RC22976 (W0311-046) November 6, 2003
Computer Science

IBM Research Report

The Talent FST System

Branimir K. Boguraev, Mary S. Neff
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.

0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

The Talent FST System

Branimir K. Boguraev and Mary S. Neff!

IBM T.J. Watson Research Center
PO. Box 704
Yorktown Heights
NY 10598, USA

brane@us.ibm.com,maryneff@eus.ibm.com

(2) with substantial design and implementation contributions by
Albert Eskenazi and Son Bao Pham

October 31, 2003

Abstract

This document describes the TALENT 5.1 Finite State subsystem (TFsT). It positions the process
of finite state matching over annotations within the larger context of TALENT's infrastructure. It
then describes how to specify rules for pattern matching (over sequences of annotations), and how
to specify the features or properties of annotations that a match would be focusing on. The process
of grammar writing and development is broadly outlined, and some indication is given concerning
the different kinds of tasks and applications which can effectively utilise finite state technology.
Some general guidelines on grammar development and matching strategies are offered, and sample
grammars are included as examples. Finally, abrief sketch isoffered of an experimental environment
for finite state grammar development.

The TFsT subsystem, as decsribed here, is hosted by the Talent 5.1 document processing infrastruc-
ture. Design considerations addressing the encapsulation of FS matching functionality as a Talent
(meta-)plugin are discussed in (Neff, Byrd, and Boguraev, 2003). Work is under progress on mak-
ing the full functionality available, via a new and revised formalism (which targets a typed feature
structures-based representation model), within an emerging framework for unstructured information
management (UIM; see (Ferrucci and Lally, 2003) for details of UIM architecture).

Evolution of the TFST capability is motivated, beyond well-articulated arguments promoting the de-
ployment of finite state processing techninques for NLP application development, by considerations
of enabling such processing within industrial strength NLP frameworks which exploit emerging no-
tions like pipelined architectures, open-ended intercomponent communication, and in particular the
adoption of linguistic annotations as fundamental descriptive/analytic device.

Contents

1

Introduction
11 TFstdesignoverview

Overview of the process
21 Machingspecifics

TFst grammars

3.1 Grammarnotation,
3.2 Grammarorganisation
3.3 Grammarto Talentinterface
34 FSgrammarcascading

TFst symbols
4.1 Testsover lexical annotationstrings
4.2 Testsfor orthographic properties
4.3 Testsfor document structure relationships
44 Testsagainst an authority file
45 Testsof vocabulary properties
4.6 Testsover morphosyntactic features
4.7 Testsover syntactic annotations
4.8 Regular expressions over lexical annotation strings
4.9 Symbolsfor transduction operations
49.1 Creating annotations
49.2 Setting properties on annotations
493 Addingtothevocabulary
494 Deleting annotations L.
410 Duascanningregimes it

Putting it all together

51 Grammarcompiler

5.2 Configuringthe TFstexecutor
521 Seeingtheresults

53 Samplegrammars e

Interactive grammar development

6.1 Overviewof wTextract

6.2 Elementsof the TFst subsystem interface
6.2.1 Configuration
6.22 FST=ConcordLeft

6.23 FST=-ConcordRight 55

6.24 FST=ShowlLabd 55
6.25 FST=ShowPos 55
6.26 FST=SwitchView 56
6.27 FST=EditGrammar 57
6.28 FndAll 59
6.29 Ddeelabd 61

6.2.10 Filterlabels 61

1 Introduction

This document assumes some knowledge of the basic design and architectural char-
actertistics of the TEXTRACT systen?; see (Neff, Byrd, and Boguraev, 2003) (Neff
et a., 2003). We briefly recap here the features of particular relevance to under-
standing, and using, its finite state (FS) subsystem.

TEXTRACT isarobust document analysis framework, whose design has been moti-
vated by the requirements of an operational system capable of efficient processing
of thousands of document/gigabytes of data. It has been engineered for flexible
configuration in implementing a broad range of document analysis and linguistic
processing tasks. Asan architecture, itismodelled upon IBM’s SWS Text Analysis
Framework:

e interchangeable document parsers allow the "ingestion’ of source documents in
more than one format (specifically, XML, HTML, ASCII, as well as arange of
proprietary ones);

e a document model provides an abstraction layer between the character-based
document stream and annotation-based document components, both structurally
derived (such as paragraphs and sections) and linguistically discovered (such as
named entities or term phrases);

e linguistic analysisfunctionalities are provided viaindividual plugin components;
these share an annotation repository (AR) and communicate with each other by
posting results to, and reading prior analyses from, it;

e plugins share common interface, and are dispatched by a plugin manager; at a
higher level of abstraction, an engine controls shared resources, and maintains
the document processing cycle;

e the system is softly configurable, completely from the outside, by means of
.Ini file

TEXTRACT’sfinite state executor (TFST) isimplemented as a plugin, which can be
configured to interpret one or more grammars in sequence. (The process of apply-
ing more than one grammar, with later invocations using results of earlier grammar
applications, is called cascading.) For any configuration of TEXTRACT, TFST can
be positioned anywhere in a plugin sequence. Depending on what plugins (anno-
tators) have run before it, a grammar can specify patterns querying the range of
annotation types posted by the upstream annotators.

2This document uses, interchangeably, the designations TALENT, TALENT 5.1, and TEXTRACT.
3Throughout this document, “annotator” is also used interchangeably with “plugin”.

At the time of writing, TEXTRACT has afinite, fixed number of annotation types;
asfar asagrammar writer is concerned, these fall into three broad categories (fam-
ilies). Lexical annotations cover tokens, lexicalised expressions, and vocabulary
items. Syntactic annotations mark grammatical units (phrases, clauses, grammati-
cal relations). Document structure annotations span structural units in a document
(sentences, paragraphs, titles, and so forth). TFST grammars can appeal to any, or
al, of these annotation types.

1.1 TFst design overview

Numerous NLP applications today deploy finite state processing techniques-for,
among other things, efficiency of processing, perspicuity of representation, rapid
prototyping, and grammar reusability (see, for instance, (Karttunen et al., 1996),
(Kornai, 1999) Karttunen et a., 1996; Kornai, 1999). TEXTRACT’'S TFST trans-
ducer plugin encapsulates FS matching and transduction capabilities and makes
these available for independent development of grammar-based linguistic filters
and processors.

In a pipelined architecture, and in an environment designed to facilitate and pro-
mote reusability, there are some questions about the underlying data stream over
which the FS machinery operates, as well as about the mechanisms for making
the infrastructure components—in particular the annotation repository (henceforth
AR) and shared resources (TEXTRACTS lexical cache and vocabulary)—available
to the grammar writer. Given that the document character buffer logically ’disap-
pears from a plugin’s point of view, FS operations now have to be defined over
annotations and their properties. This leads to a notation in which grammars can
be written with reference to TEXTRACT’s underlying data model, and which still
have access to the full complement of methods for manipulating annotations.

We make use of an abstraction layer* between an annotation representation (as

4In the extreme, what is required is an environment for FS cal culus over typed feature structures
(see (Becker et a., 2002)), with pattern-action rules where patterns would be specified over type
configurations, and actions would manipulate annotation types in the AR. Manipulation of annota-
tions from FS specifications is also done in other annotation-based text processing architectures (see,
for instance, (Cunningham, Maynard, and Tablan, 2000)). However, this is typicaly achieved by
allowing for code fragments on the right-hand side of the rules.

Both assumptions—that a grammar writer would be familiar with the complete type system em-
ployed by all upstream (and possibly third party) plugins, and that agrammar writer would be knowl-
edgeable enough to deploy raw API’sto the annotation repository and resource manager—go against
the grain of TEXTRACT’sdesign philosophy.

However, in response to moving away from atext processing infrastructure with a pre-defined and

it is implemented) and a set of annotation property specifications which define
individual plugin capabilities and granularity of analysis. The notation developed
for specifying of FS operations, and described in this document, appeals to the
system-wide set of annotation families, with their property attributes. The notation
also encapsulates operations over annotations—such as create new ones, remove
existing ones, modify and/or add properties, and so forth—as primitive operations.
The abstraction thus hides from the grammar writer system-wide design decisions,
which separate the annotation repository, the lexicon, and the vocabulary: thus, for
instance, accessto lexical resources with morpho-syntactic information, or, indeed,
to external repositories like gazetteers or lexical databases, appears to the grammar
writer as querying an annotation with morpho-syntactic properties and attribute
values, similarly, a rule can post a new vocabulary item using notational devices
identical to those for posting annotations.

For grammars which examine uniform annotation types, it is relatively straightfor-
ward to infer, and construct (for the runtime FSinterpreter), an iterator over such a
type (in this example, sentences). However, expressive and powerful FS grammars
may be written which inspect, at different—or even the same—point of the anal-
ysis annotations of different types. In this case it is essential that the appropriate
iterators get constructed, and composed, so that a felicitous annotation stream gets
submitted to the run-time for inspection; TEXTRACT deploys a specia dual-level
iterator designed expressly for this purpose.

Additional features of TFsT allow for seamless integration of character-based reg-
ular expres-sion matching, morpho-syntactic abstraction from the underlying lex-
icon representation and part-of-speech tagset, composition of complex attribute
specification from simple feature tests, and the ability to constrain rule application
within the boundaries of specified anno-tation types only. This allows for the easy
specification, via the grammar rules, of a variety of matching regimes which can
transparently query upstream annotators of which only the externaly published
capabilities are known.

Applications utilising TFST include a shallow parser (Boguraev, 2000), afront end
to a glossary identification tool (Park, Byrd, and Boguraev, 2002), a parser for
temporal expressions, a named entity recognition device, and a tool for extracting
hypernym relations.

fixed data model to an environment where NLP applications will define and manipulate arbitrarily
open sets of annotations (see (Ferrucci and Lally, 2003)), the next mgjor release of the TFST system
will incorporate amore flexible notation which can mediate between adatamodel defined specifically
for aparticular application and agrammar writer operating at an abstraction level where an annotation
is expressed as a typed feature structure.

