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Abstract: A challenge for building the Semantic Web is to capture the knowledge contained in large 
document collections without having to perform massive manual knowledge engineering.  This paper 
presents Breeder, a system designed to semi-automatically generate lists of “similar” items based on their 
contexts in a large corpus.  To breed a single item list, the system uses a small set of user-provided seed 
items as the starting point in a bootstrapping operation which can either proceed automatically until a 
stopping condition is met or be guided by interactive user feedback as the bootstrapping proceeds.  The 
bootstrapping relies on the “duality” of two orthogonal views of the items and their features, as obtained by 
text analysis.  We also present MultiClassBreeder, which further constrains breeding of the classes as they 
compete for members with one another. 
 
We have experimented using Breeder to build lexical classes of nominal expressions, a result which is 
useful for populating a knowledge base with instances of ontological classes.  We will describe Breeder’s 
implementation, including the underlying text analysis and measures taken to make real-time, interactive 
use feasible.  We will discuss our preliminary evaluation of Breeder.  We also describe our plans to use 
Breeder to generate pairs of nominal expressions, referring to class instances, which can be used to 
populate knowledge bases with the extensions of ontological relations. 
 

Introduction 
 
In order to realize the promise of the Semantic Web, large portions of the knowledge that is currently 
contained in text documents on the World-Wide Web must be represented and stored as the contents of 
knowledge bases that are consistent with underlying ontologies.  Once that is done, computer processing 
involving various forms of reasoning over that knowledge can be designed to automate tasks – such as 
document search and retrieval, document categorization and routing, and transaction processing – which 
now require mainly human effort.  Since we also don’t want to build these knowledge bases manually, a 
prerequisite task for obtaining them is to design, build, and execute other automated processes for 
extracting the required knowledge from the text in documents.  This paper presents a text analysis approach 
to accomplishing parts of the knowledge base building task. 
 
Specifically, the paper discusses methods for populating classes of an ontology by expanding sets of “seed” 
items for the class into much larger collections of items which are semantically similar to the seeds and to 
one another.  The full paper will also describe how the same methods can be used to find instances of 
ontological relations, based on sample relation instances.  These methods are based on the intuition, 
common to much information extraction work, that items whose textual mentions are in similar lexical, 
syntactic, and semantic contexts must themselves be semantically similar.  We take this semantic similarity 
to be prerequisite for sets of items or relations to be assigned to the same ontological types. 
 
Our approach to using these methods acknowledges that they are heuristic and that their results are not 
guaranteed to be perfect or to meet the particular requirements of any knowledge based application.  Thus, 
they are embedded within an interactive system framework which gives human knowledge engineers 
flexible control over their operation and over the results they produce.  An important difference from other 
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types of knowledge engineering tools, however, is that these methods allow the human user to guide the 
system as it populates the knowledge base rather than force him to generate the knowledge base contents 
himself.  The processing uses iterative bootstrapping – during each iteration, the system attempts to 
generate new items that are similar to the ones that are already in the set.  Our approach is thus called 
“Breeder”, a name intended to suggest that the knowledge engineer behaves like a horticulturist, designing 
the final outcome he wants to achieve by selecting natural specimens (i.e., “seeds”) having the 
characteristics he wants and then monitoring the growth of the desired result by inspecting and pruning 
intermediate generations (i.e., the results of multiple iterations).  
 
The plan of the paper is as follows.  The “Breeder Methods” section gives a detailed explanation of the 
Breeder system and its component technologies. In this section, we describe the component configuration 
used in the experiments performed to date.   In the “Evaluation” section, we briefly discuss issues related to 
the evaluation of Breeder-like systems and we present mechanisms built into Breeder for evaluating its 
performance.  A full evaluation has not yet been performed, but preliminary results will be given.  The next 
section, “Related Work,” describes other information extraction research aimed at extracting lexical classes 
and relations from text.  Finally, we conclude with a description of work remaining in the Breeder project. 
 

Breeder Methods 
 
Overview:  Breeder’s general architecture is shown in Figure 1.  The overall goal is to create an 
environment, based on the information found in a large document collection, in which small sets of seed 
examples for target lexical class can be augmented, through bootstrapping, into large sets of class members.  
In the full paper, we will expand this description to show how Breeder can also be applied to relations. 
 
