 in a browser.

5.2.6 Polysemous symbols

A further feature of the informal language is the polysemy of certain symbols used in expressions. The

varying roles of whitespace, and the parsing strategies to distinguish them, have already been discussed.

Another polysemous character is the period, which was found to play several roles in the informal language

in addition to those sanctioned by the formal language. These include its use as a multiplication symbol

(sanctioned by the standard language only for output devices with limited capabilities, but common in the

data) and as a decimal separator. The period is also used to terminate or to punctuate abbreviations, and to

terminate expressions. In most cases, the scanner is able to distinguish between these roles by using the local

context. Periods that terminate abbreviations or whole expressions, or which terminate the abbreviations of

EXP WORDs, as in “12 sq. feet ”, were treated as whitespace by the scanner. It was found that

periods and other punctuation occurred within the abbreviations of unit names in the unseen test data, as

in “H/P ” (horsepower), “h.p. ” and even “h.p ”. The scanner was not able to handle these forms, which

as a consequence were wrongly parsed. Lastly, while periods can be used as thousands separators in some

locales where the decimal separator is a comma, no occurrence of a period used in this way occurred in the

test data.

The dash, or hyphen, is another polysemous symbol. In most cases, it represented multiplication,

but as already noted it can also separate the words of multi-word unit names, or the components of a mixed
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number. It is also used as a unary operator to indicate negation in numbers and in particular in exponents.

The hyphen is also used in range expressions to separate the constituent simple expressions. Since no

example of a binary subtraction operator occurred in the test data, the use of the hyphen in range expressions

caused no ambiguity.

5.2.7 Sequence expressions

Sequence expressions were detected in the Analyzer and separated into their constituent simple expressions,

on which the Analyzer was called recursively. Where the unit was given only after the last number (e.g.

“6x8ft ”), the results were adjusted to add the unit into all the sub-expressions in the sequence. Some box

dimension expressions were non-standard in that they contained embedded letters to indicate height, width

and depth, as in “6’H x 4’W x 12"D ”.

5.3 Input Transformation Rules

Another strategy used in the analysis was to transform the input before it was passed to the parser. Trans-

formation was used to normalize away certain kinds of variation, as described in this section. A number of

transformations were applied, as follows.

SUPINTEGER: Transforms patterns of HTML that are used to represent exponents into with a standard

form. Example:cm<sup>-2</sup> → cmˆ-2 ("ˆ" is an exponentiation operator recognized by

the parser.)

DEGREEKELVIN: Transforms HTML used to form a construct like “◦K” into a valid form. Example:

<sup>0</sup>K → K (kelvin).

DEGREECELSIUS: Transforms HTML used to form a construct like “◦C” into a usable form. Example:

<sup>0</sup>C → degC (which is understood by the parser).

USUKPERIOD: Removes the periods from strings like “U.S.” and “U.K.” Example:U.S. → US . Used

with USUKQUALIFIER which it must precede.
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USUKQUALIFIER : Handles cases where the specifier of a US or UK unit follows the unit name. Only

certain unit names are handled. They are: gallon (and “gal”), quart, pint, tablespoon (and “tbsp”),

and hundredweight (also “hundred weight” and “cwt”) Example:gallon (US) → US gallon .

After normalization in this way, the unit name can be recognized as a multi-word name.

BRIT QUALIFIER : Changes various specifiers of UK units in the forms “Brit.”, “British” and “Imperial”

when these words precede a unit name. Example:Brit. gallons → UK gallons .

ALL HTML: Specifies that all HTML markup will be removed from the input string.

SUPDEGREE: Handles superscript ’0’ (zero), and the letter ’o’, either lower or uppercase, as degree signs.

This rule must precedeSUPINTEGERif it is to be effective.

FRACTION: Handles patterns used to express common simple fractions. The fractional part of the expres-

sion is replaced by the equivalent Unicode character. For example, patterns like"1 1/2" , "11/2"

and"1-1/2" are replaced with “1\u00bd ” (+U00bd is the Unicode “half” character).

5.4 Evaluation of a Measure Expression

Evaluation of a measure expression calculates a value, of the form of Equation 1, for the parsed expression.

Given a parse tree like the example shown in Figure 3, the operands and operators were extracted. The

operands each have a value, and the operations shown in Table 1 were successively applied to produce

a final evaluated value. The analyzer used arbitrary-precision arithmetic internally [29] to minimize any

influence of rounding errors.