Work is under progress on making the full functionality available, via a new and
revised formalism (which targets a typed feature structures-based representation
model), within an emerging framework for unstructured information management
(UIM; see (Ferrucci and Lally, 2003) for details of UIM architecture).

Evolution of the TFST capability is motivated, beyond well-articulated arguments
promoting the deployment of finite state processing techninques for NLP applica-
tion development, by considerations of enabling such processing within industrial
strength NLP frameworks which exploit emerging notions like pipelined archi-
tectures, open-ended intercomponent communication, and in particular the adop-
tion of linguistic annotations as fundamental descriptive/analytic device. For such
frameworks, certain issues arise concerning the underlying data stream over which
the FS machinery operates. A review of recent work on finite-state processing of
annotations and an elaboration of some essential features required from a’ conge-
nial’ architecture for NLP aiming to be broadly applicable to, and configurable for,
an open-ended set of tasks, was presented in Boguraev (2003).

2 Overview of the process

Typically, the TFST component of TEXTRACT gets invoked by configuring and
running the FST executor plugin. The executor loads one or more FST files, looks
for (repeated) patterns of annotations—in the current annotation repository, as pop-
ulated by prior plugins—which match any given FS automaton, and applies the
automata in sequence, cascading them if necessary (when there is more than one
specified in the sequence). There are provisionsin the TEXTRACT system to output
formatted stream of matches, which displays the state of the annotation repository
after the FST executor has completed.

The grammar writer specifies patterns over annotations by means of a high-level
notation. The process is not unlike specifying regular expressions over charac-
ter sequences; however, given that at each transition of the equivalent automaton
queries/evaluates arbitrarily complex set of constraints, the notation incorporates
complex (and arguably less than intuitive’) syntax for specifying what annotation
to match, and the conditions under which the match is deemed to be succesful.

Pattern files are thus text files, written to a set of syntactic and orthographic rules.
These are compiled, outside of the TEXTRACT environment, into FST files which
encapsulate machine-readable representations of the equivalent automata. TEX-
TRACT'sS FST executor is configured to use these, for a particular run, by means
of a stanza in the configuration (.Ini) file. The results can be viewed by means of
further configuring the output (dump) plugin; this is a non-processing, read-only,
plugin which selectively (and under .Ini control) extracts certain annotations from
the annotation repository and prints them in a human-readable form.

2.1 Matching specifics

The TFsT executor applies an FS automaton to an annotation stream, with tran-
sitions between states in the automaton conditioned upon matching one or more
features of the current annotation. A successful match (conceptually) effects atran-
sition; it also advances an annotation iterator, to yield the next annotation against
which new matches will be attempted, according to the outgoing arcs of the new
state of the automaton. 1f no match can be found, the automaton is applied again at
the next annotation returned by a (suitable) iterator.

Currently, the matching regime returns only one—the longest—match. After a

5The next major release of TFST will appeal, more perspicuously, to TALENT’sunderlying data
model.

successful match, the annotation stream gets reset to the first annotation following
the matching span, and the automaton is applied again; this process is repeated
over the entire annotation repository, thus resulting in all matches against a given
FST over the document.

As an example, consider a simple grammar specifying a noun sequencé, applied
to the following text; the matching text fragments are underlined:

American aircraft frequently bomb missile and radar equipment sites that al-
legedly target U.S. planes. In recent weeks, the attacks have focused on Iraqi
weapons that might be used in a ground war.

Note that internally, the complete scan of the input, with repeated attempts to apply
an automaton at every point of a string, needs to be mediated in a way which takes
into account natural separation boundaries. In particular, an inner loop over sen-
tences ensures that no patterns—especially syntactic ones—match across sentence
boundary.

An annotation-based regime of FS matching needs a mechanism for picking a par-
ticular path through the input annotation lattice, over which a rule should be ap-
plied: thus, for instance, some grammars would inspect raw tokens, others would
abstract over vocabulary items (some of which would cover multiple tokens), yet
others might traffic in constituent phrasal units (with an additional constrain over
phrase type) or/and document structure elements (such as section titles, sentences,
and so forth). Typically, at any given point in the text, there would be more than
one annotation types either covering that point, or starting and/or ending at that
position. For instance, considering the second sentence in the example above, the
position at the beginning of ““have” might be’ covered’ both by a token annotation
and a verb group annotation’. Similarly, the position before “Iraqi” is a start-
ing position for a token annotation (“Iraqi’’), for a semantic modifier (“‘Iragi”’, as
in “of Iraq™), a syntactic noun phrase (“Iraqi weapons’), a more complex noun
phrase, composed of asimple NP and arelative clause (“Iraqi weapons that might
be used in a ground war’’), and even agrammatical function annotation, specifying
that the complex noun phrase also functions as grammatical object.

Thus, when in this position of the annotation stream the TFST executor attempts a
match over the next annotation, it isimportant that the grammar writer appreciates

8Such a grammar would be written as: nn = {NN}.{NN}* ; see 3 below, and its application
would assume a part-of-speech tagger running over the text as a prior process
"This assumes a parser—such as TEXTRACT sshallow parser—has run

that there are multiple options as to the choice of annotation, and that the gram-
mar needs to communicate precise instructions about which of these annotations
is to be examined upon the current transition. Note that this isacrucial difference
between an FS matching regime over annotations, compared to the more familiar,
and more common, application of FS automata over purely character sequences.
In the former case, the input to a matcher is a lattice, with ambiguous choices of
tracing a particular route through it; this contrasts with unambiguously advancing
that ‘match position’ character after character, with no ambiguity as to what isthe
next character.

Theinformation about what annotation to inspect at any given point of applying an
automaton over the annotation repository is encoded in the symbol on the current
transition. Symbols thus encapsulate instructions for which iterator needs to be
(re-)activated to deliver an annotation of a particular type, and what constraints/
features are to be examined while attempting this transition.

A later section (4) describes the syntax, orthography, and semantics of TFST sym-
bols. Before that, section 3 describes the notation for specifying annotation pat-
terns, and for composing these in .cfg files.

10

3 TFst grammars

Specifying patterns of annotations will be familiar to everyone who has written a
regular expression. In much the same way in which aregular expression specifies
an automaton encoding a set of allowed sequences of characters, a TFST gram-
mar specifies an automaton whose traversal—from beginning to accepting state—
would indicate that a sequence of annotations has been found which matches the
pattern specified by the grammar.

Toillustrate, consider a (very simple) grammar for noun phrases, defined over the
part-of-speech tags of token annotations®

np = {DT}|<E> . {gg}* . {NN}|{NNS}

Without going into much detail (but see 3.1 below), we notethat {DT}, {JJ}, and
{NN} denote, respectively, atoken tagged as a determiner, an adjective, or a noun;
the symbol <E> marks an empty transition, and the operators . and * specify,
respectively, sequential composition and zero or more repetitions. In effect, the
grammar looks for a sequence of tokens, which starts with an optional determiner,
includes zero or more adjectives, and terminates with a noun (singular or plura).

3.1 Grammar notation

More formally, a pattern for matching a sequence of annotations is defined by
composing symbols (see 4 for definition and syntax of TFST symbols) according
to afew rules.

e The symbol <E> denotes the empty symbol. Matching against it always suc-
ceeds.

e A symbol defines a pattern by itself; thus {NN} defines a very simple pattern
which will be matched by tokens whose syntactic category is "NN" (noun).

e If Pisapattern, sois (P). It matches the same text span as P.

o If P, and P, are patterns, so is P, . P,. Assuming 77 and T, are text spans
which, under any given analysis by prior plugins, are matched by R and P,

8Part-of-speech disambiguation is carried out by a prior process to TFST execution, by one of
TEXTRACT stagger plugins; see 5.2.

11

respectively, the combined pattern matches the concatenation of 77 and 7T5.

e If P and P, are patterns, so is P, | P,. It matches any text span which will be
matched by either P, or P, .

e If Pisapattern, sois P x*. It matches a contiguous (non-broken) sequence of
zero or more text spans, each of which matches P.

e If P, and P, are patterns, sois P, &P,. Both P, and P, must ‘match’ over the
same text span, i.e. they are applied to the same annotation. Thus, the & operator
functions as a conjunction.

e Each pattern specification in a grammar is named. There is no ‘semantics to
the name assigned to a pattern; it is purely mnemonic. The name of a pattern,
however, acts as a ‘macro’, and can be used by other rules (naming of a pat-
tern acts as a combined declaration/definition; thus named patterns can only be
used in patterns specified after the definition). In a grammar which contains the
following pattern specification: namedP = P;, subsequent rules can refer to
pattern P by writing : namedpP.

The core grammar writing notation does not provide other familiar regular expression-
like operators, in particular wild-card (cf. " . "), zero or one occurrences of a pat-
tern ("2 "), and one or more repetitions (" +"). Note, however, that these are easily
specified, or handled elsewhere in the formalism:

e If Pisapattern, P | <E> matches zero or one occurrences of that pattern in the
text.

e If Pisapattern, P. P* matches at |east one, and possibly more, occurrences of
that pattern.

e Given that wild-carding over an annotation at a given point of the annotation
stream is ambiguous—recall that more than one annotations may be available as
beginning at any token position—different symbols denote the annotation type
of the wild card; in particular, <SWORD> matches any token, <WORD> matches
any lexical family annotation (thus it will match vocabulary items in text), and
[SYN] matches any syntactic family annotation (see 4.7).

3.2 Grammar organisation

A grammar consists of one or more pattern specifications. Patterns are named, and
delimited by semicolon (;).

A grammar defines a single automaton; thus all the patterns are ultimately—or

°Define...

