
RC22976 (W0311-046) November 6, 2003
Computer Science

IBM Research Report

The Talent FST System

Branimir K. Boguraev, Mary S. Neff
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

fo
r d

is
tri

bu
tio

n
w

ith
 T

al
en

t 5
.1

The Talent FST System

Branimir K. Boguraev and Mary S. Neff1

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights
NY 10598, USA

bran@us.ibm.com,maryneff@us.ibm.com

(1) with substantial design and implementation contributions by
Albert Eskenazi and Son Bao Pham

October 31, 2003

Abstract

This document describes the TALENT 5.1 Finite State subsystem (TFST). It positions the process
of finite state matching over annotations within the larger context of TALENT’s infrastructure. It
then describes how to specify rules for pattern matching (over sequences of annotations), and how
to specify the features or properties of annotations that a match would be focusing on. The process
of grammar writing and development is broadly outlined, and some indication is given concerning
the different kinds of tasks and applications which can effectively utilise finite state technology.
Some general guidelines on grammar development and matching strategies are offered, and sample
grammars are included as examples. Finally, a brief sketch is offered of an experimental environment
for finite state grammar development.

The TFST subsystem, as decsribed here, is hosted by the Talent 5.1 document processing infrastruc-
ture. Design considerations addressing the encapsulation of FS matching functionality as a Talent
(meta-)plugin are discussed in (Neff, Byrd, and Boguraev, 2003). Work is under progress on mak-
ing the full functionality available, via a new and revised formalism (which targets a typed feature
structures-based representation model), within an emerging framework for unstructured information
management (UIM; see (Ferrucci and Lally, 2003) for details of UIM architecture).

Evolution of the TFST capability is motivated, beyond well-articulated arguments promoting the de-
ployment of finite state processing techninques for NLP application development, by considerations
of enabling such processing within industrial strength NLP frameworks which exploit emerging no-
tions like pipelined architectures, open-ended intercomponent communication, and in particular the
adoption of linguistic annotations as fundamental descriptive/analytic device.

for distribution with Talent 5.1 -- for distribution with T

Contents

1 Introduction 4
1.1 TFst design overview . 5

2 Overview of the process 8
2.1 Matching specifics . 8

3 TFst grammars 11
3.1 Grammar notation . 11
3.2 Grammar organisation . 12
3.3 Grammar to Talent interface . 13
3.4 FS grammar cascading . 16

4 TFst symbols 19
4.1 Tests over lexical annotation strings 20
4.2 Tests for orthographic properties 20
4.3 Tests for document structure relationships 21
4.4 Tests against an authority file 22
4.5 Tests of vocabulary properties 26
4.6 Tests over morphosyntactic features 27
4.7 Tests over syntactic annotations 29
4.8 Regular expressions over lexical annotation strings 31
4.9 Symbols for transduction operations 32

4.9.1 Creating annotations 33
4.9.2 Setting properties on annotations 34
4.9.3 Adding to the vocabulary 34
4.9.4 Deleting annotations 35

4.10 Dual scanning regimes . 35

5 Putting it all together 37
5.1 Grammar compiler . 37
5.2 Configuring the TFst executor 38

5.2.1 Seeing the results . 40
5.3 Sample grammars . 43

6 Interactive grammar development 50
6.1 Overview of wTextract . 51
6.2 Elements of the TFst subsystem interface 52

6.2.1 Configuration . 53
6.2.2 FST⇒Concord Left . 54

for distribution with Talent 5.1 -- for distribution with T

6.2.3 FST⇒Concord Right 55
6.2.4 FST⇒Show Label . 55
6.2.5 FST⇒Show Pos . 55
6.2.6 FST⇒Switch View . 56
6.2.7 FST⇒Edit Grammar 57
6.2.8 Find All . 59
6.2.9 Delete Label . 61
6.2.10 Filter labels . 61

for distribution with Talent 5.1 -- for distribution with T

1 Introduction

This document assumes some knowledge of the basic design and architectural char-
actertistics of the TEXTRACT system2; see (Neff, Byrd, and Boguraev, 2003) (Neff
et al., 2003). We briefly recap here the features of particular relevance to under-
standing, and using, its finite state (FS) subsystem.

TEXTRACT is a robust document analysis framework, whose design has been moti-
vated by the requirements of an operational system capable of efficient processing
of thousands of document/gigabytes of data. It has been engineered for flexible
configuration in implementing a broad range of document analysis and linguistic
processing tasks. As an architecture, it is modelled upon IBM’s SWS Text Analysis
Framework:

• interchangeable document parsers allow the ’ingestion’ of source documents in
more than one format (specifically, XML, HTML, ASCII, as well as a range of
proprietary ones);

• a document model provides an abstraction layer between the character-based
document stream and annotation-based document components, both structurally
derived (such as paragraphs and sections) and linguistically discovered (such as
named entities or term phrases);

• linguistic analysis functionalities are provided via individual plugin components3;
these share an annotation repository (AR) and communicate with each other by
posting results to, and reading prior analyses from, it;

• plugins share common interface, and are dispatched by a plugin manager; at a
higher level of abstraction, an engine controls shared resources, and maintains
the document processing cycle;

• the system is softly configurable, completely from the outside, by means of
.Ini file;

TEXTRACT’s finite state executor (TFST) is implemented as a plugin, which can be
configured to interpret one or more grammars in sequence. (The process of apply-
ing more than one grammar, with later invocations using results of earlier grammar
applications, is called cascading.) For any configuration of TEXTRACT, TFST can
be positioned anywhere in a plugin sequence. Depending on what plugins (anno-
tators) have run before it, a grammar can specify patterns querying the range of
annotation types posted by the upstream annotators.

2This document uses, interchangeably, the designations TALENT, TALENT 5.1, and TEXTRACT.
3Throughout this document, “annotator” is also used interchangeably with “plugin”.

4

for distribution with Talent 5.1 -- for distribution with T

At the time of writing, TEXTRACT has a finite, fixed number of annotation types;
as far as a grammar writer is concerned, these fall into three broad categories (fam-
ilies). Lexical annotations cover tokens, lexicalised expressions, and vocabulary
items. Syntactic annotations mark grammatical units (phrases, clauses, grammati-
cal relations). Document structure annotations span structural units in a document
(sentences, paragraphs, titles, and so forth). TFST grammars can appeal to any, or
all, of these annotation types.

1.1 TFst design overview

Numerous NLP applications today deploy finite state processing techniques-for,
among other things, efficiency of processing, perspicuity of representation, rapid
prototyping, and grammar reusability (see, for instance, (Karttunen et al., 1996),
(Kornai, 1999) Karttunen et al., 1996; Kornai, 1999). TEXTRACT’s TFST trans-
ducer plugin encapsulates FS matching and transduction capabilities and makes
these available for independent development of grammar-based linguistic filters
and processors.

In a pipelined architecture, and in an environment designed to facilitate and pro-
mote reusability, there are some questions about the underlying data stream over
which the FS machinery operates, as well as about the mechanisms for making
the infrastructure components—in particular the annotation repository (henceforth
AR) and shared resources (TEXTRACTs lexical cache and vocabulary)—available
to the grammar writer. Given that the document character buffer logically ’disap-
pears’ from a plugin’s point of view, FS operations now have to be defined over
annotations and their properties. This leads to a notation in which grammars can
be written with reference to TEXTRACT’s underlying data model, and which still
have access to the full complement of methods for manipulating annotations.

We make use of an abstraction layer4 between an annotation representation (as

4In the extreme, what is required is an environment for FS calculus over typed feature structures
(see (Becker et al., 2002)), with pattern-action rules where patterns would be specified over type
configurations, and actions would manipulate annotation types in the AR. Manipulation of annota-
tions from FS specifications is also done in other annotation-based text processing architectures (see,
for instance, (Cunningham, Maynard, and Tablan, 2000)). However, this is typically achieved by
allowing for code fragments on the right-hand side of the rules.

Both assumptions—that a grammar writer would be familiar with the complete type system em-
ployed by all upstream (and possibly third party) plugins, and that a grammar writer would be knowl-
edgeable enough to deploy raw API’s to the annotation repository and resource manager—go against
the grain of TEXTRACT’s design philosophy.

However, in response to moving away from a text processing infrastructure with a pre-defined and

5

for distribution with Talent 5.1 -- for distribution with T

it is implemented) and a set of annotation property specifications which define
individual plugin capabilities and granularity of analysis. The notation developed
for specifying of FS operations, and described in this document, appeals to the
system-wide set of annotation families, with their property attributes. The notation
also encapsulates operations over annotations—such as create new ones, remove
existing ones, modify and/or add properties, and so forth—as primitive operations.
The abstraction thus hides from the grammar writer system-wide design decisions,
which separate the annotation repository, the lexicon, and the vocabulary: thus, for
instance, access to lexical resources with morpho-syntactic information, or, indeed,
to external repositories like gazetteers or lexical databases, appears to the grammar
writer as querying an annotation with morpho-syntactic properties and attribute
values; similarly, a rule can post a new vocabulary item using notational devices
identical to those for posting annotations.

For grammars which examine uniform annotation types, it is relatively straightfor-
ward to infer, and construct (for the runtime FS interpreter), an iterator over such a
type (in this example, sentences). However, expressive and powerful FS grammars
may be written which inspect, at different—or even the same—point of the anal-
ysis annotations of different types. In this case it is essential that the appropriate
iterators get constructed, and composed, so that a felicitous annotation stream gets
submitted to the run-time for inspection; TEXTRACT deploys a special dual-level
iterator designed expressly for this purpose.

Additional features of TFST allow for seamless integration of character-based reg-
ular expres-sion matching, morpho-syntactic abstraction from the underlying lex-
icon representation and part-of-speech tagset, composition of complex attribute
specification from simple feature tests, and the ability to constrain rule application
within the boundaries of specified anno-tation types only. This allows for the easy
specification, via the grammar rules, of a variety of matching regimes which can
transparently query upstream annotators of which only the externally published
capabilities are known.

Applications utilising TFST include a shallow parser (Boguraev, 2000), a front end
to a glossary identification tool (Park, Byrd, and Boguraev, 2002), a parser for
temporal expressions, a named entity recognition device, and a tool for extracting
hypernym relations.

fixed data model to an environment where NLP applications will define and manipulate arbitrarily
open sets of annotations (see (Ferrucci and Lally, 2003)), the next major release of the TFST system
will incorporate a more flexible notation which can mediate between a data model defined specifically
for a particular application and a grammar writer operating at an abstraction level where an annotation
is expressed as a typed feature structure.

6

for distribution with Talent 5.1 -- for distribution with T

Work is under progress on making the full functionality available, via a new and
revised formalism (which targets a typed feature structures-based representation
model), within an emerging framework for unstructured information management
(UIM; see (Ferrucci and Lally, 2003) for details of UIM architecture).

Evolution of the TFST capability is motivated, beyond well-articulated arguments
promoting the deployment of finite state processing techninques for NLP applica-
tion development, by considerations of enabling such processing within industrial
strength NLP frameworks which exploit emerging notions like pipelined archi-
tectures, open-ended intercomponent communication, and in particular the adop-
tion of linguistic annotations as fundamental descriptive/analytic device. For such
frameworks, certain issues arise concerning the underlying data stream over which
the FS machinery operates. A review of recent work on finite-state processing of
annotations and an elaboration of some essential features required from a ’conge-
nial’ architecture for NLP aiming to be broadly applicable to, and configurable for,
an open-ended set of tasks, was presented in Boguraev (2003).

7

for distribution with Talent 5.1 -- for distribution with T

2 Overview of the process

Typically, the TFST component of TEXTRACT gets invoked by configuring and
running the FST executor plugin. The executor loads one or more FST files, looks
for (repeated) patterns of annotations—in the current annotation repository, as pop-
ulated by prior plugins—which match any given FS automaton, and applies the
automata in sequence, cascading them if necessary (when there is more than one
specified in the sequence). There are provisions in the TEXTRACT system to output
formatted stream of matches, which displays the state of the annotation repository
after the FST executor has completed.