One notable aspect of the evaluation of measure expressions is the low precedence of the division

operator in such expressions. This follows from the requirement of the standard language that an expres-

sion such as “20 liters per 100 kilometers ” should be interpreted as “(20 liter)/(100

kilometer) ”, not “(20 liters/100) ×kilometer ”, or that “10 J/cm2.s ” should be inter-

preted as “10 J/(cm2.s) ”. This is of course different from the convention in most programming lan-

guages. The data showed that while many of the web page authors used the standard convention, others made

their desired precedence explicit, in forms like “J/cm2/s ”, which are in fact disallowed in the standard
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Table 7: Effect of configuration of the analyzer on the error rate

Configuration Error rate

Basic 10.95%
+ Sequence expressions 9.84%
+ Input transformation 8.68%

language, or through the use of parentheses, as in “J/(cm2.s) ”.

5.5 Error Rate of the Analyzer

Once the analyzer had been adapted to handle the development test data, its accuracy was measured with

respect to the 3,435 measure expressions in the held-out unseen test data (see Table 3). Each evaluated

expression was compared with the evaluated truth expression using the equality operation in Table 1, and if

the equality held this was counted as an instance of a successful analysis. For sequence expressions, both

the data and truth expressions were required to be of the same type, and the corresponding sub-expressions

in the two expressions were required to be equal. For all expressions, an analysis error was recorded if

the equality was not satisfied or if the analysis of either the data expression or the truth expression failed.

Table 7 shows the error rate measured in this way for different configurations of the analyzer. Adding to the

base configuration the ability to recognize sequence expressions in the data resulted in a 10.1% reduction in

the error rate, and turning on the input transformations described earlier reduced the error rate by a further

11.7%. The final error rate achieved on the unseen test data was 8.68%.

Table 8 shows the categories of errors that occurred in the analysis. All the errors that occurred in

parsing the truth expressions were due to the presence in them of units that were not in the dictionary, which

in turn were included in the truth expression because they were used in the corresponding data expression.

Examples are lines of magnetic force, money units, the “circular mil”, and “pounds of water”.

The largest category of analysis failures, amounting to 59% of the total, were those in which the

failure occurred in parsing the data measure expression after successful analysis of the truth expression.

The largest single cause of these was coding errors that had not been previously detected. The next most

common cause (22% of expression parse failures) was expression syntax that had not been found in the

development test data and that defeated the parser. Examples are: “sq.cm ”, with no space between the
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period and the unit; “10ˆ(-10) ”, with parentheses in the exponent; and the word “a” indicating division,

as in “thirty pounds a month ”. Variants of unit names or abbreviations that were not included in

the dictionary caused 18% of parse failures. Examples are “VDC” for volt and “htz ” for Hertz.

Table 8: Error rates for parsing and evaluation of measure expressions in the unseen test collection.

Expressions 3435
Parse failure in truth 34
Parse failure in expression 177
Equality errors 87
Total errors 298
Error rate 8.68%

The equality errors fell into several classes. The most frequent, accounting for 45% of these errors,

were due to either a unit name or abbreviation that was not in the dictionary, or was not recognized for some

other reason, but was interpreted by the scanner as a prefix+unit combination. For example, “cms” is illegal

as the plural of “cm” but it was interpreted as ”centimilliseconds” by the scanner). These errors could be

eliminated by simply not allowing a PREFIXUNIT to contain more than one prefix abbreviation. The next

most frequent cause of equality errors, accounting for 11% of them, was due to a coding error which caused

the equality relation for some sequence expressions to be wrongly evaluated. Other less frequent causes of

error (each occurring between 2 and 5 times) were misinterpretation of “H.P ” as “henry× poise” instead

of horsepower, misinterpretation of unrecognized canonical fractions, and unresolved ambiguity such as the

use of “g” to mean standard acceleration rather than gram.

6 Characteristics of Measure Expressions

Some quantitative characteristics of measure expressions found on the web can be determined from the

analysis of the test data. For this aspect of the study we used the combined test collection, for which

the error rate was 6.8%. This error rate is adequate to allow the main features of the expressions to be

determined.

The number of terminals in the parse tree provides a measure of the complexity of a measure

expression. Figure 4 shows the frequency distribution of terminals (this data is for the unseen test collection).
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Figure 4: Frequency of terminals in measure expressions in the unseen test collection.