12

should be, or they will be lost—used in the final, ‘root’ rule of the grammar. By
convention, agrammear fileisatext file, whose basename must be identical'® to the
root rule name. Returning to our simple one-rule grammar of earlier, this could be
reorganised as follows:

det = {DT}|<E> ; # optional determiner

premod = {JJ}* ; # zero or more pre-mod adjectives
noun = (NN} | {NNS} # the head nominal

np = :det . :premod . :noun

This grammar will be stored in afile, np . cfg, named after the root pattern rule.
Comments are allowed, and introduced by acomment character (#); comments run
to the end of line.

3.3 Grammar to Talent interface

The grammar in the example above defines an automaton which will match certain
simple NP's. The success or failure of applying this automaton to any given text*

is ephemeral; unless something is done at the point of a successful match, there
will be no memory of it in the system.

The TFST executor applies an automaton to the annotation repository. According
to grammar instructions, matches are recorded, as new annotations (and/or fea-
tures on annotations) in the same repository. Conceptually, in much the same way
in which aFStransduction modifies a character string, a TFST ‘transduction’ mod-
ifies an annotation repository.

Operations on annotations are typically signaled by the meta-character /. The
genera notion is that if P is a pattern, and T' is an operation over an annotation
repository, then P /T isacomposite symbol, whose interpretation isto execute the
operation 7' if and only if the pattern P matches.

Currently there are three categories of transactions. create, and post, new annota
tions, and optionally post vocabulary items; post properties on annotationd?; and

OFailure to do so resultsin error during compilation of the grammar into an FST: see 5.1
U Re-write, consi stently, to address that matching of an FST isagainst an AR, really, not atext...
2Check: can we modify existing properties, on existing annotations?

13

delete annotations.

As an example, consider again our NP grammar. To ‘remember’, and record, the
match, it needs addition to the root rule:

np = <E>/[simpleNP:phrasal . # post a new anno from here...
:det . :premod . :noun . # covering the np match,

<E>/]simpleNP # to here; label it "simpleNP"

Ignoring for the time being the : phrasal specification (but see section 4.9.1),
the pair of transduction operations jointly achieve the effect of posting an anno-
tation over the span of text matched by the np rule, with alabel "simpleNpP".
More specifically, the meta-character [simply prepares for posting, by ‘ dropping’
amarker right before a match; later, 1 actually carries out the operation of adding
alabelled annotation to the annotation repository. Note that the label strings on the
[and] operators must be identical.

Annotations can carry features, and these can be set from the grammar rules. In the
above example, something about the matching span (namely, that it isasimple—as
opposed to, say, complex—noun phrase) is registered in the label. Similar effect
could be achieved by means of setting an appropriate feature on the new annotation:

np = <E>/ [NP:phrasal .
:det . :premod . :noun .
<E>/]NP:+simple

post a new anno from here...
covering the np match,

to here; label it "NP",

set a binary feature simple=true

H H H

Features can be binary, or they can hold numeric values. Accordingly, the transduc-
tion should specify one of the following (for more on features, see section 4.9.1).

e /] Label:+Feature
e /] Label:-Feature
e /] Label:Feature=IntValue

14

Finally, annotations can be deleted directly from the grammar. Deletion—signalled
by a - operation on the transduction—removes the annotation just matched. Delet-
ing annotations typically corrects earlier process decisions (either made by an up-
stream annotator, or alower grammar in amulti-level FS cascade of grammars; see
3.4), or removes ‘scratch’ annotations, used to hold intermediate results.

Consider a grammar which runs after identification of simplex noun phrases has
aready happened (see section 3.4, on cascading multiple grammars). The follow-
ing rule implements the notion that a possessive construction over a simplex noun
phrase can function, syntactically, asa complex determiner.

np = <E>/[PossNP:phrasal .
<E>/[PossDet:lexical . [NP]/- . <POSS> . <E>/]PossDet .
[NP] .
<E>/] PossNP

The grammar assumes that syntactic annotations with an "Np" label have already
been posted, and it looks for patterns of larger possessive noun phrases with a
contour of NP’s NP (a possessive marker, ’s, will match the <POSS> symboal).
When it finds such a pattern, the "NP" annotation over the first noun phrase is
deleted, a new annotation with label "PossDet " gets posted over the sequence
of noun phrase and possessive marker, and a covering (also new) annotation is
created to span the entire possessive phrase, with alabel "PossNP".

In effect, the annotations over the text have undergone the following transforma-
tion:

from [NP NP NP] <POSS> [NP NP NP]

to [PossNP [PossDet NP <POSS> PossDet] [NP NP NP] PossNP]

15

3.4 FSgrammar cascading

The notion of running more than one grammar, in sequence, with latter ones using
matches from earlier scans, is commonly referred as cascading. Thisisacommon,
and effective, strategy for avariety of different tasks.

One of the primary resons for organising an analysis task as a sequence of cascaded
grammars, as opposed to designing a single automaton, is that frequently more
complex patterns can mush easier, and more naturally, be described interms of sim-
pler ones. Examplesfrom natural language syntax abound. Consider agrammar for
sinding noun groups in isolation 5.3. Such agrammar might decide to focus on the
basic contour of anoun group: determiner unit, pre-modifier(s), and head nominal.
It can be arbitrarily sophisticated in defining different types of nominal which can
function as heads, and in specifying a broad variety of pre-modifying constructs.
Once defined, and with annotations marking the span of such text fragments, the
definition of more complex nominal expressions—such as those that include post-
head modifiers, or recursively embedded noun phrases acting as pre-determiners
for other noun phrases (as exemplified in the preceding section)—becomes both
more natural and convenient.

Thisisbecauseit is now straightforward to define higher level rulesin terms of sin-
gle annotations, abstracting from the complexity of earlier patterns which resulted
in those annotations being created in the first place. Also, there may be multiple
places in higher level analysis where alower level abstraction would be required:
consider how many syntactic and grammatical and semantic and so forth constructs
are describable in terms of some kind of a noun phrase.

Cascading also offers a convenient way of being sensitive to larger context. Fre-
quently, specifying all the interdependencies among constituents, and making sure
that these are triggered on in some, but not other, contexts may turn out to be
arbitrarily complex, confusing, and even impossible. Splitting the analysis into
separate identify-and-group, or over-generate-and-filter makes the task tractable.

Consider, for example, finding appositive noun phrases. These are expressions
where in a single noun phrase construct there is both a mention, and a description,
of an object: ““Scott Ritter, a former inspector”’, “the toughest Soviet commander in
Afghanistan, Lt. Gen. Boris Gromov”. Assuming a separate noun group identifica-
tion grammar, which can tag the spans it marks with features like +properNoun
(to denote that the head of the noun group isa proper noun name), and which can be
run as a component to a larger noun phrase grammar (which folds post-modifying
prepositional phrases within the NP span), a ssmple rule can express the observa-

16

tion that an appositive noun phrase conjoins two NPs, one of which has a proper
noun head, in arbitary order, separated by a comma, and delimited by a comma or
end of sentence. (The exact semantics of the different kinds of symbol used in the
example are described in the following section, 4.)

appNP = <E>/[appositiveNP:phrasal .
([NP:-properNP] . <COMMA> . [NP:+properNP]) |
([NP:+properNP] . <COMMA> . [NP:-properNP]) .

(<COMMA> | <PERIOD>)
<E>/ [appositiveNP

The simplicity and perspicuity of such an expression ows largely to the fact that
much of the complexity in identifying and marking [NP]’sis relocated to lower
levels of the cascade.

By its nature, cascading grammars is a mechanism which promotes multi-level
structural descriptions of complex constituent phrases and strings. An interpreta
tion of a cascade by the TFST interpreter mimics, in effect, bottom-up recognition;
if each level of the cascade assigns—by means of a suitable annotation—a label
to its anaysis, the process of passing these analysis to be consumed, and used,
at higher levels will result in a structured representation of the string ultimately
recognised by the cascade!®

Another strategy for which cascading is useful, over-generate-and-filter, is based
on the observation that sometimes it is much easier to recognise—and recognise
only—strings which conform to a higher level, uniform, description, without try-
ing to carry out, simultaneously with the recognition, more elaborate analysis of
these, such as e.g. sub-typing. For instance, it is relatively straightforward to write
(for English) a grammar for a verb group; this would recognise expressions like
“sleeps™, ““is not walking™, “would have most likely been seen”’, ““has also been
known as”, and so forth. Operationaly, it is both easier and cheaper to defer till
later—i.e. to a subsequent grammar—computation of certain syntactic features,
such as modality and tense, on the verb group. To that end, a special notation is
provided, as a device for examining the inner contour of an annotation already

BMaybe an example here of the structure of an appositive analysis; [appNP [headNP [...
headN]] [descriptiveNP ... []...]].

17

posted by an earlier component in a cascade (see section 4.10); an example of the
use of this notation is available in section 5.3.

Finally, TFST cascades are a natural means for stratification of anaysis. Intypical
information extraction tasks, an earlier component identifies mentions in the text
of semantic categories of particular relevance to the domain of application. Exam-
ples here would include, for instance, diseases, symptoms and drugs, in a medical
domain, or geopolitical entities, political figures, and geographical locations, in a
political domain. Grammars for such categories are typically idiosyncratic, both in
terms of vocabulary coverage and identification strategy. Nonetheless, higher lev-
els of abstraction in either domain are likely to appeal to more traditional syntactic
notions like verb groups and its arguments, or a complex nominal structure and its
pre-modifiers. Being able to separate semantic analysis from syntactic behaviour
not only facilitates cross-domain adaptability and reuse of grammars, but also of-
fersanatural way of incorporating semantic categories into syntactically-mediated
analysis of relationships among such categories. In essence, the ability to cascade
FS grammars is the cornerstone of rich and flexible domain semantics.

18

4 TFst symbols

A symbol in a TFST grammar is a template for an annotation which is to be
matched againjst the grammar at a given position of the matching process. Muchin
the same way asin aconventional regular expression acharacter is matched against
the character at the current position of the input buffer, a TFST symbol specifiesthe
test(s) to be carried out, which would determine whether the match of the symbol
against the current annotation succeeds or fails.