Processing begins by applying text analysis to a large document collection representing the domain of 
current interest.  The goal of text analysis is to derive the full set of lexical items existing in the document 
collection and to associate them with features that characterize the document contexts in which the items 
occur.  This association is recorded into one or more “pairs files” which are then loaded into a feature-by-
item matrix.  The matrix is then used by the main Breeder bootstrapping process to generate new items that 
are similar to items in the seed set.  After each iteration, a knowledge engineer can be given the opportunity 
to inspect and filter the list of new items.  When iteration stops, the current set of class members is emitted 
as the final result. 
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Figure 1.  Breeder System Architecture 
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We now describe this processing in more detail. 
 
Text Analysis.  We use a number of the annotators in the Talent environment [Neff, et al. (2003)] to 
extract the lexical items and contextual features for use in the pairs file.  For the lexical items, all of which 
are nominal expressions in this work, we first use Terminator and Abbreviator to extract technical 
vocabulary items.  We could also use Nominator, a proper name extractor, to identify vocabulary items.  
However, the presence of long lists of non-textual proper names in our experimental document collection 
produced many spurious coordination features (see below) which degraded our results; hence, we didn’t 
use Nominator for our experiments.  Second, we use our glossary extraction tool, GlossEx [Park, et al. 
(2002)], to identify additional lexical items.  In an off-line run of GlossEx against the experimental 
document collection, we produce a list of glossary items.  Text analysis for Breeder uses that list to 
annotate lexical items in the texts.  A benefit we derive from our vocabulary and glossary processing is that 
aggregation allows us to normalize variants of lexical items that occur in the text to their canonical form.  
See Neff, et al. (2003) for details.  This enriches the set of contexts that Breeder considers for any lexical 
item having multiple variants.  For our third source of lexical items, we use noun phrases produced by our 
shallow parser [Boguraev (2000)].  Specifically, we use the heads plus selected prenominal adjectives.  
These are similar to the items recognized by Terminator and GlossEx, but allow us to identify items which 
don’t satisfy their criteria and yet are still useful for Breeder. 
 
Once lexical items have been identified, they are associated with features that occur in their contexts.  We 
capture a wide variety of information about the textual contexts for use as features.  We collect about ten 
feature types, with the specific features containing the specific word or phrase (often another lexical item) 
that fills the argument slot of the chosen feature type.  The feature types we collect are: 
 

• AdjMod – an adjective that modifies the lexical item 
• NounMod – a noun (or nominal expression) that modifies the lexical item 
• QuantMod – a quantifier that modifies the lexical item 
• VerbMod – a (typically participial) verb that modifies the lexical item 
• ObjOfPrep – a noun which takes this lexical as the object of a prepositional argument 
• PrepArg – a preposition that this lexical item uses to introduce its own argument 
• PrepArgNP – a nominal expression that this lexical item takes as a prepositional argument 
• ObjOfVerb – a verb, including nominalization bases, that takes this lexical item as a direct object 
• SubjOfVerb – a verb that takes this lexical item as a subject 
• Hypernym – another lexical item of which this lexical item is a hyponym 
• Conjunct – another lexical item with which this lexical item is conjoined 

 
This list of feature types can easily be expanded to include others, including simpler ones such as words to 
the immediate left and right, part-of-speech labels from a tagger, upper/lower case patterns, etc.  We did not 
use such features in our experiments. 
 
From their descriptions, above, it is clear that our features all exploit the syntactic structures that the Talent 
shallow parser derives for the document sentences.  Two feature types deserve special comment.  The 
Hypernym feature results from an elaboration of the hypernym/hyponym extraction heuristics proposed in 
Hearst (1992).  In our version, the extraction patterns include constraints on the syntactic structure in which 
the potentially multi-word lexical items occur, rather than Hearst’s linear patterns over single-word 
concepts.  Similarly, the Conjunct feature exploits the conjunction subgrammar in the shallow parser to 
identify cases where lexical items appear in coordinate conjunctions and extracts the conjuncts as one 
another’s features.  The intuition that supports the use of this feature type for lexical class population is that 
conjoined nominal expressions often belong to the same semantic class [cf. Roark and Charniak (1998)].  
Figure 2 shows an example of four feature-item pairs extracted from the sentence fragment “… for life-
threatening diseases like cancer and aids, …”.   
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(Hypernym:life-threatening disease; cancer)
(Hypernym:life-threatening disease; AIDS)
(Conjunct:AIDS; cancer)
(Conjunct:cancer; AIDS)

 
Figure 2. Pairs Extracted from the Text "... for life-threatening diseases like cancer and aids, ..." 