The number of terminals in a sequence expression was taken to that in the first expression in the sequence.

The figure shows that all the expressions contained an odd number of terminals, reflecting the fact that no

unary operators occurred in the data other than those preceding a real number, which were subsumed into

the number and not counted as a separate terminal. Expressions with three terminals were the most common,

amounting to 2209 of the 3137 expressions that were successfully parsed, or 70.4% of them. An example

of an expression with three terminals is “152 cm”. Expressions with one terminal are those consisting of a

single prefixed unit name, for example “centimeter”. Single unit names, such as “meter”, were not annotated

as measure expressions unless they were preceded by a number.

The frequency of expressions with three or more terminals falls approximately exponentially with

increasing terminal count. In all, 20.9% of the measure expressions contained more than three terminals.

Only two expressions with more than 11 terminals were found in the unseen test data. They were

“6.5x10ˆ10/(cmˆ2-s) ” (13 terminals)

“5.67 x 10<sup>-8</sup> joules/m<sup>2</sup>/s/

(<sup>0</sup>K)<sup>4</sup> ” (19 terminals)
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Table 9: Frequency of operands in the combined test collection

Operand Number of
occurrences

BASE UNIT NAME 5534
REAL 2927
PREFIXUNIT 898
EXP WORD 629
EXPON INT 338
WORD INT 173
FRACTION 23
LOG RATIO 16
OFAa 10
PREFIX SEQUENCE 6
INTEGER 3

a. Has no magnitude; occurs as a component of
some instances of FRACTION

Table 10: Frequency of operators in the combined test collection

Operator Number of
occurrences

MULT WHITESPACE 2595
DIV SIGN 967
ADJ EXPON 605
MULT SIGN 514
NO WHITESPACEMULT 443
EXP OPER 338
DIV WORD 216
EXP WHITESPACE 24
LEFT PAREN, RIGHTPAREN 23
POSTANTILOG 16
PREFIX MULT 6
ANDA 4
MULT WORD 4
MULT ANDA 1
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The frequencies of operands and operators in the combined test collection are shown in Tables

9 and 10 respectively. While the counts of the low frequency types in these data are subject to potential

systematic errors caused by analysis failures, some conclusions can be drawn from this data. First, Table

9 shows that prefixed units (PREFIXUNIT types) are relatively infrequent, occurring only 16% as often

as simple unit names. This probably reflects the relative frequency of non-metric units, which are rarely

prefixed, in the data (see below and Table 11). In expressions from an exclusively scientific or engineering

domain, where metric units are more likely to be used, the relative frequency of prefixed units (and the

corresponding potential ambiguities already discussed) would probably be higher. Table 10 shows that

exponentiation of units was relatively common. About 2/3 of the time exponentiation was expressed as a

word, as in “square feet”, and was parsed as the EXPWORD operand. A numeric exponent (EXPONINT)

appeared in the remaining cases.

Real numbers occurred with only about half the frequency of base unit names and prefix units

combined. At first sight this is inconsistent with the conclusion that the most common form of measure

expression is a quantifier together with a unit, but this apparent anomaly is accounted for the fact that

the data contained a number of tables of conversion factors, which generally contain entries of the form

“nanogram= 10−9gram”, in which the prefix+unit on the left has no quantifier. The pages with very large

numbers of measure expressions (Figure 1) were mostly of this type. Spelled out numbers, predominantly

integers, occurred in about 3.6% of the expressions. Lastly, occurrences of PREFIXSEQUENCE, i.e. a

prefix separated from a unit name, were quite rare, perhaps reflecting the fact that non-contiguous prefixes

are forbidden by the standards.

The listing of the frequency of operators in Table 10 shows that multiplication implied by whites-

pace was by far the most common operator. Explicit multiplication (also permitted by the standards) was

much less common, about as frequent in fact as the implied multiplication operator NOWHITESPACEMULT,

which is forbidden by them. Explicit division operators, predominantly the solidus and the DIVWORD

“per”, were more common than explicit multiplication. The two operators that correspond to exponentiation

in words, ADJEXPON and EXPWHITESPACE, were almost as common as division or multiplication. In

fact, exponentiation was about as common in the data as prefixing of units. Some occurrences of EXPOPER

corresponded to exponentiation of numbers, as in “10<sup>-10</sup> coulomb ”.
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Table 11: The number of occurrences of the most frequent instances of BASEUNIT NAME and PREFIX-
UNIT types in the combined test collection