Recall that the notion of “current” annotation is an ambiguous one in TEXTRACT.
A symbol, then, not only encapsulates one or more constraint specifications; it
also communicates to the Tfst executor engine how to iterate over the annotation
repository in order to identify which annotation the constraints should be tested

again.

In line with the magjor annotation familiesin TEXTRACT (see 1), the overall shape
of asymbol is broadly indicative of the annotation type it targets. Symbols can be
enclosed in different type of delimiters, or not delimited (explicitly) at al. Thus
there are five general categories of symbol.

e Not delimited by any kind of brackets. however, \Atomic. This kind of
symbol typically targets the string property of atoken.

e Delimited by angle brackets (<. . . >): <Sentence: : IsTitle>, <SWORD>,
<PUNC>. Testsfor orthographic features on lexical annotations, configurational
relationships between lexical annotations and document structure characteris-
tics, or property lookup with respect to external authotity.

e Delimited by curly brackets ({. . .}): {NN}, {VB+AUX}, {PERSON}. Tests
on lexical properties of lexical family annotations, vocabulary properties, mor-
phosyntactic categories of word tokens,

e Delimited by square brackets (. ..1): [NP], [SYN]. Tests for syntactic cat-
egories with given labels.

e Delimited by double angle brackets (<<...>>): <<”[12] [0-9] {3}$>>.
Specifiesaregular expression match over the underlying string image of alexical
annotation.

Asagenera rule, the meta-character ! isused to negate the match. Negation only
applies to symbols, and its interpretation is that only after the symbol (without
negation) has been fully interpreted and matched against the current annotation,
the polarity of the result is reversed, and returned as the final value from testing
against the composite symbol.

19

The negation character has to be ‘inserted’ into the rule, right after the opening
bracket(s): <!LOWER> will match alexical annotation whose string image con-
tains at least one upper-case character; [!NP] will match a syntactic annotation
with any label but "NP". Note that, counter-intuitively, this convention makes the
! look like a part of aregular expression; still <<!Jan\ . ?$>> will succeed on
any token but Jan or Jan.. Also, note that for symbols of the first category above—
without brackets—the ! is prepended to the symbol expression: ! \OK.

Below are the semantics of the different symbol categories.

Symbols not enclosed in any kind of brackets specify matches over the strings of
lexical family annotations.

4.1 Testsover lexical annotation strings

e Symbol strings entirely in lower case specify a match which succeeds upon
case-insensitive string equality to the annotation text string. This the sym-
bol abracadabra will match all of abracadabra, Abracadabra , and Abra-
CaDabra.

e Symbol strings which are not al lower case succeed only upon exact string
match: Ok will match Ok, but fail on OK.

e Symbols preceded by escape character (\) succeed only upon exact string match.

4.2 Testsfor orthographic properties

Symbols in this category test one or more characteristics of the shape of alexica
family annotation.

<WORD> : alexical family annotation

<PUNC> : special character(s)

<POSS> : apossessive type annotation (s,)

<SWORD> : asingle word (no blank spaces)

<MWORD> : amulti-word (has blank space(s))

<ALPHA> : asingle or multi-word having only alphabetic characters
<LOWER> : has no uppercase |etters

<UPPER> : has no lowercase |etters

<LUPPER> : hasleading upper case

<LEAD> : only the first character is upper case

<MIXED> - has lower case letters and at |east one upper case one after a non-blank
<NUMERIC> : hasonly numbers

<COMMA > : comma

20

<PERIOD> : period

<ODQ> : open double quotes

<CDQ> : closed double quotes

<DDQ> : double quote

<0SQ> : open single quote

<CSQ> : closed single quote

<E> : empty transition. Thisisano-op.

If the annotation being matched refers to a word, the symbol may incorporate an
additional test for its morpho-syntactic (in particular, part-of-speech; see 4.6) prop-
erties; thus, <ALPHA : NN> will match a single word which has been tagged as a
noun {NN}.

4.3 Testsfor document structure relationships

Always with respect to the current annotation, the tests below succed or fail upon
establishing whether a specified relationship holds between the current anotation
and some enclosing (larger) document structure annotation. The semantics of the
symbols are, hopefully, directly inferrable. They denote a particular relationship
(from an exhaustive inventory of pre-defined relations) between (larger) document
structure annotations covering the annotation at hand; another denotation tests a
particular property, especially on the enclosing Sentence annotation. (Properties
on sentence annotations—the sentence is marked as a heading, or belonging to a
document abstract, or is ‘vanilla, i.e. a regular sentence—are set by a document
structure analysis plugin which is part of TEXTRACT'’S base services; the detail
of analysis, however, varies depending on the quality and extent of markup in the
original document source.)

<Document: : IsSectionFirst> <Paragraph: : IsSentenceFirst>
<Document: : IsSectionLast> <Paragraph: :IsSentenceLast>
<Document : : IsParagraphFirst> <Paragraph: : IsWordFirst>
<Document : : IsParagraphLast > <Paragraph: : IsWordLast>
<Document: : IsSentenceFirst>
<Document: : IsSentenceLast> <Sentence: : IsWordFirst>
<Document : : IsWordFirst> <Sentence: : IsWordLast>
<Document: : IsWordLast> <Sentence::IsVanilla>
<Sentence: : IsHeading>
<Segment: : IsSentenceFirst> <Sentence: : IsNonText>
<Segment: :IsSentencelLast> <Sentence: : IsAbstract>
<Segment: : IsWordFirst> <Sentence: :IsCaption>
<Segment: : IsWordLast > <Sentence: :IsMetaData>

21

<Section: :IsParagraphFirst> <Sentence: : IsAppendix>

<Section::IsParagraphlLast> <Sentence: :IsTitle>
<Section::IsSentenceFirst> <Sentence: : IsJunk>
<Section: :IsSentencelast> <Sentence: :IsTable>

<Section: :IsWordFirst>
<Section:IsWordLast>

Thus <Document : : IsSentenceFirst> succeeds only if the sentence en-
closing the current annotation is, in fact, the first sentence in the document; and
<Sentence: : IsTit1le> tests whether the Title property is set for the sentence
annotation covering the current ‘point’ in the annotation stream.

It is clear that there is no room in this category of symbol for additional tests on
the annotation itself. Thisis generaly true of a range of complex tests: it is not
aways the case that a ready-made symbol exists which encapsulates just the right
combination of constraints over the current annotation. These are prime examples
of a situation which requires the use of the & grammar operator (see 3.1). Thus, a
match of a pattern within a particular document structure configuration might take
the form:

np = <!Sentence::IsTitle> & :det . :premod . :noun

This rule would find all noun phrases (see the "NP" grammar in 3.2) in the docu-
ment, except those which are in the title sentence.

It is also possible to test properties of document structure annotations. Typically,
these would have been set by atransduction operation (see 4.9 below). Given that
properties can be either binary, or of numeric (integer) values, the test might take
the form of <Paragraph: : +boolProp>, 0r <Document : : numProp=5->.

44 Testsagainst an authority file

TEXTRACT provides ageneral mechanism for consulting an external authority file.
Generally speaking, an authority file assignsalexical item to one or more semantic

22

categories, and (optionally) tags it with anumber of property tags. The most com-
mon use of an authority file, to date, has been to inform a named entity recogniser
(Ravin and Wacholder, 1997); to that end, the following illustrates the general type
of entry that could be found in an authority file.

ORG ORG OFTAG @ 0 0 O 0 1 |Council]|

PERSON PERSON OFTAG @ 0 0O 0 O 1 |Inspector|

PERSON PERSON OFTAG PERSON PLURAL @ 0 0 O O 1 |Inspectors]|

PLACE PLACE CITY @ 0 0 O 0 1 |Peshawar|

PLACE PLACE NAME @ 0 0 0 0 1 |Ivanovskaya]

PERSON PERSON FIRSTNAME @ 0 0 O 0 4 |wWilliam| |Willy| |Bill| |Billy|

® ® ® ® e @

It is beyond the scope of this document to present details of TEXTRACT’S external
authority mechanism. Concerning the format and tags of the authority source,
associated tests and API’s, extensions and/or modifications to incorporate larger
and/different sets of categories and tags, and so forth, the reader should contact
one of the authors; also see (Ravin and Wacholder, 1997) for some background
information.

Broadly speaking, the API to an external authority is organised in such away that
for each tag in the authority vocabulary (such asthe ORG, PERSON, PLACE. CITY,
and so forth exemplified above, thereisatest. The authority file gets compiled into
a hash structure, available to TEXTRACT’S system as a vDict resource. Such
a resource gets registered with the system by means of a declaration in TFST's
executor configuration setup (see 5.2):

Authority_ldentifier = VdictAuthority (filename)

For example, in order to register TEXTRACT’s default authority file (the one used
by the Nominator plugin) under the symbolic name Nominator with TFsST,
the following declaration should be placed inthe [nfstxeq] section of the . Ini
file!,

Nominator = VdictAuthority (C:/TalentRT/TalentData/nom.authority.vdict)

After registration, the name of the Authority_ldentifier becomes available to the
grammar via one of the following constructs:

M Allowing, of course, for local directory structure of the TALENT run-time environment.

23

< Authority Identifier? test>
< Authority Identifier? test, value>
< Authority Identifier? test, op, value>

The op parameter can be either EQ (equals), GT (greater than), GTE (greater than
or equa to), LT (less than), or LTE (less than or equal to). The first syntax option
is equivalent to <Authority_Identifier 2testEQtrue, and the second syntax option is
equivalent to <Authority_ldentifier 2testEQvalue.

The complete sets of tests against TEXTRACT's standard Nominator vDict au-
thority is given below.