The grammar writer specifies patterns over annotations by means of a high-level
notation. The process is not unlike specifying regular expressions over charac-
ter sequences; however, given that at each transition of the equivalent automaton
queries/evaluates arbitrarily complex set of constraints, the notation incorporates
complex (and arguably less than intuitive5) syntax for specifying what annotation
to match, and the conditions under which the match is deemed to be succesful.

Pattern files are thus text files, written to a set of syntactic and orthographic rules.
These are compiled, outside of the TEXTRACT environment, into FST files which
encapsulate machine-readable representations of the equivalent automata. TEX-
TRACT’s FST executor is configured to use these, for a particular run, by means
of a stanza in the configuration (.Ini) file. The results can be viewed by means of
further configuring the output (dump) plugin; this is a non-processing, read-only,
plugin which selectively (and under .Ini control) extracts certain annotations from
the annotation repository and prints them in a human-readable form.

2.1 Matching specifics

The TFST executor applies an FS automaton to an annotation stream, with tran-
sitions between states in the automaton conditioned upon matching one or more
features of the current annotation. A successful match (conceptually) effects a tran-
sition; it also advances an annotation iterator, to yield the next annotation against
which new matches will be attempted, according to the outgoing arcs of the new
state of the automaton. If no match can be found, the automaton is applied again at
the next annotation returned by a (suitable) iterator.

Currently, the matching regime returns only one—the longest—match. After a

5The next major release of TFST will appeal, more perspicuously, to TALENT’s underlying data
model.

8

for distribution with Talent 5.1 -- for distribution with T

successful match, the annotation stream gets reset to the first annotation following
the matching span, and the automaton is applied again; this process is repeated
over the entire annotation repository, thus resulting in all matches against a given
FST over the document.

As an example, consider a simple grammar specifying a noun sequence6, applied
to the following text; the matching text fragments are underlined:

American aircraft frequently bomb missile and radar equipment sites that al-
legedly target U.S. planes. In recent weeks, the attacks have focused on Iraqi
weapons that might be used in a ground war.

Note that internally, the complete scan of the input, with repeated attempts to apply
an automaton at every point of a string, needs to be mediated in a way which takes
into account natural separation boundaries. In particular, an inner loop over sen-
tences ensures that no patterns—especially syntactic ones—match across sentence
boundary.

An annotation-based regime of FS matching needs a mechanism for picking a par-
ticular path through the input annotation lattice, over which a rule should be ap-
plied: thus, for instance, some grammars would inspect raw tokens, others would
abstract over vocabulary items (some of which would cover multiple tokens), yet
others might traffic in constituent phrasal units (with an additional constrain over
phrase type) or/and document structure elements (such as section titles, sentences,
and so forth). Typically, at any given point in the text, there would be more than
one annotation types either covering that point, or starting and/or ending at that
position. For instance, considering the second sentence in the example above, the
position at the beginning of “have” might be‘covered’ both by a token annotation
and a verb group annotation7. Similarly, the position before “Iraqi” is a start-
ing position for a token annotation (“Iraqi”), for a semantic modifier (“Iraqi”, as
in “of Iraq”), a syntactic noun phrase (“Iraqi weapons”), a more complex noun
phrase, composed of a simple NP and a relative clause (“Iraqi weapons that might
be used in a ground war”), and even a grammatical function annotation, specifying
that the complex noun phrase also functions as grammatical object.

Thus, when in this position of the annotation stream the TFST executor attempts a
match over the next annotation, it is important that the grammar writer appreciates

6Such a grammar would be written as: nn = {NN}.{NN}* ; see 3 below, and its application
would assume a part-of-speech tagger running over the text as a prior process

7This assumes a parser—such as TEXTRACT’s shallow parser—has run

9

for distribution with Talent 5.1 -- for distribution with T

that there are multiple options as to the choice of annotation, and that the gram-
mar needs to communicate precise instructions about which of these annotations
is to be examined upon the current transition. Note that this is a crucial difference
between an FS matching regime over annotations, compared to the more familiar,
and more common, application of FS automata over purely character sequences.
In the former case, the input to a matcher is a lattice, with ambiguous choices of
tracing a particular route through it; this contrasts with unambiguously advancing
that ‘match position’ character after character, with no ambiguity as to what is the
next character.

The information about what annotation to inspect at any given point of applying an
automaton over the annotation repository is encoded in the symbol on the current
transition. Symbols thus encapsulate instructions for which iterator needs to be
(re-)activated to deliver an annotation of a particular type, and what constraints/
features are to be examined while attempting this transition.

A later section (4) describes the syntax, orthography, and semantics of TFST sym-
bols. Before that, section 3 describes the notation for specifying annotation pat-
terns, and for composing these in .cfg files.

10

for distribution with Talent 5.1 -- for distribution with T

3 TFst grammars

Specifying patterns of annotations will be familiar to everyone who has written a
regular expression. In much the same way in which a regular expression specifies
an automaton encoding a set of allowed sequences of characters, a TFST gram-
mar specifies an automaton whose traversal—from beginning to accepting state—
would indicate that a sequence of annotations has been found which matches the
pattern specified by the grammar.

To illustrate, consider a (very simple) grammar for noun phrases, defined over the
part-of-speech tags of token annotations.8

np = {DT}|<E> . {JJ}* . {NN}|{NNS} ;

Without going into much detail (but see 3.1 below), we note that {DT}, {JJ}, and
{NN} denote, respectively, a token tagged as a determiner, an adjective, or a noun;
the symbol <E> marks an empty transition, and the operators . and * specify,
respectively, sequential composition and zero or more repetitions. In effect, the
grammar looks for a sequence of tokens, which starts with an optional determiner,
includes zero or more adjectives, and terminates with a noun (singular or plural).

3.1 Grammar notation

More formally, a pattern for matching a sequence of annotations is defined by
composing symbols (see 4 for definition and syntax of TFST symbols) according
to a few rules.

• The symbol <E> denotes the empty symbol. Matching against it always suc-
ceeds.

• A symbol defines a pattern by itself; thus {NN} defines a very simple pattern
which will be matched by tokens whose syntactic category is "NN" (noun).

• If P is a pattern, so is (P). It matches the same text span as P .
• If P1 and P2 are patterns, so is P1.P2. Assuming T1 and T2 are text spans

which, under any given analysis by prior plugins, are matched by P1 and P2

8Part-of-speech disambiguation is carried out by a prior process to TFST execution, by one of
TEXTRACT’s tagger plugins; see 5.2.

11

for distribution with Talent 5.1 -- for distribution with T

respectively, the combined pattern matches the concatenation of T1 and T2.
• If P1 and P2 are patterns, so is P1|P2. It matches any text span which will be

matched by either P1 or P2 .
• If P is a pattern, so is P ∗. It matches a contiguous (non-broken) sequence of

zero or more text spans, each of which matches P .
• If P1 and P2 are patterns, so is P1&P2. Both P1 and P2 must ‘match’ over the

same text span, i.e. they are applied to the same annotation. Thus, the & operator
functions as a conjunction.

• Each pattern specification in a grammar is named. There is no ‘semantics’ to
the name assigned to a pattern; it is purely mnemonic. The name of a pattern,
however, acts as a ‘macro’, and can be used by other rules (naming of a pat-
tern acts as a combined declaration/definition; thus named patterns can only be
used in patterns specified after the definition). In a grammar which contains the
following pattern specification: namedP = P;, subsequent rules can refer to
pattern P by writing :namedP.

The core grammar writing notation does not provide other familiar regular expression-
like operators, in particular wild-card (cf. "."), zero or one occurrences of a pat-
tern ("?"), and one or more repetitions ("+"). Note, however, that these are easily
specified, or handled elsewhere in the formalism:

• If P is a pattern, P|<E> matches zero or one occurrences of that pattern in the
text.

• If P is a pattern, P.P* matches at least one, and possibly more, occurrences of
that pattern.

• Given that wild-carding over an annotation at a given point of the annotation
stream is ambiguous—recall that more than one annotations may be available as
beginning at any token position—different symbols denote the annotation type
of the wild card; in particular, <SWORD> matches any token, <WORD> matches
any lexical family annotation (thus it will match vocabulary items9 in text), and
[SYN] matches any syntactic family annotation (see 4.7).

3.2 Grammar organisation

A grammar consists of one or more pattern specifications. Patterns are named, and
delimited by semicolon (;).

A grammar defines a single automaton; thus all the patterns are ultimately—or

9Define...

12

for distribution with Talent 5.1 -- for distribution with T

should be, or they will be lost—used in the final, ‘root’ rule of the grammar. By
convention, a grammar file is a text file, whose basename must be identical10 to the
root rule name. Returning to our simple one-rule grammar of earlier, this could be
reorganised as follows:

det = {DT}|<E> ; # optional determiner
premod = {JJ}* ; # zero or more pre-mod adjectives
noun = {NN}|{NNS} ; # the head nominal

np = :det . :premod . :noun ;

This grammar will be stored in a file, np.cfg, named after the root pattern rule.
Comments are allowed, and introduced by a comment character (#); comments run
to the end of line.

3.3 Grammar to Talent interface

The grammar in the example above defines an automaton which will match certain
simple NP’s. The success or failure of applying this automaton to any given text11

is ephemeral; unless something is done at the point of a successful match, there
will be no memory of it in the system.

The TFST executor applies an automaton to the annotation repository. According
to grammar instructions, matches are recorded, as new annotations (and/or fea-
tures on annotations) in the same repository. Conceptually, in much the same way
in which a FS transduction modifies a character string, a TFST ‘transduction’ mod-
ifies an annotation repository.

Operations on annotations are typically signalled by the meta-character /. The
general notion is that if P is a pattern, and T is an operation over an annotation
repository, then P/T is a composite symbol, whose interpretation is to execute the
operation T if and only if the pattern P matches.

Currently there are three categories of transactions: create, and post, new annota-
tions, and optionally post vocabulary items; post properties on annotations12; and

10Failure to do so results in error during compilation of the grammar into an FST: see 5.1
11Re-write, consistently, to address that matching of an FST is against an AR, really, not a text...
12Check: can we modify existing properties, on existing annotations?

13

for distribution with Talent 5.1 -- for distribution with T

delete annotations.

As an example, consider again our NP grammar. To ‘remember’, and record, the
match, it needs addition to the root rule:

np = <E>/[simpleNP:phrasal . # post a new anno from here...
:det . :premod . :noun . # covering the np match,

<E>/]simpleNP # to here; label it "simpleNP"
;

Ignoring for the time being the :phrasal specification (but see section 4.9.1),
the pair of transduction operations jointly achieve the effect of posting an anno-
tation over the span of text matched by the np rule, with a label "simpleNP".
More specifically, the meta-character [simply prepares for posting, by ‘dropping’
a marker right before a match; later,] actually carries out the operation of adding
a labelled annotation to the annotation repository. Note that the label strings on the
[and] operators must be identical.

Annotations can carry features, and these can be set from the grammar rules. In the
above example, something about the matching span (namely, that it is a simple—as
opposed to, say, complex—noun phrase) is registered in the label. Similar effect
could be achieved by means of setting an appropriate feature on the new annotation:

np = <E>/[NP:phrasal . # post a new anno from here...
:det . :premod . :noun . # covering the np match,

<E>/]NP:+simple # to here; label it "NP",
set a binary feature simple=true

;

Features can be binary, or they can hold numeric values. Accordingly, the transduc-
tion should specify one of the following (for more on features, see section 4.9.1).

• /]Label:+Feature
• /]Label:-Feature
• /]Label:Feature=IntValue

14

for distribution with Talent 5.1 -- for distribution with T

Finally, annotations can be deleted directly from the grammar. Deletion—signalled
by a - operation on the transduction—removes the annotation just matched. Delet-
ing annotations typically corrects earlier process decisions (either made by an up-
stream annotator, or a lower grammar in a multi-level FS cascade of grammars; see
3.4), or removes ‘scratch’ annotations, used to hold intermediate results.

Consider a grammar which runs after identification of simplex noun phrases has
already happened (see section 3.4, on cascading multiple grammars). The follow-
ing rule implements the notion that a possessive construction over a simplex noun
phrase can function, syntactically, as a complex determiner.

np = <E>/[PossNP:phrasal .
<E>/[PossDet:lexical . [NP]/- . <POSS> . <E>/]PossDet .
[NP] .