BASE UNIT NAME PREFIXUNIT

foot 704 centimeter 277
metera 487 kilometer 101
second 456 millimeter 63
pound 439 milliliter 57
inch 296 kilowatt 54
kilogramb 276 millisievert 26
hour 228 milligram 19
minute 195 megaelectronvolt 16
US cup 159 megahertz 16
gram 125 millirem 15
US gallon 125 decibel 12
year 112 kilocalorie 9
ampere 111 kilopascal 9
watt 99 microliter 9
Joule 96 nanometer 9
teaspoon 96 kiloJoule 8
mile 95 milliampere 8
yard 90 millibar 8
volt 84 millivolt 8
ounce 76 decimeter 7

a. Includes occurrences of both “meter” and “metre”.
b. Because of its status as one of the base units of the SI
system, kilogram is treated as a base unit name.

Table 11 shows the 20 most frequent names of BASEUNIT NAME and PREFIXUNIT types in

the data. Of the former, 12 of the 20 are non-metric units, while all of the latter are prefixed metric units.

Of the top 20 BASEUNIT NAMES the proportions of units of mass, length, volume and time are roughly

equal, with the remainder being various electrical units. No unit of area makes the top 20, perhaps because

there is no named area unit of convenient size for everyday purposes, so that most areas are expressed as

lengths raised to the second power, as in “square feet”. Units common in recipes, such as cup and teaspoon

(interpreted by the analyzer as the US variants of these units) are among the most common ones. The list

of the 20 most frequent prefix+unit combinations in the same table shows a wider range of units, though it

seems to show some effect of the query words (Table 2) used to retrieve web pages, with millisievert and rem

perhaps appearing because of the query word “rad” (all are units of radiation dose or radiation exposure).
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Table 12: Frequency of sequence expressions in the combined test collection

Type Occurrences

Range 16
Sheet dimensions 31
Box dimensions 8

Table 13: Frequency of certain language features in the combined test collection

Feature Occurrences

Mixed number: an integer immediately followed by
a fractional part

66

Period following an abbreviation 51
Commas used as thousands separator in a number 15
Blanks used as thousands separator in a number 11

Sequence expressions account for just 1.1% of expressions. The frequency of the different types

is shown in Table 12. Inspection of the results shows that these frequencies, while low, are reliable in that

the parser correctly identified all the sequence expressions in the data. All the range expressions in the

data diverged from the standard [1] in that the unit was given only after the second number, as in “13 to

20ghz ”, whereas the standard mandates that this should be written “13 GHz to 20GHz”. Furthermore, in

the majority of the range expressions a hyphen was used as the range separator instead of the word “to” as

mandated by the standard. In contrast, almost all the sheet and box dimension expressions conformed to

the standard. Where they differed, it was because the unit was given only after the last number, or because

embedded letters were used within the sequence to indicate width, depth and height, as was done in 2 of the

eight box dimension statements in the data.

Some other features of the language used in the measure expressions that occurred relatively in-

frequently are shown in Table 13. Mixed numbers, which are deprecated by the standards, occurred in about

1% of the expressions; the importance of canonical fractions in such numbers has already been noted. Ab-

breviations terminated by a period, also deprecated, occurred with about the same frequency. The table also

shows that on the rare occasions where thousands separators were used in numbers, they were slightly more

likely to be commas (deprecated) than the spaces recommended by the standards.
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7 Discussion and Conclusions

This study has presented a description of the informal language of measure expressions, as discovered in

web pages. The description is embodied in a grammar, a dictionary, and a set of heuristics used by the

expression analyzer that was applied to the expressions. The adequacy of the description is measured by the

accuracy of the analysis against the unseen test set.

The results in preceding sections show that the accuracy of the analyzer is adequate to allow the

main features of the informal language to be determined. Furthermore, it is clear that the accuracy can be

further improved. The analysis of the parse failures that was presented indicates that the majority of the

errors could be eliminated by fixing coding errors, and by modifying the dictionary to include other units

and to add names and abbreviations of units that it already contains. Additional improvements could come

from modifying the grammar and the scanner to handle new syntax that was discovered in the unseen data.

It should also be noted that the accuracy of analysis in other domains may well be higher than it is for web

data. Part of the motivation for using such data in this study is the hypothesis that this data includes a wider

range of idioms than is found in other data sources. Edited content is likely to contain more standardized

syntax, and the names and abbreviations used will probably be less ambiguous. It is likely, therefore, that

it can be analyzed with a lower error rate. Additional improvements are also likely if content from a single

domain, or a restricted set of domains, is considered, because then the conventions of those domains can be

incorporated into the heuristics used by the analyzer. This is a topic for further research.