 
 
Feature-Item Matrix:  All of the feature item pairs extracted by text analysis are stored in flat “pairs 
files,” using the format shown in Figure 2.  As can be seen, the inventories of features and items are open-
ended.  In fact, any other dataset that can be represented as a pairs file can also be used for bootstrapping 
with Breeder.  The pairs files are then loaded into a feature-item matrix.  The rows of the matrix represent 
all extracted features; the columns represent all extracted lexical items; and each cell contains the frequency 
with which its item occurred with its feature. 
 
The feature-item matrix supports two views of the frequency information extracted by text analysis: the 
FeatureView and the ItemView.  From each view, it is possible to gain a perspective on elements of the 
other view.  For example, given a handful of items in the ItemView, we can extract and rank the set of 
features that co-occur with any of those items.  Using the matrix, we identify the features to extract by 
looking for non-zero frequencies in the columns representing the starting items.  Ranking is done in various 
ways, to be discussed under “Bootstrapping”, below.  Similarly, given any set of features, we can use the 
matrix rows to identify and rank items that occur with those features. 
 
Using the terminology introduced by Brin (1998), we say that the feature and item views are in “duality” 
with one another.  We exploit this duality to breed classes of lexical items, using a bootstrapping algorithm. 
 
 
Bootstrapping:  Single-class bootstrapping uses the feature-item matrix in an iterative algorithm.  The 
operation of a single iteration is illustrated in Figure 3.  For the first iteration, the ItemView’s repository is 
initialized with a set of seed items supplied by the user.  Using that set of items, the ItemView extracts, 
from the matrix, the list of features that occur with any of the items currently in its repository, yielding a set 
of candidate features for the FeatureView.  Those candidates are processed by one of several FeatureView 
“evaluators”, which (1) assigns a score to each feature, usually based on the features’ effectiveness in 
accounting for the current set of items in the ItemView repository, (2) ranks the filters by their scores, and 
(3) filters the ranked list according to user-supplied parameters, and (4) adds (or replaces) the filtered 
features to the FeatureView repository.  Next, the new set of features in the repository are used to extract a 
set of candidate items.  Then an ItemView evaluator is used to score, rank, and filter those candidates, 
yielding a new set of items to add to the repository. 
 
Subsequent iterations are like the first one, except that the ItemView repository retains its current contents 
from the preceding iteration.  When the iterations are stopped, the final contents of the ItemView repository 
are returned as the desired lexical class. 
 
Breeder offers choices of evaluators for the two views.  For ItemViews, the currently defined set of 
evaluators is: 

• TupleProbability – used in Agichtein and Gravano (2000) and Yangarber, et al. (2002) 
• AvgLog – used in Thelen and Riloff (2002) 
• MetaBootstrapping – used in Riloff and Jones (1999) 
• DecisionList – used in Yarowsky (1995) 
• CentroidCosine – adapted from Schütze (1998) 
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For FeatureViews, the choices are: 
• RLogF – used in Thelen and Riloff (2002) 
• LogLikelihood – based on Dunning  (1993) 
• LogProbRatio – used in Yarowsky (1995) 

 
As noted, these evaluators reflect a range of scoring strategies from the current literature on bootstrapping 
and word-sense disambiguation.  By making these choices flexibly available, Breeder offers a laboratory 
for comparing their performance on various tasks and datasets. 
 
When using Breeder, the user must specify a number of operational parameters.  Among them are controls 
for the evaluators and the conditions for stopping the iteration.  The major evaluator controls are the 
number of features or items to let through the filter on each iteration and an update policy, stating whether 
the filtered items are added to the current repository contents or replaces them.  Stopping conditions offer a 
choice of stopping either after a certain number of iterations, or when no new items are added to the item 
repository, or when the interactive user is satisfied with the current class members.  Again, some of these 
choices reflect various practices in the literature and support experimentation with Breeder. 
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Figure 3.  Bootstrapping Architecture for a Single-Class Breeder 