<E>/]PossNP
;

The grammar assumes that syntactic annotations with an "NP" label have already
been posted, and it looks for patterns of larger possessive noun phrases with a
contour of NP’s NP (a possessive marker, ’s, will match the <POSS> symbol).
When it finds such a pattern, the "NP" annotation over the first noun phrase is
deleted, a new annotation with label "PossDet" gets posted over the sequence
of noun phrase and possessive marker, and a covering (also new) annotation is
created to span the entire possessive phrase, with a label "PossNP".

In effect, the annotations over the text have undergone the following transforma-
tion:

from [NP NP NP] <POSS> [NP NP NP]

to [PossNP [PossDet NP <POSS> PossDet] [NP NP NP] PossNP]

15

for distribution with Talent 5.1 -- for distribution with T

3.4 FS grammar cascading

The notion of running more than one grammar, in sequence, with latter ones using
matches from earlier scans, is commonly referred as cascading. This is a common,
and effective, strategy for a variety of different tasks.

One of the primary resons for organising an analysis task as a sequence of cascaded
grammars, as opposed to designing a single automaton, is that frequently more
complex patterns can mush easier, and more naturally, be described in terms of sim-
pler ones. Examples from natural language syntax abound. Consider a grammar for
sinding noun groups in isolation 5.3. Such a grammar might decide to focus on the
basic contour of a noun group: determiner unit, pre-modifier(s), and head nominal.
It can be arbitrarily sophisticated in defining different types of nominal which can
function as heads, and in specifying a broad variety of pre-modifying constructs.
Once defined, and with annotations marking the span of such text fragments, the
definition of more complex nominal expressions—such as those that include post-
head modifiers, or recursively embedded noun phrases acting as pre-determiners
for other noun phrases (as exemplified in the preceding section)—becomes both
more natural and convenient.

This is because it is now straightforward to define higher level rules in terms of sin-
gle annotations, abstracting from the complexity of earlier patterns which resulted
in those annotations being created in the first place. Also, there may be multiple
places in higher level analysis where a lower level abstraction would be required:
consider how many syntactic and grammatical and semantic and so forth constructs
are describable in terms of some kind of a noun phrase.

Cascading also offers a convenient way of being sensitive to larger context. Fre-
quently, specifying all the interdependencies among constituents, and making sure
that these are triggered on in some, but not other, contexts may turn out to be
arbitrarily complex, confusing, and even impossible. Splitting the analysis into
separate identify-and-group, or over-generate-and-filter makes the task tractable.

Consider, for example, finding appositive noun phrases. These are expressions
where in a single noun phrase construct there is both a mention, and a description,
of an object: “Scott Ritter, a former inspector”, “the toughest Soviet commander in
Afghanistan, Lt. Gen. Boris Gromov”. Assuming a separate noun group identifica-
tion grammar, which can tag the spans it marks with features like +properNoun
(to denote that the head of the noun group is a proper noun name), and which can be
run as a component to a larger noun phrase grammar (which folds post-modifying
prepositional phrases within the NP span), a simple rule can express the observa-

16

for distribution with Talent 5.1 -- for distribution with T

tion that an appositive noun phrase conjoins two NPs, one of which has a proper
noun head, in arbitary order, separated by a comma, and delimited by a comma or
end of sentence. (The exact semantics of the different kinds of symbol used in the
example are described in the following section, 4.)

appNP = <E>/[appositiveNP:phrasal .
([NP:-properNP] . <COMMA> . [NP:+properNP]) |
([NP:+properNP] . <COMMA> . [NP:-properNP]) .
(<COMMA> | <PERIOD>)

<E>/[appositiveNP
;

The simplicity and perspicuity of such an expression ows largely to the fact that
much of the complexity in identifying and marking [NP]’s is relocated to lower
levels of the cascade.

By its nature, cascading grammars is a mechanism which promotes multi-level
structural descriptions of complex constituent phrases and strings. An interpreta-
tion of a cascade by the TFST interpreter mimics, in effect, bottom-up recognition;
if each level of the cascade assigns—by means of a suitable annotation—a label
to its analysis, the process of passing these analysis to be consumed, and used,
at higher levels will result in a structured representation of the string ultimately
recognised by the cascade.13

Another strategy for which cascading is useful, over-generate-and-filter, is based
on the observation that sometimes it is much easier to recognise—and recognise
only—strings which conform to a higher level, uniform, description, without try-
ing to carry out, simultaneously with the recognition, more elaborate analysis of
these, such as e.g. sub-typing. For instance, it is relatively straightforward to write
(for English) a grammar for a verb group; this would recognise expressions like
“sleeps”, “is not walking”, “would have most likely been seen”, “has also been
known as”, and so forth. Operationally, it is both easier and cheaper to defer till
later—i.e. to a subsequent grammar—computation of certain syntactic features,
such as modality and tense, on the verb group. To that end, a special notation is
provided, as a device for examining the inner contour of an annotation already

13Maybe an example here of the structure of an appositive analysis: [appNP [headNP [...
headN]] [descriptiveNP ...[]...]].

17

for distribution with Talent 5.1 -- for distribution with T

posted by an earlier component in a cascade (see section 4.10); an example of the
use of this notation is available in section 5.3.

Finally, TFST cascades are a natural means for stratification of analysis. In typical
information extraction tasks, an earlier component identifies mentions in the text
of semantic categories of particular relevance to the domain of application. Exam-
ples here would include, for instance, diseases, symptoms and drugs, in a medical
domain, or geopolitical entities, political figures, and geographical locations, in a
political domain. Grammars for such categories are typically idiosyncratic, both in
terms of vocabulary coverage and identification strategy. Nonetheless, higher lev-
els of abstraction in either domain are likely to appeal to more traditional syntactic
notions like verb groups and its arguments, or a complex nominal structure and its
pre-modifiers. Being able to separate semantic analysis from syntactic behaviour
not only facilitates cross-domain adaptability and reuse of grammars, but also of-
fers a natural way of incorporating semantic categories into syntactically-mediated
analysis of relationships among such categories. In essence, the ability to cascade
FS grammars is the cornerstone of rich and flexible domain semantics.

18

for distribution with Talent 5.1 -- for distribution with T

4 TFst symbols

A symbol in a TFST grammar is a template for an annotation which is to be
matched againjst the grammar at a given position of the matching process. Much in
the same way as in a conventional regular expression a character is matched against
the character at the current position of the input buffer, a TFST symbol specifies the
test(s) to be carried out, which would determine whether the match of the symbol
against the current annotation succeeds or fails.

Recall that the notion of “current” annotation is an ambiguous one in TEXTRACT.
A symbol, then, not only encapsulates one or more constraint specifications; it
also communicates to the Tfst executor engine how to iterate over the annotation
repository in order to identify which annotation the constraints should be tested
again.

In line with the major annotation families in TEXTRACT (see 1), the overall shape
of a symbol is broadly indicative of the annotation type it targets. Symbols can be
enclosed in different type of delimiters, or not delimited (explicitly) at all. Thus
there are five general categories of symbol.

• Not delimited by any kind of brackets: however, \Atomic. This kind of
symbol typically targets the string property of a token.

• Delimited by angle brackets (<...>): <Sentence::IsTitle>,<SWORD>,
<PUNC>. Tests for orthographic features on lexical annotations, configurational
relationships between lexical annotations and document structure characteris-
tics, or property lookup with respect to external authotity.

• Delimited by curly brackets ({...}): {NN}, {VB+AUX}, {PERSON}. Tests
on lexical properties of lexical family annotations, vocabulary properties, mor-
phosyntactic categories of word tokens,

• Delimited by square brackets ([...]): [NP], [SYN]. Tests for syntactic cat-
egories with given labels.

• Delimited by double angle brackets (<<...>>): <<ˆ[12][0-9]{3}$>>.
Specifies a regular expression match over the underlying string image of a lexical
annotation.

As a general rule, the meta-character ! is used to negate the match. Negation only
applies to symbols, and its interpretation is that only after the symbol (without
negation) has been fully interpreted and matched against the current annotation,
the polarity of the result is reversed, and returned as the final value from testing
against the composite symbol.

19

for distribution with Talent 5.1 -- for distribution with T

The negation character has to be ‘inserted’ into the rule, right after the opening
bracket(s): <!LOWER> will match a lexical annotation whose string image con-
tains at least one upper-case character; [!NP] will match a syntactic annotation
with any label but "NP". Note that, counter-intuitively, this convention makes the
! look like a part of a regular expression; still <<!Jan\.?$>> will succeed on
any token but Jan or Jan.. Also, note that for symbols of the first category above—
without brackets—the ! is prepended to the symbol expression: !\OK.

Below are the semantics of the different symbol categories.

Symbols not enclosed in any kind of brackets specify matches over the strings of
lexical family annotations.

4.1 Tests over lexical annotation strings

• Symbol strings entirely in lower case specify a match which succeeds upon
case-insensitive string equality to the annotation text string. This the sym-
bol abracadabra will match all of abracadabra, Abracadabra , and Abra-
CaDabra.

• Symbol strings which are not all lower case succeed only upon exact string
match: Ok will match Ok, but fail on OK.

• Symbols preceded by escape character (\) succeed only upon exact string match.

4.2 Tests for orthographic properties

Symbols in this category test one or more characteristics of the shape of a lexical
family annotation.

<WORD> : a lexical family annotation
<PUNC> : special character(s)
<POSS> : a possessive type annotation (’s, ’)
<SWORD> : a single word (no blank spaces)
<MWORD> : a multi-word (has blank space(s))
<ALPHA> : a single or multi-word having only alphabetic characters
<LOWER> : has no uppercase letters
<UPPER> : has no lowercase letters
<LUPPER> : has leading upper case
<LEAD> : only the first character is upper case
<MIXED> : has lower case letters and at least one upper case one after a non-blank
<NUMERIC> : has only numbers
<COMMA> : comma

20

for distribution with Talent 5.1 -- for distribution with T

<PERIOD> : period
<ODQ> : open double quotes
<CDQ> : closed double quotes
<DDQ> : double quote
<OSQ> : open single quote
<CSQ> : closed single quote
<E> : empty transition. This is a no-op.

If the annotation being matched refers to a word, the symbol may incorporate an
additional test for its morpho-syntactic (in particular, part-of-speech; see 4.6) prop-
erties; thus, <ALPHA:NN> will match a single word which has been tagged as a
noun {NN}.

4.3 Tests for document structure relationships

Always with respect to the current annotation, the tests below succed or fail upon
establishing whether a specified relationship holds between the current anotation
and some enclosing (larger) document structure annotation. The semantics of the
symbols are, hopefully, directly inferrable. They denote a particular relationship
(from an exhaustive inventory of pre-defined relations) between (larger) document
structure annotations covering the annotation at hand; another denotation tests a
particular property, especially on the enclosing Sentence annotation. (Properties
on sentence annotations—the sentence is marked as a heading, or belonging to a
document abstract, or is ‘vanilla’, i.e. a regular sentence—are set by a document
structure analysis plugin which is part of TEXTRACT’s base services; the detail
of analysis, however, varies depending on the quality and extent of markup in the
original document source.)

<Document::IsSectionFirst> <Paragraph::IsSentenceFirst>
<Document::IsSectionLast> <Paragraph::IsSentenceLast>
<Document::IsParagraphFirst> <Paragraph::IsWordFirst>
<Document::IsParagraphLast> <Paragraph::IsWordLast>
<Document::IsSentenceFirst>
<Document::IsSentenceLast> <Sentence::IsWordFirst>
<Document::IsWordFirst> <Sentence::IsWordLast>
<Document::IsWordLast> <Sentence::IsVanilla>

<Sentence::IsHeading>
<Segment::IsSentenceFirst> <Sentence::IsNonText>
<Segment::IsSentenceLast> <Sentence::IsAbstract>
<Segment::IsWordFirst> <Sentence::IsCaption>
<Segment::IsWordLast> <Sentence::IsMetaData>

21

for distribution with Talent 5.1 -- for distribution with T

<Section::IsParagraphFirst> <Sentence::IsAppendix>
<Section::IsParagraphLast> <Sentence::IsTitle>
<Section::IsSentenceFirst> <Sentence::IsJunk>
<Section::IsSentenceLast> <Sentence::IsTable>
<Section::IsWordFirst>
<Section:IsWordLast>

Thus <Document::IsSentenceFirst> succeeds only if the sentence en-
closing the current annotation is, in fact, the first sentence in the document; and
<Sentence::IsTitle> tests whether the Title property is set for the sentence
annotation covering the current ‘point’ in the annotation stream.