Person : tests if person

PersonOFTag

PersonEndTag

PersonBegTag

PersonWeakBeg

PersonWeakEnd

Male : tests if word indicates amale

Female : tests if word indicates afemale
LowerCasePrefix : testsif isalower case prefix of aperson’s name
UpperCasePrefix s tests if isa prefix of aperson’s name containing upper case letters
Royal : tests if word is the name of royalty
Surname : tests if word is a surname

FName

FirstName : testsif word isafirst name
LowerCaseName : tests if word is alowercase person name
PersonWeakOFTag

PersonPlural : tests if word isa plura name

Oorg : tests if word is an organization
OrgOFTag

OrgTag

OrgWeakEnd

OrgEndTag

OrgSingleWord : tests if aword is a one word organization
OrgName : tests if word is an organization name
Government : tests if word is part of a governmental organization name
Company : tests if word is part of a company name
OrgLongTag

OrgWeakTag

Place : tests if word isa place

PlaceOFTag

PlaceBegTag

PlaceEndTag

24

City

Country
Continent
USPlace
PlaceName
PlaceWeakTag
Road

Capital

Region
CanadaPlace
Word
LowerCaseWord
Func
PNAdjective
Singular
NoName
NotAlone

Date
RomanNumeral
Modifier
NatModifier
Day

NoEOS
LowerCaseName
TechNoName
AbbreviatedWord
Lemma
Separator
Other

Entity

Area

Product

Fund
OtherSingleWord
WordNumber
Uncategorized
MakeUncat

Term
Abbreviation
Place?

Person?
Special
SpecialMake
Specialln
SpecialModal
SpeciallLocation
SpecialNPrep
SpecialCompany
SpecialEmpty
SpecialFinance
SpecailMakeIdiom
NP

: testsif word isacity

: tests if word is a country

: tests if word is a continent

: testsif word is a place in United States
: tests if word is a place name

: tests if word is part of aroad name

: tests if word is a capital

: tests if word isaregion

: tests if word is a place in Canada

: testsif word

- tests if word contains all lower case |etters

: tests if word is a proper noun adjective
: tests if word is singular

: tests if word is part of a date

: tests if word is a roman numeral

: tests if word is a modifier

: test if word is anational modifier

: tests if wordsisaday

: tests if word cannot be at the end of a sentence

: tests if word is a name with all lower case letters

: tests if word is an abbreviation
: tests if word isalemmaform

: tests if word is categorized as other
: testsif word is an entity

: testsif word isan area

: tests if word is a product

: tests if word isafund

: tests if word is uncategorized

25

For an ImDict authority file, such as TEXTRACT's statistics authority file (used
by e.g. the Summarizer application), the following tests are supported.

exists : tests if word isin the authority file

10 : tests the 1Q value

freg : tests the frequency of the word in the collection
total fregq : tests the collection size

45 Testsof vocabulary properties

Symbols enclosed in curly brackets specify tests on the properties of lexical fam-
ily annotations. These are currently limited to lemma forms of words, canonical
forms of vocabulary, the morpho-syntactic properties of words, and the category of
vocabulary.

e {text string}, where text string is alemma form or a canonical form of aword
or vocabulary item. If the lemma form or canonical form begins with an up-
per case letter, it must be escaped with the TFST escape character, by default
\ (cf. 4.1: \United States). The text string may optionally be followed
by a syntactic category or vocabulary category specification (see below), e.g.
\{Chicago:PLACE}.

e {VCAT} whereVCAT isavocabulary category: UWORD, UABBR, UNAME, OTHER,
PLACE, PERSON, ORG, PLACE?, PERSON?, ORG?, UTERM. These strings
arelisted in talent_cats. cpp. Currently these must match case exactly®
Specia ones are: {VOCAB}, matching any vocabulary type annotation, and
{EXPR}, matching any expression type annotation.

o {PropertyTest}, where PropertyTest is a specific test on a certain property of the
lexical annotation. The possible tests are listed overleaf.

5L ater, we may decide that they must begin with an upper case |etter, but otherwise match would
be case-insensitive.

26

IsStop : matches if word is a stop word

IsEmpty : matches if word is an empty word
IsEmptyInterior :matchesif word isan empty interior word
IsEmptyInitial : matches if word is an empty initial word
IsEmptyNonFinal :matchesif word isan empty non-fina word
IsEmptyFinal : matches if word is an empty final word
IsVariant : matches if word isavariant of some lemma form
IsInLex : matches if word occurs in the lexicon
IsCompound : matches if word is a compound

IsLemma : matches if word isits own lemmaform

As an example, a small grammar which picks up al vocabulary item annotations
created by TEXTRACT's vocabulary plugins (such as Abbreviator, Expressions,
Nominator, Terminator; see (Neff et a., 2003)) can be written as follows:

vocabulary = <E>/[vocab:lexical . {VOCAB} . <E>/lvocab ;
expression = <E>/[xprsn:lexical . {EXPR} . <E>/]xprsn ;
category = :vocabulary |

:expression

4.6 Testsover morphosyntactic features

A broad range of grammars can be developed by writing patterns which exploit
morphosyntactic properties of words. Typically, and minimally, such properties
include part of speech and inflectional information. In a pipelined system, such as
TEXTRACT, it is the responsibility of alexical lookup module, possibly followed
by a part-of-speech tagger, to derive such information and place it on lexical items
(typically, words).

TEXTRACT currently uses a tagger trained over a (dlightly expanded) Penn tag
set (Santorini, 1995); also see (Neff et al., 2003, appendix). This maps directly
onto the set of TFST symbols for matching against part of speech and inflectional
morphology. We have already seen some some examples of patterns which appeal

27

to this information, in the sample garmmars earlier for simple noun phrases; their
general formis {Morpho_Syn_Test}.

In TALENT 5.1, the set of Morpho_Syn_Tests is defined externally as a list in
TalentData/FstLexSymbols. Thefile maps (typically) atomic tag symbols—
from the Penn tag set in this instance, but in principle from any tag sef®—to
UnilLex style of morphosyntactic feature cluster.

The current set of definitions is given below. Evert tag, or tag feature cluster, can be
specified asaMorpho_Syn_Test}. At present, all tags/ feature clusters are treated as
atomic; eventualy, the notation will be modified so feature clusters can be specified
over an open vocabulary of tag and feature names.

AUX _auxiliary _infinitive

AUXD _auxiliary _past

AUXG _auxiliary present participle
AUXN _auxiliary past_participle

AUXP _auxiliary _present _vbp

AUXZ _auxiliary _present _3p _singular
VB+AUX _auxiliary

VB+AUX:D _auxiliary _past

VB+AUX:G _auxiliary _present_participle
VB+AUX:N _auxiliary past_participle
VB+AUX: P _auxiliary _present _vbp

VB+AUX:Z _auxiliary _present _3p _singular
VB+AUX: I _auxiliary _infinitive

VB-AUX _nonmodal_nonaux

VB-AUX:D _nonmodal nonaux _past

VB-AUX:G _nonmodal_nonaux _present_participle
VB-AUX:N _nonmodal_nonaux _past_participle
VB-AUX:P _nonmodal_nonaux _present _vbp
VB-AUX:Z _nonmodal_nonaux _present _3p _singular
VB-AUX:I _nonmodal nonaux _infinitive

VB _nonmodal

VBD _nonmodal _past

VBG _nonmodal _present_participle
VBN _nonmodal _past_participle

VBP _nonmodal _present _vbp

VBZ _nonmodal _present _3p _singular
VBI _nonmodal _infinitive

VB _nonmodal

VB:D _nonmodal _past

160ther, or different, symbols may be defined by a grammar writer, as long as they use the same
set of bit definitions defined in TalentData/Emorph. txt

28

VB:G _nonmodal _present participle
VB:N _nonmodal _past_participle

VB:P _nonmodal _present _vbp

VB:Z _nonmodal present 3p _singular
VB:I _nonmodal _infinitive

cc _coordinating conjunction

Cs _subordinating conjunction

CD _cardinal_number

DT _ordinary determiner

EX _existential

FW _unique _foreign

IN _preposition

JJ _ordinary_adjective

JJR _ordinary adjective _comparative
JJs _ordinary adjective _superlative
JJg-Cc-s _ordinary adjective ! comparative !_superlative
LS _unique _list

MD _modal

NN _common_noun

NNS _common_noun _plural

NP _proper _noun _singular

NPS _proper_noun _plural

PDT _predeterminer

POS _unique _possessive

PP _personal_pronoun _other_ cases
PP$ _personal_pronoun _possessive

RB _ordinary adverb

RBR _ordinary_adverb _comparative
RBS _ordinary adverb _superlative

RP _particle

SYM _unique _symbol

TO _to

UH _interjection

WDT _wh_determiner

WP _relative_pronoun _other cases
WP$ _relative pronoun _possessive
WRB _interrogative_ adverb

4.7 Testsover syntactic annotations

Syntactic family annotations can be examined with symbolswhich usethe [Label]
notation. In the current TEXTRACT system, the only way to post syntactic anno-
tations is through a TFST grammar. Thus this category of tests is typically used
in multi-level grammar cascades, and any syntactic annotation posted by an earlier
level can be tested for by checking for equality between the labels. if our simple
grammmar (reproduced below) posts an "NP" annotation, any grammar applied

29

after it can reasonably specify, inarule, [NP]—assuming, of course, that no dele-
tions of [NP] s have happened in the mean time.

det = {DT}|<E> ; # optional determiner

premod = {JJ}* ; # zero or more pre-mod adjectives
noun = (NN} | {NNS} # the head nominal

np = <E>/[NP:phrasal . post a new anno from here...

covering the np match,
to here; label it "NP"
set a binary feature simple=true

:det . :premod . :noun .
<E>/]NP:+simple

H* H H H

In addition to checking the label of a syntactic annotation, it is aso possible to
test a feature: for instance, the following pattern will find al, and only, "NP"
annotations posted by the earlier grammart’.

simpleNP = <E>/[simpleNP:phrasal . [NP:+simple]l/- . <E>/]simpleNP ;

*Out of the box’, there are the following syntactic annotation labels!8

AdjP,

NP, NPP, PNP, NPS, CNP, NPList,
VG, PVG,

pp,

MC, TC, WHP, SC,

SUB, PSUB, OBJ

A rule can aso test for any label that has been posted (and thus defined) by the
current, or lower level (i.e. preceding this grammar in a cascade) FST's.