The study has provided an analysis of the ways in which measure expressions on web pages di-

verge from the recommendations promulgated by standards bodies. Among the most significant deviations

are the incorporation of HTML markup to achieve the typographic effects called for by the standards, ne-

glect of conventions of case that are designed to eliminate ambiguity in prefix+unit combinations when

using metric units, and using non-standard abbreviations of the names of metric units that can be confused

with prefix+unit combinations. Consequently, the informal language contains significantly more potential

ambiguity than does the standard language. This probably limits the ultimate accuracy with which it can be

analyzed, although the heuristics developed in the present work were quite successful in resolving ambigu-

ity in almost all cases. Nevertheless, the prevalence of ambiguity suggests that a viable strategy to achieve
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the highest possible accuracy would be to use additional information, such as might be obtained from the

context of a measure expression in text, to resolve ambiguity. To do this, it might be useful to carry alterna-

tive parses through the analysis, instead of parsing deterministically as was done in the present work. Using

techniques of natural language parsing, such a chart parsers, might be one way to achieve this.

Another way in which the informal language was found to depart from the standards was in the use

of syntax that is deprecated by the standard. The most common deviations were found to be the omission

of a space between a number and its unit, and the use of mixed numbers. Combinations of operators and

operands that are deprecated by the standards were also common, such as using more than one division

operator in an expression, or using operator symbols rather than words with the full forms of unit names.

However, the study has also shown that it is possible to configure the analyzer to deal with all these cases.

Thus, from the perspective of information extraction, this study has indicated that analysis, which

in the Introduction was identified as the second step of the three involved in information extraction of

measure expressions, can be done adequately. Well established techniques of information extraction seem

likely to be applicable to the first step, recognition. In fact the results presented here provide some insights

into what features may be most suitable to use in an automatic recognizer, whether based on machine

learning or on pattern-based recognition.

The third step in information extraction, classification, presents some challenges. One is related

to the fact, noted by Thun [22] among others, that the dimensions of a measure expression as defined by

Equation 2 do not uniquely determine the quantity that it measures. Take for example the expression “liters

per 100 km”, which one might want to assign to the class “fuelconsumption”. The dimensions of this

expression are length3/length= length2, which are the same as those of area. Thus a classifier would not

be able to distinguish between the classes “fuelconsumption” and “area” on the basis of the dimensions

alone. Also, many expressions that are dimensionless are not equivalent to each other. To go some way

towards resolving this difficulty, it has been proposed [30] that the calculation of dimension should carry not

just the exponent of the base quantity, but also a record of the exponents that occurred in the numerator and

the denominator of the analyzed expression. The effectiveness of this approach remains to be determined.

A further challenge is to determine whether accurate classification can be based only on intrinsic features of

expressions, or must in addition take account of extrinsic features derived, for example, from the context in
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which the measure expression occurs in a document. The resolution of these challenges remains for future

research.
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9 Appendix

A Annotation Policies

The annotation used the following guidelines:

1. Simple unit names or their abbreviations were not annotated unless they were preceded by a number.

That is,meter was not annotated as a measure expression, but “5 meter ” was. Prefixed single

names (e.g. “millimeter ”) were annotated.

2. Spelled-out numbers within unit expressions were annotated if they were specific “(one thousand

meters ”) but not if they were non-specific (“thousands of meters ”).

3. Measure expressions within HTML element attributes were not annotated. These expressions are

common in certain HTML-ized word processor output.

4. Temperatures were not annotated, but expressions involving a temperature unit were (e.g. “deg. C

per second ”).

35



5. Measure expressions within<script> ... </script> elements (e.g. in JavaScript source

code in web pages) were not annotated.

6. Pure money amounts were not annotated, however expressions involving measurement units along

with money were annotated.

7. Expressions where a symbol was represented by an image were not annotated, but any textual sub-

parts that were themselves measure expressions were annotated.

8. Expressions that included non-unit words, such as “25 grams of sugar per 6 ounces ”

were not annotated as a whole, but sub-parts that were measure expressions were annotated.

9. Purely numeric expressions, such as “25” or “ 6.00 per dozen ” were not annotated.
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