It is clear that there is no room in this category of symbol for additional tests on
the annotation itself. This is generally true of a range of complex tests: it is not
always the case that a ready-made symbol exists which encapsulates just the right
combination of constraints over the current annotation. These are prime examples
of a situation which requires the use of the & grammar operator (see 3.1). Thus, a
match of a pattern within a particular document structure configuration might take
the form:

np = <!Sentence::IsTitle> & :det . :premod . :noun ;

This rule would find all noun phrases (see the "NP" grammar in 3.2) in the docu-
ment, except those which are in the title sentence.

It is also possible to test properties of document structure annotations. Typically,
these would have been set by a transduction operation (see 4.9 below). Given that
properties can be either binary, or of numeric (integer) values, the test might take
the form of <Paragraph::+boolProp>, or <Document::numProp=5>.

4.4 Tests against an authority file

TEXTRACT provides a general mechanism for consulting an external authority file.
Generally speaking, an authority file assigns a lexical item to one or more semantic

22

for distribution with Talent 5.1 -- for distribution with T

categories, and (optionally) tags it with a number of property tags. The most com-
mon use of an authority file, to date, has been to inform a named entity recogniser
(Ravin and Wacholder, 1997); to that end, the following illustrates the general type
of entry that could be found in an authority file.

@ ORG ORG_OFTAG @ 0 0 0 0 1 |Council|
@ PERSON PERSON_OFTAG @ 0 0 0 0 1 |Inspector|
@ PERSON PERSON_OFTAG PERSON_PLURAL @ 0 0 0 0 1 |Inspectors|
@ PLACE PLACE_CITY @ 0 0 0 0 1 |Peshawar|
@ PLACE PLACE_NAME @ 0 0 0 0 1 |Ivanovskaya|
@ PERSON PERSON_FIRSTNAME @ 0 0 0 0 4 |William| |Willy| |Bill| |Billy|

It is beyond the scope of this document to present details of TEXTRACT’s external
authority mechanism. Concerning the format and tags of the authority source,
associated tests and API’s, extensions and/or modifications to incorporate larger
and/different sets of categories and tags, and so forth, the reader should contact
one of the authors; also see (Ravin and Wacholder, 1997) for some background
information.

Broadly speaking, the API to an external authority is organised in such a way that
for each tag in the authority vocabulary (such as the ORG, PERSON,PLACE CITY,
and so forth exemplified above, there is a test. The authority file gets compiled into
a hash structure, available to TEXTRACT’s system as a VDict resource. Such
a resource gets registered with the system by means of a declaration in TFST’s
executor configuration setup (see 5.2):

Authority Identifier = VdictAuthority(filename)

For example, in order to register TEXTRACT’s default authority file (the one used
by the Nominator plugin) under the symbolic name Nominator with TFST,
the following declaration should be placed in the [nfstxeq] section of the .Ini
file14.

Nominator = VdictAuthority(C:/TalentRT/TalentData/nom.authority.vdict)

After registration, the name of the Authority Identifier becomes available to the
grammar via one of the following constructs:

14Allowing, of course, for local directory structure of the TALENT run-time environment.

23

for distribution with Talent 5.1 -- for distribution with T

< Authority_Identifier? test>
< Authority_Identifier? test, value>
< Authority_Identifier? test, op, value>

The op parameter can be either EQ (equals), GT (greater than), GTE (greater than
or equal to), LT (less than), or LTE (less than or equal to). The first syntax option
is equivalent to <Authority Identifier?testEQtrue, and the second syntax option is
equivalent to <Authority Identifier?testEQvalue.

The complete sets of tests against TEXTRACT’s standard Nominator VDict au-
thority is given below.

Person : tests if person
PersonOFTag
PersonEndTag
PersonBegTag
PersonWeakBeg
PersonWeakEnd
Male : tests if word indicates a male
Female : tests if word indicates a female
LowerCasePrefix : tests if is a lower case prefix of a person’s name
UpperCasePrefix : tests if is a prefix of a person’s name containing upper case letters
Royal : tests if word is the name of royalty
Surname : tests if word is a surname
FName
FirstName : tests if word is a first name
LowerCaseName : tests if word is a lowercase person name
PersonWeakOFTag
PersonPlural : tests if word is a plural name
Org : tests if word is an organization
OrgOFTag
OrgTag
OrgWeakEnd
OrgEndTag
OrgSingleWord : tests if a word is a one word organization
OrgName : tests if word is an organization name
Government : tests if word is part of a governmental organization name
Company : tests if word is part of a company name
OrgLongTag
OrgWeakTag
Place : tests if word is a place
PlaceOFTag
PlaceBegTag
PlaceEndTag

24

for distribution with Talent 5.1 -- for distribution with T

City : tests if word is a city
Country : tests if word is a country
Continent : tests if word is a continent
USPlace : tests if word is a place in United States
PlaceName : tests if word is a place name
PlaceWeakTag
Road : tests if word is part of a road name
Capital : tests if word is a capital
Region : tests if word is a region
CanadaPlace : tests if word is a place in Canada
Word : tests if word
LowerCaseWord : tests if word contains all lower case letters
Func
PNAdjective : tests if word is a proper noun adjective
Singular : tests if word is singular
NoName
NotAlone
Date : tests if word is part of a date
RomanNumeral : tests if word is a roman numeral
Modifier : tests if word is a modifier
NatModifier : test if word is a national modifier
Day : tests if words is a day
NoEOS : tests if word cannot be at the end of a sentence
LowerCaseName : tests if word is a name with all lower case letters
TechNoName
AbbreviatedWord : tests if word is an abbreviation
Lemma : tests if word is a lemma form
Separator
Other : tests if word is categorized as other
Entity : tests if word is an entity
Area : tests if word is an area
Product : tests if word is a product
Fund : tests if word is a fund
OtherSingleWord
WordNumber
Uncategorized : tests if word is uncategorized
MakeUncat
Term
Abbreviation
Place?
Person?
Special
SpecialMake
SpecialIn
SpecialModal
SpecialLocation
SpecialNPrep
SpecialCompany
SpecialEmpty
SpecialFinance
SpecailMakeIdiom
NP

25

for distribution with Talent 5.1 -- for distribution with T

For an ImDict authority file, such as TEXTRACT’s statistics authority file (used
by e.g. the Summarizer application), the following tests are supported.

exists : tests if word is in the authority file
IQ : tests the IQ value
freq : tests the frequency of the word in the collection
total_freq : tests the collection size

4.5 Tests of vocabulary properties

Symbols enclosed in curly brackets specify tests on the properties of lexical fam-
ily annotations. These are currently limited to lemma forms of words, canonical
forms of vocabulary, the morpho-syntactic properties of words, and the category of
vocabulary.

• {text string}, where text string is a lemma form or a canonical form of a word
or vocabulary item. If the lemma form or canonical form begins with an up-
per case letter, it must be escaped with the TFST escape character, by default
\ (cf. 4.1: \United States). The text string may optionally be followed
by a syntactic category or vocabulary category specification (see below), e.g.
\{Chicago:PLACE}.

• {VCAT}where VCAT is a vocabulary category: UWORD,UABBR,UNAME,OTHER,
PLACE, PERSON, ORG, PLACE?, PERSON?, ORG?, UTERM. These strings
are listed in talent cats.cpp. Currently these must match case exactly.15

Special ones are: {VOCAB}, matching any vocabulary type annotation, and
{EXPR}, matching any expression type annotation.

• {PropertyTest}, where PropertyTest is a specific test on a certain property of the
lexical annotation. The possible tests are listed overleaf.

15Later, we may decide that they must begin with an upper case letter, but otherwise match would
be case-insensitive.

26

for distribution with Talent 5.1 -- for distribution with T

IsStop : matches if word is a stop word
IsEmpty : matches if word is an empty word
IsEmptyInterior : matches if word is an empty interior word
IsEmptyInitial : matches if word is an empty initial word
IsEmptyNonFinal : matches if word is an empty non-final word
IsEmptyFinal : matches if word is an empty final word
IsVariant : matches if word is a variant of some lemma form
IsInLex : matches if word occurs in the lexicon
IsCompound : matches if word is a compound
IsLemma : matches if word is its own lemma form

As an example, a small grammar which picks up all vocabulary item annotations
created by TEXTRACT’s vocabulary plugins (such as Abbreviator, Expressions,
Nominator, Terminator; see (Neff et al., 2003)) can be written as follows:

vocabulary = <E>/[vocab:lexical . {VOCAB} . <E>/]vocab ;
expression = <E>/[xprsn:lexical . {EXPR} . <E>/]xprsn ;

category = :vocabulary |
:expression
;

4.6 Tests over morphosyntactic features

A broad range of grammars can be developed by writing patterns which exploit
morphosyntactic properties of words. Typically, and minimally, such properties
include part of speech and inflectional information. In a pipelined system, such as
TEXTRACT, it is the responsibility of a lexical lookup module, possibly followed
by a part-of-speech tagger, to derive such information and place it on lexical items
(typically, words).

TEXTRACT currently uses a tagger trained over a (slightly expanded) Penn tag
set (Santorini, 1995); also see (Neff et al., 2003, appendix). This maps directly
onto the set of TFST symbols for matching against part of speech and inflectional
morphology. We have already seen some some examples of patterns which appeal

27

for distribution with Talent 5.1 -- for distribution with T

to this information, in the sample garmmars earlier for simple noun phrases; their
general form is {Morpho Syn Test}.

In TALENT 5.1, the set of Morpho Syn Tests is defined externally as a list in
TalentData/FstLexSymbols. The file maps (typically) atomic tag symbols—
from the Penn tag set in this instance, but in principle from any tag set16—to
UniLex style of morphosyntactic feature cluster.

The current set of definitions is given below. Evert tag, or tag feature cluster, can be
specified as a Morpho Syn Test}. At present, all tags/ feature clusters are treated as
atomic; eventually, the notation will be modified so feature clusters can be specified
over an open vocabulary of tag and feature names.

AUX _auxiliary _infinitive
AUXD _auxiliary _past
AUXG _auxiliary _present_participle
AUXN _auxiliary _past_participle
AUXP _auxiliary _present _vbp
AUXZ _auxiliary _present _3p _singular

VB+AUX _auxiliary
VB+AUX:D _auxiliary _past
VB+AUX:G _auxiliary _present_participle
VB+AUX:N _auxiliary _past_participle
VB+AUX:P _auxiliary _present _vbp
VB+AUX:Z _auxiliary _present _3p _singular
VB+AUX:I _auxiliary _infinitive

VB-AUX _nonmodal_nonaux
VB-AUX:D _nonmodal_nonaux _past
VB-AUX:G _nonmodal_nonaux _present_participle
VB-AUX:N _nonmodal_nonaux _past_participle
VB-AUX:P _nonmodal_nonaux _present _vbp
VB-AUX:Z _nonmodal_nonaux _present _3p _singular
VB-AUX:I _nonmodal_nonaux _infinitive

VB _nonmodal
VBD _nonmodal _past
VBG _nonmodal _present_participle
VBN _nonmodal _past_participle
VBP _nonmodal _present _vbp
VBZ _nonmodal _present _3p _singular
VBI _nonmodal _infinitive

VB _nonmodal
VB:D _nonmodal _past

16Other, or different, symbols may be defined by a grammar writer, as long as they use the same
set of bit definitions defined in TalentData/Emorph.txt.