Check...
8This needs a more elaborate write-up

30

4.8 Regular expressions over lexical annotation strings

A symbol enclosed in double angle brackets <<RegEx>> specifies a character-
based regular expression match over the string image of alexical annotation. TFST's
regular expressions follow closely GNU’s regular expression specification, found,
for instance, in the man entry for the GNU grep command®

A regular expression defines a set of strings, according to certain composition and
interpretation rules. Fundamentally, the simplest regular expression matches asin-
gle character. All alpha-numeric characters, and most other (graphical) characters
too, denote regular expressions that match themselves. The exceptions are a few
meta-characters, which signal special matching behaviour to the regular expression
interpreter. All meta-characters, of course, can be escaped, with a RegEx quote
character (a backdash). Note that the regular expression quote character is not the
same as the escape character used in certain TFst symbols (4.1, 4.5). Also, note that
while the same character is used for both, the symbol-level escape character can
be redefined (via the TFst executor . Ini file; see 5.2. Finally, note that another
symbol meta-character, /, is escaped inside of aregular expression by writing / /.

The period (.) matches any single character. Common composition operators,
for building larger expression out of smaller ones, are concatenation, alternation,
and repetition. Concatenation is implied by joining two regular expressions. for
instance, given the expression a, a. will match any two-character sequence be-
ginning with a. Alternation is signalled by |: eg. before|after will match
if the target string contains either of the substrings before or after. Repetition
comes in different flavours, and is specified using several meta-characters. If reis
aregular expression, then the different ways of specifying repeated occurrences of
re in the match are described bel ow.

re will be matched zero or more times;
re will be matched zero or one time;
re will be matched one or more times;

rex
re?
re+

vV V VvV

LI | | N TR TR 1
\%

re{N} re will be matched exactly N times;
re{N, } > re will be matched N or more times;
re{M, N} > re will be matched at least M times, but not more than N times.

PThe next major release of]sc TFst will be based on ICU’s native RegEx package; see
http://oss.software.ibm.com/icu/userguide/regexp.html. Grammar writers
are encouraged to consider portability of the regular expressions they write.

31

Repetition takes precedence over concatenation, which in turn takes precedence
over aternation. A whole sub-expression may be enclosed in parentheses to over-
ride these precedence rules.

The . meta-character implicitly defines a set (of all characters) which the regular
expression . will match. It is possible to define narrower sets and thus constrain
the match. A bracket expression lists a number of characters, enclosed in [and
1; it matches any single character in the list. If the list starts with a caret (7),
a bracket expresison matches any single character not in the list. Metacharacters
typicaly lose their special meaning inside bracket expressions. To include aliteral
] it should be placed first in the list; to include a literal ~ it should be placed
anywhere but first; to include aliteral - it should be placed last.

Additionally, two meta-characters act as anchors: the caret (™) and the dollar sign
($) respectively match the empty string at the beginning and the end of athe string
being matched. Anchoring at the beginning or end of a word is specified with
\< and \>: \<re succeeds only if re is matched at the beginning of a word, and
re\ > succeeds only if re is matched at the end of aword. Asageneraisation, \b
matches the empty string at a word boundary, and \B matches the empty string
when it is not at aword boundary. For aregular expression like ~“res to succeed, it
must match the entire string.

In addition to explicitly specifying precedence, parentheses are also used to group
parts of regular expressions, so that an operator can be made to apply to the whole
group. Ancther function supported by enclosing parts of regular expressions in
parentheses is that of back-referencing. Specifying \n, where n ranges from 0 to
9, requests for amatch against the substring previously matched by the n-th paren-
thesised sub-expression of the regular expression: thus (abra) [abcd] {3}\0
will match abracadabra.

4.9 Symbolsfor transduction operations

As discussed earlier (section 3.3), transductions upon successful matches ofer a
way for the grammar writer to interact directly with the annotation repository or
the vocabulary. The different categories of transduction—create new annotations,
manipul ate features on annotations, and del ete existing annotations—are described
below.

32

49.1 Creating annotations

Matching labels on apair of symbols which mark the span of a match are the nota-
tional device for posting new annotations. If the label is one of the pre-registered
syntactic types defined and used by the shallow parser (see 4.7), or if the label is
that of an existing type, specifying it, and it alone, is sufficient for a well-defined
transduction: / [Label /]Label.

The first time that alabel is referenced, what needs to happen is its dynamic def-
inition, and registration, by the system. Annotations do not exist in isolation, but
always in relation to each other. At the very least, the annotations within the same
family instantiate a hierarchical relationship which allows them to possibly share
(inheritO some properties, and definesa’priority’ which controls the order in which
ambiguous iterators present annotations with co-terminus spans to a client (be it a
program, or a grammar).

For this purpose, a slightly more explicit construct is used: / [Label:Type

/1 Label. This works much as the earlier pair, but Label is a new, dy-
namically created type. Type is the type that is to be the parent of the new label.
If alabel with that name aready is defined, then the new type is ignored. The
new label is registered with the system regardiess of whether or not any new an-
notations with that label are actually created; the definition does not persist across
TEXTRACT invocations.

We can thus return to our example grammar. Since the label posted by the final
underlying pattern is not a priori registered with the system, we offer aclue asto
what its position is within the syntactic annotations type hierarchy.

det = {DT}|<E> # optional determiner
premod = {gg}+ # zero or more pre-mod adjectives
noun = {NN} | {NNS} # the head nominal
np = <E>/[simpleNP:phrasal . # post a new anno from here;
declare its position in the
type hierarchy;
:det . :premod . :noun . # covering the np match,
to here; label it "simpleNP"

<E>/] simpleNP

33

49.2 Setting properties on annotations

Through earlier examples, we have seen that properties (features) on annotations
can be either binary flags (with values of true or false), or they can hold integer
values. The general syntax for setting a property is +feature, or -feature, or fea-
ture=value; these set feature to be true, false, or equal to value.

Properties can be set on syntactic family annotations, or on document structure
family annotations. In the former case, the specification is placed on the transduc-
tion which posts the annotation. Inthelater case, as document structure annotations
cannot be posted from a grammar, the property setting specification is on atrans-
duction associated with a separately matching symbol. The following shows the
full complement of property setting expressions.

® /[Label ... /]lLabel:+feature,Ol /[Label ... /]Label:-feature

® /[Label ... /]Label:feature=value.

® /DocStructAnno: :+feature, Of /DocStructAnno: : - feature, where DocStructAnno
can be one of Document, Section, Paragraph, or Sentence.?

® /DocStructAnno: :feature=value.

4.9.3 Addingto thevocabulary

A grammar can directly add items to TEXTRACT's vocabulary (see (Neff, Byrd,
and Boguraev, 2003) for discussion on vocabulary and vocabulary items). Proce-
durally, an annotation needs to be posted over a span of text; adding the vocabulary
item is on the associated transduction, and amounts to adding the text span to the
vocabulary, asagiven type. Thiscategory of transduction comesin three flavours.

e /[vocabulary ... /]lvocabulary: createsanannotation over the span
covered by the pair, as type VOCAB. The text span is also added to the vocabu-
lary astype VOCAB.

e /[vocabulary:Label ... /]lvocabulary:Label:same asabove,
but the new annotation is of type Label, and the text span added to the vocabulary
isaso of type Label. Thetypeis known (registered with) the system.

e /[vocabulary:Label:Type ... /lvocabulary:Label:sameas
the last construct above, except Label is a new type label to be created. Type is
the type that is to be the parent of the new label. If alabel with that name al-
ready is defined, then the new type isignored. The new labdl is registered with

D\What about Segment?

the system regardless of whether or not any new annotations with that label are
actually created.

49.4 Deleting annotations

Deleting annotations, by means of a transduction operator /-, has aready been
discussed in 3.3.

4,10 Dual scanning regimes

One of the advantages of TFST isitsability to treat an annotation—any annotation—
as an atomic object against which a match can be specified. Usualy, one or more
tests on a cluster of features associated with the annotation itself (family, type, la-
bel, underlying string, morpho-syntactic properties, and so forth) is sufficient to
specify a match; the notational devices described so far are designed to specify
such constraints to the TFST executor.

Occasionally, however, it would be convenient to test for a specific annotation, and
then examine its ‘inner contour’ —to see whether a sequence of annotations that
the covering one spans conforms to certain configurational constraints. In effect,
what we would need to communicate to the executor is a complex command: test
for an annotation, specified by any of the means described so far in this section;
upon a successful match, descend into this annotation; test whether a given pattern
matches exactly the sequence of lower annotations covered by the higher match
(making sure that the right route through the annotations sub-|attice gets chosen; cf.
section 2.1); if the sub-match succeeds, pop back at a point suitable for registering
overall success for the higher level match; succeed, and then proceed.

The notational device used for such an operation employs a pair of push and
pop operators, available as meta-characters on symbols?? Conceptually, if S is
a symbol matching an annotation which could be covering other annotations, S
would signal the ‘descend into’ operation. At that point, the full complement of
TFsT symbols would be available to specify a pattern we would want to match
at the lower level; the match needs to completely consume the sequence of sub-
annotations. At the end of the lower level scan, the meta-character ~ requests a
pop to the prior (higher) level of analysis, restoring all context as appropriate.

ZlWhy aren’t we using a subFSt device, after all?