 
MultiClassBreeder:  We expect that in knowledge base building applications, users will need to populate 
multiple classes.  In such applications, we can gain an advantage by breeding the multiple classes 
simultaneously, using MultiClassBreeder.  Figure 4 shows an example in which the user wants to 
differentiate countries from different continents and from U.S. states.  Among the advantages of multi-class 
breeding is the fact that, under control of an ambiguity parameter (not shown in Figure 4), as each class 
absorbs items that are closest to it, those items become unavailable to the other classes.  In fact, by defining 
a catch-all “other” class, users can help ensure the purity of the classes they are really interested in.  A 
further advantage, exploited by some of the evaluators listed above, is that knowledge of lexical items 
which are definitely not in a lexical class – because they are known to belong to other classes – can be used 
to improve the scoring of feature. 
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Inspection of Figure 4 reveals that some of the item assignments to classes seem like errors.  Indeed, 
putting Venezuela into the Middle East class is patently wrong.  However, we are less certain about 
assigning Mauritania (an African country) to the Middle East.  In fact, it is not clear from the seed list 
whether the user wants “Middle East” countries classed by geography, culture, religion, language, or 
anything else.  MultiClassBreeder allows us to deal with such uncertainty by offering an interactive mode 
in which the user can monitor the items added to the ItemView repository at the end of each iteration.  In 
this mode, the user may delete an item from any class, move it to another class, or add an entirely new seed 
to one of the classes.   Using this capability, which admittedly requires more work than fully automatic 
breeding, the user can obtain results that are arbitrarily close to his intentions.  
 
 

 

Figure 4.  MultiClassBreeder used to Breed Classes of Countries and States. 

Evaluation 
Even though it is difficult to evaluate a bootstrapping solution for lexical class population, we have several 
reasons for wanting to do so.  First, we need to be able to compare our results to those reported in the 
literature.  Second, given the number of user-specified parameters (evaluators, repository increment sizes, 
etc.), we need a way to assess the effectiveness of various settings.  The third reason has to do with the 
need to operate in different application environments, with different corpora of different sizes, and with 
different user requirements.  For example, breeding broad classes, like “Person”, will be very different from 
breeding fine-grained classes, such as “weapons carried on ships”.  For this reason, as we develop Breeder, 
we need to understand how to choose suitable parameter settings appropriately for the different operational 
environments. 
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It is easier to evaluate precision for a tool like Breeder than it is to evaluate recall.  We can do so by either 
(A) manually inspecting Breeder’s output for the generated classes, or by (B) having an exhaustive list of 
desired class members, for example from a gazetteer.  Of course, depending on the class, obtaining an 
exhaustive list may itself be difficult.  Even if we possess exhaustive lists, however, evaluating recall 
remains hard.  This is so because we can’t just measure the proportion of a list that Breeder’s output covers; 
in addition, we must know what portion of that list exists in the corpus in extractable form.  Knowing that 
requires annotation of the entire corpus for the classes we want to evaluate, which is expensive. 
 
For these reasons, in the preliminary evaluations we have done so far, we have usually used method (A) to 
generate lists of class members from the output of multiple runs of Breeder with multiple parameter 
settings.  The resulting lists (as well as lists obtained by method (B)) can be used with a built-in assessment 
tool in Breeder to produce graphs of output performance.  While we have not done extensive evaluations to 
date, Figure 5 shows an example of the kinds of assessment that may be done. The graph shows the 
precision obtained after six iterations over the class specifications shown in Figure 4.   In this case, using 
method (A) to check the correctness of the output was fairly easy, modulo the issue such as whether 
Mauritania is a [Arabic/Islamic/Middle-eastern] country. 
 
 

 
Figure 5.  Plot of Precision against Iteration Number for Countries and States 

 
When we consider interactive use of Breeder, there are further concerns about evaluation.  Using recall and 
precision to evaluate the output of an interactive user is probably not the best thing to do.  Rather, task-
based evaluations seem more to the point.  The question is whether the knowledge engineering user can be 
more productive with Breeder than without it; and, if so, by how much.  Designing and carrying out such 
task-based evaluations remains for future work. 
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Related Work 
In the final paper, we will discuss the relation of Breeder to other work on bootstrapping and word-sense 
disambiguation.  Some of that discussion has already begun, in the section above about view evaluators. 
 

Conclusions 
 
In the final paper, we will detail our future work, including the use of Breeder with pairs of nominal 
expressions (as items) and contextual patterns (as features), in order to breed relations. 
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