28

for distribution with Talent 5.1 -- for distribution with T

VB:G _nonmodal _present_participle
VB:N _nonmodal _past_participle
VB:P _nonmodal _present _vbp
VB:Z _nonmodal _present _3p _singular
VB:I _nonmodal _infinitive

CC _coordinating_conjunction
CS _subordinating_conjunction
CD _cardinal_number
DT _ordinary_determiner
EX _existential
FW _unique _foreign
IN _preposition
JJ _ordinary_adjective
JJR _ordinary_adjective _comparative
JJS _ordinary_adjective _superlative
JJ-C-S _ordinary_adjective !_comparative !_superlative

LS _unique _list
MD _modal
NN _common_noun
NNS _common_noun _plural
NP _proper_noun _singular
NPS _proper_noun _plural
PDT _predeterminer
POS _unique _possessive
PP _personal_pronoun _other_cases
PP$ _personal_pronoun _possessive
RB _ordinary_adverb
RBR _ordinary_adverb _comparative
RBS _ordinary_adverb _superlative
RP _particle
SYM _unique _symbol
TO _to
UH _interjection
WDT _wh_determiner
WP _relative_pronoun _other_cases
WP$ _relative_pronoun _possessive
WRB _interrogative_adverb

4.7 Tests over syntactic annotations

Syntactic family annotations can be examined with symbols which use the [Label]
notation. In the current TEXTRACT system, the only way to post syntactic anno-
tations is through a TFST grammar. Thus this category of tests is typically used
in multi-level grammar cascades, and any syntactic annotation posted by an earlier
level can be tested for by checking for equality between the labels: if our simple
grammmar (reproduced below) posts an "NP" annotation, any grammar applied

29

for distribution with Talent 5.1 -- for distribution with T

after it can reasonably specify, in a rule, [NP]—assuming, of course, that no dele-
tions of [NP]s have happened in the mean time.

det = {DT}|<E> ; # optional determiner
premod = {JJ}* ; # zero or more pre-mod adjectives
noun = {NN}|{NNS} ; # the head nominal

np = <E>/[NP:phrasal . # post a new anno from here...
:det . :premod . :noun . # covering the np match,

<E>/]NP:+simple # to here; label it "NP"
set a binary feature simple=true

;

In addition to checking the label of a syntactic annotation, it is also possible to
test a feature: for instance, the following pattern will find all, and only, "NP"
annotations posted by the earlier grammar17.

simpleNP = <E>/[simpleNP:phrasal . [NP:+simple]/- . <E>/]simpleNP ;

’Out of the box’, there are the following syntactic annotation labels:18

AdjP,
NP, NPP, PNP, NPS, CNP, NPList,
VG, PVG,
PP,
MC, TC, WHP, SC,
SUB, PSUB, OBJ

A rule can also test for any label that has been posted (and thus defined) by the
current, or lower level (i.e. preceding this grammar in a cascade) FST’s.

17Check...
18This needs a more elaborate write-up

30

for distribution with Talent 5.1 -- for distribution with T

4.8 Regular expressions over lexical annotation strings

A symbol enclosed in double angle brackets <<RegEx>> specifies a character-
based regular expression match over the string image of a lexical annotation. TFST’s
regular expressions follow closely GNU’s regular expression specification, found,
for instance, in the man entry for the GNU grep command.19

A regular expression defines a set of strings, according to certain composition and
interpretation rules. Fundamentally, the simplest regular expression matches a sin-
gle character. All alpha-numeric characters, and most other (graphical) characters
too, denote regular expressions that match themselves. The exceptions are a few
meta-characters, which signal special matching behaviour to the regular expression
interpreter. All meta-characters, of course, can be escaped, with a RegEx quote
character (a backslash). Note that the regular expression quote character is not the
same as the escape character used in certain TFst symbols (4.1, 4.5). Also, note that
while the same character is used for both, the symbol-level escape character can
be redefined (via the TFst executor .Ini file; see 5.2. Finally, note that another
symbol meta-character, /, is escaped inside of a regular expression by writing //.

The period (.) matches any single character. Common composition operators,
for building larger expression out of smaller ones, are concatenation, alternation,
and repetition. Concatenation is implied by joining two regular expressions: for
instance, given the expression a, a. will match any two-character sequence be-
ginning with a. Alternation is signalled by |: e.g. before|after will match
if the target string contains either of the substrings before or after. Repetition
comes in different flavours, and is specified using several meta-characters. If re is
a regular expression, then the different ways of specifying repeated occurrences of
re in the match are described below.

re* => re will be matched zero or more times;
re? => re will be matched zero or one time;
re+ => re will be matched one or more times;
re{N} => re will be matched exactly N times;
re{N,} => re will be matched N or more times;
re{M,N} => re will be matched at least M times, but not more than N times.

19The next major release of]sc TFst will be based on ICU’s native RegEx package; see
http://oss.software.ibm.com/icu/userguide/regexp.html. Grammar writers
are encouraged to consider portability of the regular expressions they write.

31

for distribution with Talent 5.1 -- for distribution with T

Repetition takes precedence over concatenation, which in turn takes precedence
over alternation. A whole sub-expression may be enclosed in parentheses to over-
ride these precedence rules.

The . meta-character implicitly defines a set (of all characters) which the regular
expression . will match. It is possible to define narrower sets and thus constrain
the match. A bracket expression lists a number of characters, enclosed in [and
]; it matches any single character in the list. If the list starts with a caret (ˆ),
a bracket expresison matches any single character not in the list. Metacharacters
typically lose their special meaning inside bracket expressions. To include a literal
] it should be placed first in the list; to include a literal ˆ it should be placed
anywhere but first; to include a literal - it should be placed last.

Additionally, two meta-characters act as anchors: the caret (ˆ) and the dollar sign
($) respectively match the empty string at the beginning and the end of a the string
being matched. Anchoring at the beginning or end of a word is specified with
\< and \>: \<re succeeds only if re is matched at the beginning of a word, and
re\> succeeds only if re is matched at the end of a word. As a generalisation, \b
matches the empty string at a word boundary, and \B matches the empty string
when it is not at a word boundary. For a regular expression like ˆre$ to succeed, it
must match the entire string.

In addition to explicitly specifying precedence, parentheses are also used to group
parts of regular expressions, so that an operator can be made to apply to the whole
group. Another function supported by enclosing parts of regular expressions in
parentheses is that of back-referencing. Specifying \n, where n ranges from 0 to
9, requests for a match against the substring previously matched by the n-th paren-
thesised sub-expression of the regular expression: thus (abra)[abcd]{3}\0
will match abracadabra.

4.9 Symbols for transduction operations

As discussed earlier (section 3.3), transductions upon successful matches ofer a
way for the grammar writer to interact directly with the annotation repository or
the vocabulary. The different categories of transduction—create new annotations,
manipulate features on annotations, and delete existing annotations—are described
below.

32

for distribution with Talent 5.1 -- for distribution with T

4.9.1 Creating annotations

Matching labels on a pair of symbols which mark the span of a match are the nota-
tional device for posting new annotations. If the label is one of the pre-registered
syntactic types defined and used by the shallow parser (see 4.7), or if the label is
that of an existing type, specifying it, and it alone, is sufficient for a well-defined
transduction: /[Label /]Label.

The first time that a label is referenced, what needs to happen is its dynamic def-
inition, and registration, by the system. Annotations do not exist in isolation, but
always in relation to each other. At the very least, the annotations within the same
family instantiate a hierarchical relationship which allows them to possibly share
(inherit0 some properties, and defines a ’priority’ which controls the order in which
ambiguous iterators present annotations with co-terminus spans to a client (be it a
program, or a grammar).

For this purpose, a slightly more explicit construct is used: /[Label:Type
.... /]Label. This works much as the earlier pair, but Label is a new, dy-
namically created type. Type is the type that is to be the parent of the new label.
If a label with that name already is defined, then the new type is ignored. The
new label is registered with the system regardless of whether or not any new an-
notations with that label are actually created; the definition does not persist across
TEXTRACT invocations.

We can thus return to our example grammar. Since the label posted by the final
underlying pattern is not a priori registered with the system, we offer a clue as to
what its position is within the syntactic annotations type hierarchy.

det = {DT}|<E> ; # optional determiner
premod = {JJ}* ; # zero or more pre-mod adjectives
noun = {NN}|{NNS} ; # the head nominal

np = <E>/[simpleNP:phrasal . # post a new anno from here;
declare its position in the
type hierarchy;

:det . :premod . :noun . # covering the np match,
<E>/]simpleNP # to here; label it "simpleNP"
;

33

for distribution with Talent 5.1 -- for distribution with T

4.9.2 Setting properties on annotations

Through earlier examples, we have seen that properties (features) on annotations
can be either binary flags (with values of true or false), or they can hold integer
values. The general syntax for setting a property is +feature, or -feature, or fea-
ture=value; these set feature to be true, false, or equal to value.

Properties can be set on syntactic family annotations, or on document structure
family annotations. In the former case, the specification is placed on the transduc-
tion which posts the annotation. In the later case, as document structure annotations
cannot be posted from a grammar, the property setting specification is on a trans-
duction associated with a separately matching symbol. The following shows the
full complement of property setting expressions.

• /[Label ... /]Label:+feature, or /[Label ... /]Label:-feature.
• /[Label ... /]Label:feature=value.
• /DocStructAnno::+feature, or /DocStructAnno::-feature, where DocStructAnno

can be one of Document, Section, Paragraph, or Sentence.20

• /DocStructAnno::feature=value.

4.9.3 Adding to the vocabulary

A grammar can directly add items to TEXTRACT’s vocabulary (see (Neff, Byrd,
and Boguraev, 2003) for discussion on vocabulary and vocabulary items). Proce-
durally, an annotation needs to be posted over a span of text; adding the vocabulary
item is on the associated transduction, and amounts to adding the text span to the
vocabulary, as a given type. This category of transduction comes in three flavours.

• /[vocabulary ... /]vocabulary: creates an annotation over the span
covered by the pair, as type VOCAB. The text span is also added to the vocabu-
lary as type VOCAB.

• /[vocabulary:Label ... /]vocabulary:Label: same as above,
but the new annotation is of type Label, and the text span added to the vocabulary
is also of type Label. The type is known (registered with) the system.

• /[vocabulary:Label:Type ... /]vocabulary:Label: same as
the last construct above, except Label is a new type label to be created. Type is
the type that is to be the parent of the new label. If a label with that name al-
ready is defined, then the new type is ignored. The new label is registered with

20What about Segment?

34

for distribution with Talent 5.1 -- for distribution with T

the system regardless of whether or not any new annotations with that label are
actually created.

4.9.4 Deleting annotations

Deleting annotations, by means of a transduction operator /-, has already been
discussed in 3.3.

4.10 Dual scanning regimes

One of the advantages of TFST is its ability to treat an annotation—any annotation—
as an atomic object against which a match can be specified. Usually, one or more
tests on a cluster of features associated with the annotation itself (family, type, la-
bel, underlying string, morpho-syntactic properties, and so forth) is sufficient to
specify a match; the notational devices described so far are designed to specify
such constraints to the TFST executor.

Occasionally, however, it would be convenient to test for a specific annotation, and
then examine its ‘inner contour’—to see whether a sequence of annotations that
the covering one spans conforms to certain configurational constraints. In effect,
what we would need to communicate to the executor is a complex command: test
for an annotation, specified by any of the means described so far in this section;
upon a successful match, descend into this annotation; test whether a given pattern
matches exactly the sequence of lower annotations covered by the higher match
(making sure that the right route through the annotations sub-lattice gets chosen; cf.
section 2.1); if the sub-match succeeds, pop back at a point suitable for registering
overall success for the higher level match; succeed, and then proceed.

The notational device used for such an operation employs a pair of push and
pop operators, available as meta-characters on symbols.21 Conceptually, if S is
a symbol matching an annotation which could be covering other annotations, S_
would signal the ‘descend into’ operation. At that point, the full complement of
TFST symbols would be available to specify a pattern we would want to match
at the lower level; the match needs to completely consume the sequence of sub-
annotations. At the end of the lower level scan, the meta-character ˆ requests a
pop to the prior (higher) level of analysis, restoring all context as appropriate.

21Why aren’t we using a subFSt device, after all?