35

Typically, this machinery is used with analysis of the inner contour of previously
created syntactic family annotations. The example below illustrates a grammar
fragment which determines whether a verb group (analysed as vG by an earlier
grammar in a cascade; see section 3.4) contains a negative marker. Note that the
push/slashpop metacharacters are folded inside of the symbol brackets. The ex-
pression specifies that to qualify asanegativeVa, the verb group hasto contain
anot string (with an adverbia reading, for safe measure) anywhere inside it all
of ““does not know””, “would not have been known”, “is not”, ““not reporting™, for

instance, will match the pattern.

negativeVG = [VG] . <SWORD>* . (not & {RB}) . <SWORD>* . [VG"] ;

The grammar compiler (see section 5.1) treats [VG"] assynonymouswith <E>/";

[VG™] is more indicative of the pairing, and dual effect, of the push/pop opera
tions. Strictly speaking, ~ in this context is a transduction operator, with a specia
meaning to the TFST executor.?? Also note that it is possible to place these opera-
tors on consuming symbols; thus << !~ [0-9] +$">> isavalid symbol, specify-
ing that upon a successful match (for any lexical annotation that is not a sequence
of digits) a pop to a higher level should reset the scanning regme to that higher
level of analysis.

2This is somewhat messy: syntactically, the caret meta-character does look like a transduction;
it does not, however, affect the annotation repository. Also, if the caret looks like a transduction, so
should the underscore meta-character; maybe it will, for the next release...

36

5 Putting it all together

Grammars are written and maintained astext files; by convention, these are defined
with a . cfg extension. Before TEXTRACT’S TFST executor can load and apply a
grammar against an annotation repository, it needs to be compiled to FST format.
Furthermore, the executor needs to be configured for interpreting the FST.

51 Grammar compiler

A . fst file encodes the topology of a single finite state automaton, which encap-
sulates, in asomewhat optimised form, all the rule patterns defined by the grammar.

The FST compiler is a stand-alone executable, provided as a command-line tool,
fstcmp. Itis, a present, a ‘bare bones utility, which has a smple invocation,
and offers very little in terms of diagnostics if there is a problem with the source
grammar.

Assuming that our example grammar (33 is in a file np.cfg—remember that
the base name of the file must be the same as the root rule of the grammar—the
compiler isinvoked as follows.

bkb @ .../doc > fstcmp np.cfg
> "np.fst" : 7 symbols, 11 transitions, 8 states (down from 33)

bkb @ .../doc >

The FST compiler reports the name of the file with the compiled automaton, and
some rudimentary statistics concerning the compilation. In essence, if the output
from a compiler run looks like the fragment above, the compilation has been suc-
cessful.

If the grammar is deficient (syntactically) in some way, compilation fails. Error
recovery and self-diagnostics currently leave alot to be desired. Most likely the
author of afaulty grammar will see one of the following two messages.

37

bkb @ .../doc > fstcmp np.cfg
> Unrecognized character: < [‘<’ / x3c]

bkb @ .../doc >

This is indicative of failure of the lexical scanner which tokenises the grammar
source into TFst symbols. The offending character (straying from an acceptable
symbol syntax) is shown in graphical and hex formats.

bkb @ .../doc > fstcmp np.cfg
parse error:
> priorCompilationFor: no definition for ’'np’ found

bkb @ .../doc > fstcmp np.cfg

This is indicative of compiler failure in parsing a pattern rule. The faulty rule is
not necessrily the one reported. Check for missing concatenation operators (.),
or terminating semicolons) ;) , mismatched parentheses, or misspelt references to
names of earlier defined rules. Also, check that the root rule is named identical to
the base name of the . cfg file.

5.2 Configuring the TFst executor

Inlinewith TEXTRACT’s mechanism for externally defined (re-)configuration viaa
. Ini file, the TFST executor’s operation is controlled by means of setting its run-
time parametersinan [nfstxeq] stanza. Thefull set of parameters configurable
in this way is shown below; this is an extract from a valid . Ini file; note that
some paths will need to be modified to reflect local directory structure and file
organisation..

38

[nfstxeq]
fst_pathname
fst_filename
fst_max level
Nominator
fst_escape_char
definitions file

C:\Emma\Projects\TFst

markYears.fst pickYears.fst

2

VdictAuthority (C:\Frasier\nomRef\nomAuth.vdict)

\

C:\Frasier\cvsTextract\TalentData\FstLexSymbols.txt

Information about the . £st file to be loaded and applied by the TFST executor
is separately encoded in two parameters. fst pathname and fst filename.
This makes it easy to specify a regime of cascading FST grammars (see section
3.4): the names and sequence—from first to last—of . £st files comprising the
cascade are listed in the £st_filename declaration. It is assumed that the files
for al the automata in a cascade would share a directory path, and this is what
fst_pathname specifies.

The extent of the cascade for any particular runisdeclared by fst. max level. If
thisislessthan the number of filesspecifiedin fst_filename, fst_max level
is honoured, and not al levels of the cascade are activated on this partoicular run.
If £st_max_level is higher than the number of files specified, then al of them

get applied.

Thedefinitions_file would not normally be modified by a grammar writer,
and would be configured to refer to an external resource which is part of normal
TALENT 5.1 distribution. It defines the mapping between a particular part-of-
speech tag set and UniLex feature clusters; for more details on thisfile, see section
4.6.

The vdictAuthority declaration registers a specified authority file (pre-com-
piled in aVDict format; see 4.4) with the system, and makes it accessible to gram-
mar rules via the symbolic name Nominator. This kind of declaration is only
necessary if a grammar in a given TEXTRACT configuration checks properties of
lexical annotations against external authority.

Finaly, fst_escape_char defines the meta-character used for TFST symbol
level escape (see section 4.1, 4.5). This is not to be confused with the escape
(quote) character for overriding the special meaning of meta-characters in regular
expression specifications.

39

521 Seeingtheresults

Since the FS automaton is applied to an annotation repository, and not a charac-
ter string, and more importantly, since the transduction operators manipulate an
annotation repository, it is necessary to invoke a specially configured dump appli-
cation?3

There are two components to seeing the results of a match. The sc TFst executor
has to be not only configured, as described in the previous section, but it also needs
to be enabled. This is done by setting the nfstxeq parameter in the [run]
section of the . Ini file:

[run]
doc_structure
lex
expressions
abbreviator2
nominator
tagger
yatagger
nfstxeq
dump

L | | | | Y | A | R
HRP ORRPROORR

Notethat for this particular example, anumber of plugins, in addition tonf stxeq,
have been enabled. For any particular configuration of the TFST executor, at the
very least 1ex and doc_structure are necessary, as part of TEXTRACT’s basic
services. Beyond that, the grammar(s) may, or may not, require e.g. nominator
and/abbreviator (for instance, they may need accessto vocabulary items) or tagger
(for patterns with morpho-syntactic match symbolsin them.

Note that dump is also enabled. The dump plugin itself offers avariety of output
options and formats, for selective display of all or parts of the anotation repository
after any given combination of plugins have been instantiated. For acompl ete spec-
ification of these, see (Neff et a., 2003). For seeing the results of TFST matching,
the following is sufficient.

A TALENT 5.1 application is not dissimilar to aplugin, at least in that it subscribes to the same
API as a plugin does, and it has the same access to the annotation repository, lexical cache and
vocabulary as plugins do. Applications usually run after al the process plugins have finished; the
dump application certainly runs last, for obvious reasons.

40

[dump]
text
format

1
ascii_parse

In essence, this invokes a specia print option suitable for display of shallow parse
structures. TEXTRACT's shallow parser is configured as a multi-grammar cascade,
and implemented entirely as a TFST application. Since the only annotation type
a TFST grammar can post is within the syntactic family (see 4.9), the output ca-
pability of a shallow parser [dump] option is fully adequate for displaying the
annotations created after successful matches.

As areminder, the reader is cautioned that a successful match, by itself, would be
invisible outside of TFsT, and that it is imperative to post an annotation over the
matching span, which would be the tangible result from the match, remaining in
the AR for processes behind TFST to exploit.

Having compiled one or more . £st files, and having prepared a configuration
. Ini file, the system gets invoked as a command-line executable.

bkb @ .../talent > Talent.exe -config tfstRun.ini para.txt | less

Assuming that para.txt isafile containing sometext to be analysed by our grammar
of the preceding sections (np.cfg), the following is indicative of the kind of
output produced.

Throughout

[simpleNP the 1980s simpleNP]
the

Soviet

Union

threw

almost
[simpleNP every weapon simpleNP]

41

it
had

short

of

[simpleNP nuclear bombs simpleNP]
at

[simpleNP the Afghan camps simpleNP]
attacked

by

the

United

States

[simpleNP last week simpleNP]

Thetext fragments paired with [simpleNP ... simpleNP] labelsindicate
the spans of successful matches (with respect to this grammar; see p. 4.9.1) over
which a "simpleNP" annotation has been posted?*

One possible variation in the sample configuration above is to specify, instead of
ascii_parse vaue for the format parameter, tag_parse. This produces
similar output to the one above, but the tagger analyses are displayed inling; this
makes it easier to analyse the input-output behaviour of agrammar which exploits,
in particular, morpho-syntactic information in its rule patterns.

2For those who wonder why ““the Soviet Union” and ““the United States” are not marked as noun
phrases, the answer is because the grammar has not picked them up as such: for this particular run,
a named entity extractor has been enabled prior to TFST, and since the two phrases in question are
found to be named entities, they are covered by lexical annotations of vocabulary type. Thisis
not something thatour simple grammar is sensitive to.

42

5.3 Samplegrammars

this grammar assumes that Nominator has run.
simply match on the annotation types Nominator has already posted.
#
note:
Abbreviator(2) annotations can similarly be picked up by "{UABBR}"
#
person = <E>/[Person:lexical
({PERSON} | {PERSON?})
<E>/]Person ;
place = <E>/[Place:lexical
({pLacE} | {pPLACE?})
<E>/]Place ;
org = <E>/[Org:lexical . {orG} . <E>/]Org ;
uname = <E>/[UName:lexical . {UNAME} . <E>/]UName ;
#
nominator = :person |
:place |
:org |
:uname

this grammar assumes that any combination of plugins that
and post vocabulary item annnotations have been run

#

vocabulary
expression

category

<E>/[vocab:lexical . {VOCAB} . <E>/lvocab ;
<E>/ [xprsn:lexical . {EXPR} . <E>/lxprsn ;

:vocabulary |
:expression

7

detect

an example of regular expression match, over date/time tokens like

3-13-2002 or 06/15/1998 or May-13-2003,
and times like 12:00am or 12:00p.m.