35

for distribution with Talent 5.1 -- for distribution with T

Typically, this machinery is used with analysis of the inner contour of previously
created syntactic family annotations. The example below illustrates a grammar
fragment which determines whether a verb group (analysed as VG by an earlier
grammar in a cascade; see section 3.4) contains a negative marker. Note that the
push/slashpop metacharacters are folded inside of the symbol brackets. The ex-
pression specifies that to qualify as a negativeVG, the verb group has to contain
a not string (with an adverbial reading, for safe measure) anywhere inside it: all
of “does not know”, “would not have been known”, “is not”, “not reporting”, for
instance, will match the pattern.

negativeVG = [VG_] . <SWORD>* . (not & {RB}) . <SWORD>* . [VGˆ] ;

The grammar compiler (see section 5.1) treats [VGˆ] as synonymous with <E>/ˆ;
[VGˆ] is more indicative of the pairing, and dual effect, of the push/pop opera-
tions. Strictly speaking, ˆ in this context is a transduction operator, with a special
meaning to the TFST executor.22 Also note that it is possible to place these opera-
tors on consuming symbols; thus <<!ˆ[0-9]+$ˆ>> is a valid symbol, specify-
ing that upon a successful match (for any lexical annotation that is not a sequence
of digits) a pop to a higher level should reset the scanning regme to that higher
level of analysis.

22This is somewhat messy: syntactically, the caret meta-character does look like a transduction;
it does not, however, affect the annotation repository. Also, if the caret looks like a transduction, so
should the underscore meta-character; maybe it will, for the next release...

36

for distribution with Talent 5.1 -- for distribution with T

5 Putting it all together

Grammars are written and maintained as text files; by convention, these are defined
with a .cfg extension. Before TEXTRACT’s TFST executor can load and apply a
grammar against an annotation repository, it needs to be compiled to FST format.
Furthermore, the executor needs to be configured for interpreting the FST.

5.1 Grammar compiler

A .fst file encodes the topology of a single finite state automaton, which encap-
sulates, in a somewhat optimised form, all the rule patterns defined by the grammar.

The FST compiler is a stand-alone executable, provided as a command-line tool,
fstcmp. It is, at present, a ‘bare bones’ utility, which has a simple invocation,
and offers very little in terms of diagnostics if there is a problem with the source
grammar.

Assuming that our example grammar (33 is in a file np.cfg—remember that
the base name of the file must be the same as the root rule of the grammar—the
compiler is invoked as follows.

bkb @ .../doc > fstcmp np.cfg

> "np.fst" : 7 symbols, 11 transitions, 8 states (down from 33)

bkb @ .../doc >

The FST compiler reports the name of the file with the compiled automaton, and
some rudimentary statistics concerning the compilation. In essence, if the output
from a compiler run looks like the fragment above, the compilation has been suc-
cessful.

If the grammar is deficient (syntactically) in some way, compilation fails. Error
recovery and self-diagnostics currently leave a lot to be desired. Most likely the
author of a faulty grammar will see one of the following two messages.

37

for distribution with Talent 5.1 -- for distribution with T

bkb @ .../doc > fstcmp np.cfg

> Unrecognized character: < [’<’ / x3c]

bkb @ .../doc >

This is indicative of failure of the lexical scanner which tokenises the grammar
source into TFst symbols. The offending character (straying from an acceptable
symbol syntax) is shown in graphical and hex formats.

bkb @ .../doc > fstcmp np.cfg

parse error:

> priorCompilationFor: no definition for ’np’ found

bkb @ .../doc > fstcmp np.cfg

This is indicative of compiler failure in parsing a pattern rule. The faulty rule is
not necessrily the one reported. Check for missing concatenation operators (.),
or terminating semicolons);) , mismatched parentheses, or misspelt references to
names of earlier defined rules. Also, check that the root rule is named identical to
the base name of the .cfg file.

5.2 Configuring the TFst executor

In line with TEXTRACT’s mechanism for externally defined (re-)configuration via a
.Ini file, the TFST executor’s operation is controlled by means of setting its run-
time parameters in an [nfstxeq] stanza. The full set of parameters configurable
in this way is shown below; this is an extract from a valid .Ini file; note that
some paths will need to be modified to reflect local directory structure and file
organisation..

38

for distribution with Talent 5.1 -- for distribution with T

[nfstxeq]
fst_pathname = C:\Emma\Projects\TFst
fst_filename = markYears.fst pickYears.fst
fst_max_level = 2
Nominator = VdictAuthority(C:\Frasier\nomRef\nomAuth.vdict)
fst_escape_char = \
definitions_file = C:\Frasier\cvsTextract\TalentData\FstLexSymbols.txt

Information about the .fst file to be loaded and applied by the TFST executor
is separately encoded in two parameters: fst pathname and fst filename.
This makes it easy to specify a regime of cascading FST grammars (see section
3.4): the names and sequence—from first to last—of .fst files comprising the
cascade are listed in the fst filename declaration. It is assumed that the files
for all the automata in a cascade would share a directory path, and this is what
fst pathname specifies.

The extent of the cascade for any particular run is declared by fst max level. If
this is less than the number of files specified in fst filename,fst max level
is honoured, and not all levels of the cascade are activated on this partoicular run.
If fst max level is higher than the number of files specified, then all of them
get applied.

The definitions file would not normally be modified by a grammar writer,
and would be configured to refer to an external resource which is part of normal
TALENT 5.1 distribution. It defines the mapping between a particular part-of-
speech tag set and UniLex feature clusters; for more details on this file, see section
4.6.

The VdictAuthority declaration registers a specified authority file (pre-com-
piled in a VDict format; see 4.4) with the system, and makes it accessible to gram-
mar rules via the symbolic name Nominator. This kind of declaration is only
necessary if a grammar in a given TEXTRACT configuration checks properties of
lexical annotations against external authority.

Finally, fst escape char defines the meta-character used for TFST symbol
level escape (see section 4.1, 4.5). This is not to be confused with the escape
(quote) character for overriding the special meaning of meta-characters in regular
expression specifications.

39

for distribution with Talent 5.1 -- for distribution with T

5.2.1 Seeing the results

Since the FS automaton is applied to an annotation repository, and not a charac-
ter string, and more importantly, since the transduction operators manipulate an
annotation repository, it is necessary to invoke a specially configured dump appli-
cation23

There are two components to seeing the results of a match. The sc TFst executor
has to be not only configured, as described in the previous section, but it also needs
to be enabled. This is done by setting the nfstxeq parameter in the [run]
section of the .Ini file:

[run]
doc_structure = 1
lex = 1
expressions = 0
abbreviator2 = 0
nominator = 1
tagger = 1
yatagger = 0
nfstxeq = 1
dump = 1

Note that for this particular example, a number of plugins, in addition to nfstxeq,
have been enabled. For any particular configuration of the TFST executor, at the
very least lex and doc structure are necessary, as part of TEXTRACT’s basic
services. Beyond that, the grammar(s) may, or may not, require e.g. nominator
and/abbreviator (for instance, they may need access to vocabulary items) or tagger
(for patterns with morpho-syntactic match symbols in them.

Note that dump is also enabled. The dump plugin itself offers a variety of output
options and formats, for selective display of all or parts of the anotation repository
after any given combination of plugins have been instantiated. For a complete spec-
ification of these, see (Neff et al., 2003). For seeing the results of TFST matching,
the following is sufficient.

23A TALENT 5.1 application is not dissimilar to a plugin, at least in that it subscribes to the same
API as a plugin does, and it has the same access to the annotation repository, lexical cache and
vocabulary as plugins do. Applications usually run after all the process plugins have finished; the
dump application certainly runs last, for obvious reasons.

40

for distribution with Talent 5.1 -- for distribution with T

[dump]
text = 1
format = ascii_parse

In essence, this invokes a special print option suitable for display of shallow parse
structures. TEXTRACT’s shallow parser is configured as a multi-grammar cascade,
and implemented entirely as a TFST application. Since the only annotation type
a TFST grammar can post is within the syntactic family (see 4.9), the output ca-
pability of a shallow parser [dump] option is fully adequate for displaying the
annotations created after successful matches.

As a reminder, the reader is cautioned that a successful match, by itself, would be
invisible outside of TFST, and that it is imperative to post an annotation over the
matching span, which would be the tangible result from the match, remaining in
the AR for processes behind TFST to exploit.

Having compiled one or more .fst files, and having prepared a configuration
.Ini file, the system gets invoked as a command-line executable.

bkb @ .../talent > Talent.exe -config tfstRun.ini para.txt | less

Assuming that para.txt is a file containing some text to be analysed by our grammar
of the preceding sections (np.cfg), the following is indicative of the kind of
output produced.

Throughout
[simpleNP the 1980s simpleNP]
,
the
Soviet
Union
threw
almost
[simpleNP every weapon simpleNP]

41

for distribution with Talent 5.1 -- for distribution with T

it
had
,
short
of
[simpleNP nuclear bombs simpleNP]
,
at
[simpleNP the Afghan camps simpleNP]
attacked
by
the
United
States
[simpleNP last week simpleNP]
.

The text fragments paired with [simpleNP ... simpleNP] labels indicate
the spans of successful matches (with respect to this grammar; see p. 4.9.1) over
which a "simpleNP" annotation has been posted.24

One possible variation in the sample configuration above is to specify, instead of
ascii parse value for the format parameter, tag parse. This produces
similar output to the one above, but the tagger analyses are displayed inline; this
makes it easier to analyse the input-output behaviour of a grammar which exploits,
in particular, morpho-syntactic information in its rule patterns.

24For those who wonder why “the Soviet Union” and “the United States” are not marked as noun
phrases, the answer is because the grammar has not picked them up as such: for this particular run,
a named entity extractor has been enabled prior to TFST, and since the two phrases in question are
found to be named entities, they are covered by lexical annotations of vocabulary type. This is
not something thatour simple grammar is sensitive to.

42

for distribution with Talent 5.1 -- for distribution with T

5.3 Sample grammars

this grammar assumes that Nominator has run.
simply match on the annotation types Nominator has already posted.
#
note:
Abbreviator(2) annotations can similarly be picked up by "{UABBR}"
#

person = <E>/[Person:lexical .
({PERSON} | {PERSON?}) .

<E>/]Person ;

place = <E>/[Place:lexical .
({PLACE} | {PLACE?}) .

<E>/]Place ;

org = <E>/[Org:lexical . {ORG} . <E>/]Org ;

uname = <E>/[UName:lexical . {UNAME} . <E>/]UName ;

__

nominator = :person |
:place |
:org |
:uname
;

43

for distribution with Talent 5.1 -- for distribution with T

this grammar assumes that any combination of plugins that detect
and post vocabulary item annnotations have been run
#

vocabulary = <E>/[vocab:lexical . {VOCAB} . <E>/]vocab ;
expression = <E>/[xprsn:lexical . {EXPR} . <E>/]xprsn ;

category = :vocabulary |
:expression
;

44

for distribution with Talent 5.1 -- for distribution with T

an example of regular expression match, over date/time tokens like
#
3-13-2002 or 06/15/1998 or May-13-2003,
and times like 12:00am or 12:00p.m.
#

mDate =
(<E>/[mDate:lexical .

(<<ˆ[01]?[0-9][-//][1-3]?[0-9][-//][12][0-9]{3}$>>) |
(<<(Jan\.?)|(Feb\.)|(May)[-][1-3]?[0-9][-][12][0-9]{3}>>)) .

<E>/]mDate) |

(<E>/[mTime:lexical .

(<<[01]?[0-9]:[0-5][0-9][apm.]+>>) .

<E>/]mTime)
;

45

for distribution with Talent 5.1 -- for distribution with T

example of a two-level cascade; implements ’over-generate and filter’
strategy: level 1 identifies ’year’ strings, such as "1999", "2003’,
and "late 1990s", and sets features to remember the shape of the
phrase; level 2 picks only those expressions satisfying some
criterion (feature) of the original specification.

Grammar 1 : simple grammar to mark year-based denotations in text
#
illustrates
#
= regular expressions match over lexical tokens
= lexical string match
= posting novel types
= use of variables to mark properties of annotations
= Fst cascading
#

concreteYear = <<ˆ[12][0-9]{3}$>> ;

tempPtr = early | middle | late ;

vagueYear = the . <E>|:tempPtr . <<ˆ[12][0-9][0-9][0-9]s$>> ;

markYears = <E>/[Year:unknownsyn .
((:concreteYear . <E>/]Year:+concrete) |

(:vagueYear . <E>/]Year:-concrete)
)
;

#___

Grammar 2 : simple grammar to pick some annos, posted by Grammar 1,
on the basis of a property value.
#
illustrates
#
= matching over annotations,
= testing properties,
= deleting an annotation,
= Fst cascading
#

pickYears = [Year:-concrete]/- |

(<E>/[YearPoint:phrasal .
[Year:+concrete]/- .

<E>/]YearPoint)
;

46

for distribution with Talent 5.1 -- for distribution with T

a slightly more comprehensive (albeit still far from complete)
noun phrase grammar
#

__

detP = ({PDT}|{DT}|{CD}) . ({PDT}|{DT}|{CD}) * ;

adjP = ({RB}|<E>) . {JJ} . {JJ}* ;

__

preMod = ({NN}|{NP}|{NPS}) |
{CD} |
(:adjP . (<COMMA>|{CC}|<E>)) ;

possMod = (<E>/[NPS . {PP$} . <E>/]NPS) ;

__

simpleNP = (:detP | <E>) .
:preMod* .
{NN} .

({CD} | <E>) ;

properNP = (:detP | <E>) .
:preMod* .

({NP} | {NPS}) .
({CD} | <E>) ;

elidedNP = :detP . (:adjP | {CD}) ;

possNP = <E>/[PNP .
:possMod .
<E>/[NP . :simpleNP . <E>/]NP .

<E>/]PNP ;

__

np = (<E>/[NP .
(:simpleNP | {PP} | :elidedNP) .

<E>/]NP)
|
(<E>/[NP .

(:properNP) .
<E>/]NP:+propNHead)

;

47

for distribution with Talent 5.1 -- for distribution with T

Grammar 1 : mark the boundaries of a wide range of verb groups
#

InfV = {TO} . {RB}* . {VB+AUX}|<E> . {RB}* . {VB} . {VB}* ;

VbKernel = ({VB}|{VB+AUX}) . ({VB}|{VB+AUX})* ;

GenericV = {MD}* . {RB}* . {VB+AUX}* . {RB}* . :VbKernel ;

VrbGroup = <E>/[VG .
(:InfV | :GenericV) . {RB}* .

<E>/]VG
;

#___

Grammar 2 : ’descends’ into previously marked verb groups, in order
to identify certain (configurational) features

AuxTensed = {VB+AUX:P} | {VB+AUX:Z} | {VB+AUX:D} ;

VrbTensed = {VB-AUX:P} | {VB-AUX:Z} | {VB-AUX:D} ;
VrbUnTensed = {VB-AUX:I} ;

VrbGrpModal = ([VG_] .
{MD} .
{RB}* .
(({VB-AUX:I}) | ({VB+AUX:I} . {VB-AUX:G})) .
{RB}* .
<E>/ˆ)

;

VrbGrpTensed = ([VG_] .
{RB}* .
((:AuxTensed . {RB}* . ({VB:G} | {VB:N})) |
({VB+AUX} . {RB}* .

:VrbUnTensed | :VrbTensed) |
(:VrbTensed . <E>|{VB})

) .
{RB}* .

[VGˆ]
) | :VrbGrpModal
;

48

for distribution with Talent 5.1 -- for distribution with T

a very simple (and simple-minded) grammar identifying noun phrases
with an internal named entity component; sample output below...

Noun = {NN} | {NNS} ;
Adj = {JJ} ;

NamedComponent = <UPPER> | <LUPPER> ;

namedNPs = <!Sentence::IsWordFirst> & # left context...

<E>/[namedNP:phrasal .

({DT}|<E>) .
:NamedComponent . :NamedComponent* .
((:Noun | :Adj) . Noun*) * .

<E>/]namedNP ;

#
[namedNP the Soviet Union namedNP]
[namedNP the Afghan camps namedNP]
[namedNP the United States namedNP]
[namedNP Afghanistan namedNP]
[namedNP Khost namedNP]
[namedNP Scud missiles namedNP]
[namedNP Soviet commander namedNP]
[namedNP Afghanistan namedNP]
[namedNP Lt. Gen. Boris Gromov namedNP]
[namedNP the Afghan holy warriors namedNP]
[namedNP the Soviets namedNP]
[namedNP Thursday namedNP]
[namedNP the Soviets namedNP]
[namedNP Paktia province namedNP]
[namedNP Afghan resistance leaders namedNP]
[namedNP Soviet troops namedNP]
[namedNP December namedNP]
[namedNP American intelligence veterans namedNP]
[namedNP Afghan resistance namedNP]
[namedNP the United States namedNP]
[namedNP Saudi Arabia namedNP]
[namedNP the Saudi exile namedNP]
[namedNP Osama bin Laden namedNP]
[namedNP U.S. intelligence official namedNP]
[namedNP the CIA namedNP]
[namedNP the Afghan rebels namedNP]
[namedNP the Soviet-supported garrison town namedNP]
[namedNP Khost namedNP]
[namedNP CIA namedNP]

49

for distribution with Talent 5.1 -- for distribution with T

6 Interactive grammar development

TEXTRACT is available as a command-line executable. In general, TEXTRACT

offers little beyond an architecture and API’s, by means of which specific applica-
tions can be configured.

The TFSTsystem as one of TEXTRACT’s numerous plugins. This makes it a ‘first-
class’ citizen, as far as deployment is concerned of a grammar, or a cascade of
grammars, within a larger process pipeline. However, this same architecture is not
very well suited for the inherently incremental, experimental, trial-and-error pro-
cess of developing and tuning a grammar. While the system is streamlined and
optimised to initialise a number of plugins and apply them, in sequence, over a
number of document, there is no built-in support for iterative re-initialisation and
re-invocation of just one plugin (in particular, nfstxeq), with very local changes
to the run-time parameters settings (possibly just a modified and recompiled gram-
mar).

Furthermore, while a suitable format exists in the dump application for displaying
the results of a grammar application, it may be hard to relate a strictly sequential
dump of annotations, mixed with begin-end match markers, to any diagnostics
which might correlate grammar behaviour with pattern specification.

In a larger community of grammar developers, it is unrealistic to expect that all of
them would be familiar with programming issues to the extent that they can con-
figure a grammar development scaffold out of raw TEXTRACT API’s. Such users
need not only insulation from the vagaries and idiosyncracies of the underlying sys-
tem, but also require a set of tools facilitating grammar development, diagnostics
and debugging—activities which, by definition, have no relationship to production-
level deployment of ‘release’ quality grammars.

An experimental tool, under development at present, and thus offered on strictly
‘as-is’ basis, is an interactive graphical environment for developing TFSTgrammars.
This environment, hereafter WTEXTRACT25, addresses two out of the three funda-
mental expectations of interactive programming environments.

• rapid edit-compile-run cycle,
• multiple perspectives over the output, facilitating diagnostics,
• incremental process stepping and tracing, with source grammar level debugging;

this is currently not available, as process control with this kind of granularity

25Or occasionally referred to HMTEXTRACT, for reasons too complex to go into here.

50

for distribution with Talent 5.1 -- for distribution with T

is hard26 to expose to a plugin ‘client’ through the convenional (and official)
document-based process API.

6.1 Overview of wTextract

WTEXTRACT is, in general, a set of graphical widgets which implement custom
viewers for an annotation repository which has been populated by one or another
of TEXTRACT’s plugins. Process pipelines (i.e. plugin chains) can be constructed
interactively, and on demand; such chains can be configured (and re-configured)
dynamically, without having to wind down completely and restart from the com-
mand line; individual plugins can be re-invoked repeatedly, with or without modi-
fying their run-time parameters.

In a mode where a plugin developer wishes to inspect the annotation repository
at a any given stage of a plugin pipeline, WTEXTRACT offers the capability of a
side-by-side inspection of the systems’ internal data objects and repositories.

The TFST capability27 of WTEXTRACT, in particular, allows an end user—typically
a grammar writer—to re-invoke the TFST executor repeatedly over the same doc-
ument. During such a development cycle, the process settings may be changed at
will; at the very minimum, even if the settings remain the same, the system is ca-
pable of absorbing changes in the grammar, by reloading the FST’s in its cascade
after grammar modification and recompilation.

This streamlines, and largely by-passes, the cycle of modifying a .Ini file, and
restarting a whole TEXTRACT process. In contrast, whenever there is a change per-
tinent to the run-time environment for the TFST executor, suitable—and minimal—
reconfiguration happens behind the scenes. The grammar writer is largely unaware
of that; furthermore, they remain within their operational environment, without
losing context.

Additionally, the interactive TFST environment offers a variety of different ways
to see the results of a grammar application. Fundamentally, WTEXTRACT regards
the set of matches against a grammar (or a cascade of grammars) as a concordance,
and variations of how the concordance is organised and presented are under gram-
mar writer’s control. The concordance correlates the successful matches amongst

26But not impossible; future releases may address this issue.
27The original prototype of a WTEXTRACT system was developed and built by B. Boguraev, in

Borland C++ Builder; a rationalised and enhanced version of the TFST capability was implemented
in Microsoft Visual Studio .NET by Son Bao Pham.

51

for distribution with Talent 5.1 -- for distribution with T

themselves; this makes it possible to notice general patterns in what has, and has
not, been picked up by the grammar(s). At the same time, by maintaining syn-
chronicity between the concordance view of a match, and displaying this match
within it original document context, it is possible to examine the contexts for suc-
cessful and failed matches and form hypotheses for the grammar behaviour—be it
over-, or under-generation.

Any modifications to a grammar, in response to, or exploration of, such hypotheses
will be immediately absorbed by the environment. And, while native grammar
editing and compilation is not currently supported28, a more useful capability is
available, for ‘one-off’, throwaway, pattern specification and testing.

The broad WTEXTRACT behaviour allows for multiple document files to be opened,
and at various stages of plugin pipeline execution and inspection; it is not, however,
allowed to have multiple analyses (by the same plugin) of the same document. The
exception to that rule is the TFST subsystem within WTEXTRACT, where multiple
invocations of the same plugin (nfstxeq), differing only in the FS automaton ap-
plied over the document, can co-exists side by side: thus it is posisble to compare
different sets of outputs, derived from different grammar sources.

6.2 Elements of the TFst subsystem interface

This section offers a quick tour of the basic visual elements of the TFST analysis
portion of the WTEXTRACT system. The emphasis is on what can be done within a
task of developing TFST gramars; other ares of the WTEXTRACT interface are ei-
ther disabled in the pre-release, or not fully functional (at best). Caveat Emptor!29

Primary entry point is via the PLUGIN menu, invoking FSTEXEQ submenu. Prior
to that,we need a document file, and a working configuration of the TFST executor.

28Strictly speaking, it is supported, but not enabled.
29Important footnote: Best results are obtained with pure text (.txt) files, preferably saved as

"raw text". The FILE⇒OPEN menu brings a document file into the workspace. The document
window which opens and display the file is an instance of Microsoft’s web browser30; so if the
fonts look odd, or large, this means that the VIEW⇒TEXT SIZE settings for your Internet Explorer
settings is too large. Note that most of the display functionality described below is achieved by
dynamically—i.e. in response to the user selecting menu items and clicking on buttons—generating
highly adorned DHTML, behind the covers, and submitting that to an encapsulated web browser
for (native) rendering. One consequence of this approach is that long documents result in slow re-
generation of the DHTML source for each pane (think of all those strings...). Thus, for development
purposes, grammar writers are advised to keep their documents not too long, and in "raw text"
encoding.

52

for distribution with Talent 5.1 -- for distribution with T

6.2.1 Configuration

The EDIT⇒SETTINGS⇒PLUGINS menu brings up a multu-tab panel for setting the
operational parameters of individual plugins. By default, the FstexQ tab is active;
the parameters it allows manipulating map, naturally, to the parameters in an .Ini
file configuring [nfstxeq]. By default, the settings are those for the shallow
parser. The directory button (...) selects the FST cascade directory; a standard
file picking interface identifies the .fst files. Multiple file selection is allowed
(with Ctrl key); the Up and Down buttons order the cascade files in sequence, as
desired. The cascade depth should be set to emulate fst max level (see section
5.2).

With a document file open, and the TFST executor configured, the grammar cas-
cade can be invoked by PLUGIN⇒FSTEXEQ menu. The results are displayed in a
new window, with two panes: at the bottom is a concordance of all the matches
found by the grammar(s), at the top is an inline display of the same (all) matches
overlayed onto the original document source. Strictly speaking, the display shows
the annotations that have been added to the annotation repository, following suc-
cessful matches, during the cascade invocation (see 3.3).

The two panes are synchronous: rolling the mouse over a matching phrase in the
concordance pane, and holding it there, brings into view into the top pane, and
highlights, the sentence in which this particular match has been found. Thus,
while the concordance offers an overview of what matched, and what did not, on a

53

for distribution with Talent 5.1 -- for distribution with T

grammar-per-document basis, for each matched item it is possible to examine the
larger local context of its enclosing sentence.

In the screen shot below, the window at the forefront (....txt:3) is indicative of the
view described above.

When the TFST executor has been invoked, and the focus is on a system window
populated by its output results, an additional menu item is added to the main ap-
plicaiton menu bar: FST. It offers six commands; these are described below. Each
of the commands is also directly available via a button, on a toolbar attached to the
TFST executor output window.

6.2.2 FST⇒Concord Left

This acts as a toggle between the default ordering of the concordance list (sequen-
tial, as per appearance in the document), and sorted by left-most token in the match-
ing items. It allows examination of left context of similar match items. Shortcut is
available via button L.

54

for distribution with Talent 5.1 -- for distribution with T

The ...txt:2 window, just in the background in the figure above, shows a (fil-
tered selection; see 6.2.4, 6.2.10 below) sorted to the left.

6.2.3 FST⇒Concord Right

A toggle between the default ordering of the concordance list (sequential), and
sorted by right-most token in the matching items. This allows examination of right
context of similar match items. Shortcut is available via button R.

6.2.4 FST⇒Show Label

As discussed earlier (see, in particular, section 4.9.1), TFST grammars currently
post only syntactic family annotations. All such annotations have labels, either
predefined for TEXTRACT, or dynamically defined by a grammar. This menu item
(also available via button LB) is a toggle between hiding (by default) and displaying
the labels on the annotations posted for each matching item. The toggle affects the
diaply in both panes of the TFST executor output window.

The ...txt:3 window in the foreground in the figure above, shows a concor-
dance list, unsorted, with labels on matches displayed.

6.2.5 FST⇒Show Pos

A majority of TFST grammars will query morphosyntactic features on the lexical
elements (usually word tokens) in the document. Some partial support for exam-
ining the ‘bottom-level’ token stream, the lexical lookup results, and the output of
the part-of-speech tagging analysis is available via corresponding menu items on
the PLUGIN menu: PLUGIN⇒TOKENISE, PLUGIN⇒LEXALYSE, PLUGIN⇒TAG.31

At best, this is only of partial utility.

The FST⇒SHOW POS command, also available via the POS button, toggles between
inline expansion of all tokens in the document pane of the TFST executor output

31The intent is to show the results of TEXTRACT’s base services, insofar as they generate fea-
tures used extensively by TFST grammar symbols; cf. section 4. However, not all such features
are currently visible through the custom displays. Also, note that the PLUGIN menu offers access
to the document structure analysis service too, as at least the sentence level annotations are used to
constrain the operation of the TFST executor; section 2.1

55

for distribution with Talent 5.1 -- for distribution with T

window to a token/tag format. This makes explicit the underlying POS stream that
drives the matching. What makes this feature particularly useful is that given the
stochastic nature of TEXTRACT’s part-of-speech tagging algorithms, it is impossi-
ble to always correctly predict (or, worse, intuit) what part of speech might have
been assigned for a token in any particular context.

The top pane of the ...txt:2window, just in the background in the figure above,
shows a display of part-of-speech information for the document stream.

6.2.6 FST⇒Switch View

Some match items reflect composite application of rules, in that complex gram-
mars, and/or multi-level grammar cascades typically result in posting annotations
over annotations, in a hierarhic fashion. This is, indeed, the conventional way of
constructing a tree-like representation over a matched string. However, an in-line
view of a multiply-embedded set of labels and substrings tends to be hard to parse
by a naked eye. Consider, for example, the view of the shallow parser output,
which produces syntactic analysis of phrasal and clausal fragments of text.

56

for distribution with Talent 5.1 -- for distribution with T

The FST⇒SWITCH VIEW command, also available via the TREE/DOC button, al-
ternates between a document (with inline labels) view and a tree view.32.

6.2.7 FST⇒Edit Grammar

As already mentioned, the current pre-release does not support native grammar
editing and compilation. The edit-run-debug cycle requires, for the time being, a
context switch between WTEXTRACT, your favourite editor, and a command line
shell (for re-compiling the grammar). Clearly, at any point the runtime settings for
the TFST executor can be explicitly changed via the EDIT⇒SETTINGS⇒PLUGINS

dialog. If the only change between two runs, however, is the grammar source,
simply rerunning the executor from within WTEXTRACT is going to pick up, and
load, the new .fst33, and reapply the cascade, displaying the results in a new
TFST executor window. (The old window is kept, so that new and old output can

32Arguably, a marginally better rendering of a tree view is available by running
APPLICATION⇒PARSER, with the same settings as PLUGIN⇒FSTEXEQ. The intent here is to bring
this kind of display within the TFST executor output subsystem.

33Assuming, of course, that the modified .cfg has been recompiled.

57

for distribution with Talent 5.1 -- for distribution with T

be compared, thus assessing the effect(s) of modifying the grammar. Old windows
can be closed, from the CLOSE (X) generic window manager button, at any time.)

Often in the course of grammar development, the grammar writer may focus on a
particular rule, and even a specific symbol, with a question: what are the effects of
applying this to the current document? To determine this, it would be necesary to
create a new grammar file; input a simple rule which exercises the symbol, or pat-
tern, in question; remember to post an annotation (so the matches can be viewed);
name the file appropriately, and save it; compile it; reset the TFST executor to pick
that .fst and load it; run the plugin; and view the results.

The FST⇒EDIT GRAMMAR command, also available via the GRM button, encap-
sulates this procedure into a single click:

A modal dialog offers a text edit pane into which a simple rule (unnamed, no need
to explicitly post a covering annotation) can be typed. The system does the rest; it
also offers a choice between running the test over an annotation repository which
has been cleared of the most recent set of TFST-created annotations, or which
retains those analysis. Clearing the repository will allow for base-level analysis
through a simple pattern: for instance, the output of the interaction from the screen

58

for distribution with Talent 5.1 -- for distribution with T

shot above would be all occurrences of a <MIXED> tokens:

On the other hand, not resetting the annotation reporitory might be useful in inves-
tigating a question like: have all the <MIXED> tokens been subsumed, one way or
another, inside of a generic noun phrase analysis?

This feature acts like a generalised grep: thus the annotations it posts are labelled
TGREP.

The following three operations are only available from a TFST executor window
toolbar. They take as argument a string typed into the EDIT BOX, and interpret it
to their own semantics.

6.2.8 Find All

A generic FIND command is available for any TFST executor window, from the
EDIT⇒FIND menu. This uses the familiar FIND interface, and operates over the

59

for distribution with Talent 5.1 -- for distribution with T

currently selected pane of the currently active TFST executor window. This offers
some limited navigation through a document source and/or a concordance list. One
possible use of FINDing is to scan all the occurrences of a text string in the top
(document) pane, and observe whether they have been picked up by a grammar or
not.

The FIND ALL button is an attempt to encapsulate such an operation; it is useful in
observing the global behaviour of a grammar, acorss the entire document.

If a token string is typed into the EDIT BOX, the system will generate automatically
a (TGREP) grammar (see 6.2.7 above), and run that against a (populated) annotation
repository. If it finds any occurrences of the string which are not matched by the
current grammar(s), they will be marked with an F (for FAILED?) label. Using the
concordance navigation facilities we have at our disposal, it is now possible to get
a display like the one below, which shows that on occurrence of a string, “North
Korea”, has not been picked up as a COUNTRY; looking at the concordance view
alone, it is posisble to conjecture why; looking further into the document context
view, it is also possible to both confirm the conjecture, and to discover that the
grammar is wrong in a particular way.

60

for distribution with Talent 5.1 -- for distribution with T

6.2.9 Delete Label

Some of the annotations posted to the AR through the ‘snooping’ operations de-
scribed above are, by their nature, only relevant to a very particular moment in
time, and they should not survive further interaction cycles. However, it may be
necessary for the annotation repository—as it has been populated by the recent
grammar application—to remain intact for a while.

The DELETE LABEL interface allows for selective deletion of specified annotations.
It is primarily a book-keeping device.

6.2.10 Filter labels

Any matching regime, especially one implementing complex grammars and multi-
level cascades, may deposit a range of new annotation types into the annotation
repository. This command offers a way of temporarily suppressing from display
some of these annotations; it is a way of viewing, selectively, only a subset of new
annotations, identified by their labels.

A sequence of label strings, separated by blanks, needs to be input into the EDIT

BOX. The sequence is parsed out into one or more labels; these will be used as a
filter by the display functions described earlier. A label so parsed needs to match
(string, and case, equality) with the label of an AR annotation, for that annotation
to be displayed.

In addition to reducing potential information overload (see the ROLEREL pattern
filtered out in the figure on p.54), this is useful as a rudimentary facility for seeking
patterns underlying relationships among items identified by patterns so far. For in-
stance, the screen shot below illustrates the distribution of subjects and verb groups
(both active and passive) across a document—an exercise which would facilitate
the development of a grammar for relation finding.

61

for distribution with Talent 5.1 -- for distribution with T

62

for distribution with Talent 5.1 -- for distribution with T

References

Becker, Marcus, Witold Drozdzynski, Hans-Ulrich Krieger, Jakub Poskorski, Ul-
rich Schfer, and Feiyu Xu. 2002. SProUT-shallow processing with unification
and typed feature structures. In Proceedings of the International Conference on
Natural Language Processing (ICON 2002), Mumbai, India.

Boguraev, Branimir. 2000. Towards finite-state analysis of lexical cohesion. In
Proceedings of the 3rd International Conference on Finite-State Methods for
NLP, INTEX-3, Liege, Belgium, June.

Cunningham, Hamish, Diana Maynard, and Valentin Tablan, 2000. JAPE: A
Java Annotation Patterns Engine. Institute for Language, Speech and Hearing
(ILASH), and Department of Computer Science, University of Sheffield, UK.
Research memo CS-00-10.

Ferrucci, David and Adam Lally. 2003. Accelerating corporate research in the
development, application and deployment of human language technologies. In
Proceedings of HLT-NAACL Workshop on Software Engineering and Architec-
tures of Language Technology Systems, Edmonton, ALberta, Canada.

Karttunen, Lauri, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller.
1996. Regular expressions for language engineering. Natural Language Engi-
neering, 4(1):305–328.

Kornai, Andras, editor. 1999. Extended finite state models of language. Cam-
bridge University Press.

Neff, Mary, Branimir Boguraev, Herb Chong, Albert Eskenazi, Youngja Park, and
Max Silberztein, 2003. The Talent System: Design Document and Usage Notes.
IBM T.J. Watson Research Center, Yorktown Heights, NY, v. 2 edition.

Neff, Mary, Roy Byrd, and Branimir Boguraev. 2003. The Talent system: TEX-
TRACT architecture and data model. In Proceedings of HLT-NAACL Workshop
on Software Engineering and Architectures of Language Technology Systems,
Edmonton, Alberta, Canada.

Park, Youngja, Roy Byrd, and Branimir Boguraev. 2002. Automatic glossary
extraction: beyond terminology identification. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING), pages 772–778,
Taiwan.

Ravin, Yael and Nina Wacholder. 1997. Extracting names from natural-language
text. Technical Report RC-20338, IBM T.J. Watson Research Center, Yorktown
Heights, NY.

Santorini, Beatrice, 1995. Part-of-Speech Tagging Guidelines for the Penn Tree-
bank Project. University of Pennsylvania, (3rd revision, 2nd printing) edition.

63