H o o H H

mDate =
(<E>/[mDate:lexical .

(<<~[0112[0-91[-//11[1-312[0-911[-//1112]1[0-91{3}%$>>) |
(<< (Jan\.?) | (Feb\.) | (May) [-]1[1-312[0-9] [-][12][0-91{3}>>))

<E>/]lmDate) |
(<E>/[mTime:lexical .
(<<[01]12[0-9]:[0-5][0-9] [apm.]+>>)

<E>/]mTime)

example of a two-level cascade; implements ‘over-generate and filter’
strategy: level 1 identifies ‘year’ strings, such as "1999", "2003’,
and "late 1990s", and sets features to remember the shape of the
phrase; level 2 picks only those expressions satisfying some
criterion (feature) of the original specification.

H o o H H

Grammar 1 : simple grammar to mark year-based denotations in text

illustrates

regular expressions match over lexical tokens

= lexical string match

posting novel types

use of variables to mark properties of annotations
= Fst cascading

H o o H O HHHH

concreteYear = <<"[12][0-9]{3}%$>> ;

tempPtr = early | middle | late ;

vagueYear = the . <E>|:tempPtr . <<"[12] [0-9][0-9] [0-9]s$>> ;
markYears = <E>/[Year:unknownsyn

((:concreteYear . <E>/]Year:+concrete) \
(:vagueYear . <E>/]Year:-concrete)

+

Grammar 2 : simple grammar to pick some annos, posted by Grammar 1,
on the basis of a property value.

illustrates

matching over annotations,
testing properties,

= deleting an annotation,
Fst cascading

HoH o HHHHHH

pickYears = [Year:-concretel] /-

(<E>/[YearPoint:phrasal
[Year:+concrete] /-
<E>/]YearPoint)

46

H H H*

a slightly more comprehensive (albeit still far from complete)
noun phrase grammar

detP = ({ppT}|{DT}|{CD}) . ({pDT}|{DT}|{CD}) * ;
adjp = ({RB}|<E>) . {gg} . {gd}* ;
preMod = ({nN}|{wP}|{NPS}) |
{cp} |
(:adjP . (<COMMAs|{CC}|<E>)) ;
possMod = (<E>/[NPS . {PP$} . <E>/INPS) ;

simpleNP (:detP | <E>)
:preMod*
{rv}

({CD} | <E>) ;

properNP (:detP | <E>)
:preMod*
({wp} | {NPS})

({CD} | <E>) ;

elidedNP :detP . (:adjPp | {cD}) ;
possNP = <E>/ [PNP
:possMod .
<E>/[NP . :simpleNP . <E>/]NP
<E>/]PNP ;

np = (<E>/[NP .
(:simpleNP | {PP} | :elidedNP)
<E>/]NP)

(<E>/I[NP .
(:properNP)
<E>/]NP:+propNHead)

47

Grammar 1 : mark the boundaries of a wide range of verb groups

Infv = {To} . {RB}* . {VB+AUX}|<E> . {RB}* . {vB} . {VB}* ;
VbKernel = ({vB}|{vB+aUX}) . ({vB}|{vB+AUX})* ;
GenericV = {Mp}* . {RB}* . {VB+AUX}* . {RB}* . :VbKernel ;
VrbGroup = <E>/[VG
(:InfV | :GenericV) . {RB}*
<E>/]1VG
Grammar 2 : ’‘descends’ into previously marked verb groups, in order

to identify certain (configurational) features

AuxTensed = {VB+AUX:P} | {VB+AUX:Z} | {VB+AUX:D} ;
VrbTensed = {vB-AUX:P} | {VB-AUX:Z} | {VB-AUX:D} ;
VrbUnTensed = {VB-AUX:I} ;
VrbGrpModal = ([VG_]
{Mp} .
{rB}* .
(({vB-aux:1}) | ({VB+AUX:I} . {VB-AUX:G}))
{RB}*
<E>/")
VrbGrpTensed = ([VG_]
{rB}* .
((:AuxTensed . {RB}* . ({vB:G} | {vVB:N})) |
({vB+aUX} . {RB}*
:VrbUnTensed | :VrbTensed)

(:VrbTensed . <E>|{VB})
) .
{RB}*

[vGe™]
) | :VrbGrpModal

a very simple (and simple-minded) grammar identifying noun phrases
with an internal named entity component; sample output below...

Noun = (NN} | {NNS} ;

Adj = {Jg} i

NamedComponent = <UPPER> | <LUPPER> ;

namedNPs = <!Sentence: :IsWordFirst> & # left context...

<E>/ [namedNP:phrasal

({DT}|<E>)
:NamedComponent . :NamedComponent*
((:Noun | :Adj) . Nounx*) *

<E>/]namedNP ;

[namedNP the Soviet Union namedNP]
[namedNP the Afghan camps namedNP]
[namedNP the United States namedNP]
[namedNP Afghanistan namedNP]

[namedNP Khost namedNP]

[namedNP Scud missiles namedNP]

[namedNP Soviet commander namedNP]
[namedNP Afghanistan namedNP]

[namedNP Lt. Gen. Boris Gromov namedNP]
[namedNP the Afghan holy warriors namedNP]
[namedNP the Soviets namedNP]

[namedNP Thursday namedNP]

[namedNP the Soviets namedNP]

[namedNP Paktia province namedNP]

[namedNP Afghan resistance leaders namedNP]
[namedNP Soviet troops namedNP]

[namedNP December namedNP]

[namedNP American intelligence veterans namedNP]
[namedNP Afghan resistance namedNP]

[namedNP the United States namedNP]

[namedNP Saudi Arabia namedNP]

[namedNP the Saudi exile namedNP]

[namedNP Osama bin Laden namedNP]

[namedNP U.S. intelligence official namedNP]
[namedNP the CIA namedNP]

[namedNP the Afghan rebels namedNP]

[namedNP the Soviet-supported garrison town namedNP]
[namedNP Khost namedNP]

[namedNP CIA namedNP]

H o H H H H HHHH G HHHHHH R

49

6 Interactive grammar development

TEXTRACT is available as a command-line executable. In general, TEXTRACT
offers little beyond an architecture and API’s, by means of which specific applica-
tions can be configured.

The TFsTsystem as one of TEXTRACT’S numerous plugins. This makesit a‘first-
class citizen, as far as deployment is concerned of a grammar, or a cascade of
grammars, within alarger process pipeline. However, this same architecture is not
very well suited for the inherently incremental, experimental, trial-and-error pro-
cess of developing and tuning a grammar. While the system is streamlined and
optimised to initialise a number of plugins and apply them, in sequence, over a
number of document, there is no built-in support for iterative re-initialisation and
re-invocation of just one plugin (in particular, nf stxeq), with very local changes
to the run-time parameters settings (possibly just amodified and recompiled gram-
mar).

Furthermore, while a suitable format exists in the dump application for displaying
the results of a grammar application, it may be hard to relate a strictly sequential
dump of annotations, mixed with begin-end match markers, to any diagnostics
which might correlate grammar behaviour with pattern specification.

In alarger community of grammar developers, it is unrealistic to expect that all of
them would be familiar with programming issues to the extent that they can con-
figure a grammar development scaffold out of raw TEXTRACT API’s. Such users
need not only insulation from the vagaries and idiosyncracies of the underlying sys-
tem, but also require a set of tools facilitating grammar development, diagnostics
and debugging—activities which, by definition, have no relationship to production-
level deployment of ‘release’ quality grammars.

An experimental tool, under development at present, and thus offered on strictly
‘as-is’ basis, isaninteractive graphical environment for developing TFsTgrammars.
This environment, hereafter WTEXTRACTZ?, addresses two out of the three funda-
mental expectations of interactive programming environments.

e rapid edit-compile-run cycle,

e multiple perspectives over the output, facilitating diagnostics,

e incremental process stepping and tracing, with source grammar level debugging;
this is currently not available, as process control with this kind of granularity

50r occasionally referred to HM TEXTRACT, for reasons too complex to go into here.

50

is hard®® to expose to a plugin ‘client’ through the convenional (and official)
document-based process API.

6.1 Overview of wTextract

WTEXTRACT is, in general, a set of graphical widgets which implement custom
viewers for an annotation repository which has been populated by one or another
of TEXTRACT’s plugins. Process pipelines (i.e. plugin chains) can be constructed
interactively, and on demand; such chains can be configured (and re-configured)
dynamically, without having to wind down completely and restart from the com-
mand line; individua plugins can be re-invoked repeatedly, with or without modi-
fying their run-time parameters.

In a mode where a plugin developer wishes to inspect the annotation repository
at a any given stage of a plugin pipeline, WTEXTRACT offers the capability of a
side-by-side inspection of the systems' internal data objects and repositories.

The TFST capability?” of WTEXTRACT, in particular, allows an end user—typically
a grammar writer—to re-invoke the TFST executor repeatedly over the same doc-
ument. During such a development cycle, the process settings may be changed at
will; at the very minimum, even if the settings remain the same, the system is ca
pable of absorbing changes in the grammar, by reloading the FST’s in its cascade
after grammar modification and recompilation.

This streamlines, and largely by-passes, the cycle of modifying a . Ini file, and
restarting awhole TEXTRACT process. In contrast, whenever thereis achange per-
tinent to the run-time environment for the TFST executor, suitable—and minimal—
reconfiguration happens behind the scenes. The grammar writer islargely unaware
of that; furthermore, they remain within their operational environment, without
losing context.

Additionally, the interactive TFST environment offers a variety of different ways
to see the results of a grammar application. Fundamentally, WTEXTRACT regards
the set of matches against agrammar (or a cascade of grammars) as a concordance,
and variations of how the concordance is organised and presented are under gram-
mar writer's control. The concordance correlates the successful matches amongst

%But not impossible; future releases may address this issue.

Z'The original prototype of a WTEXTRACT system was developed and built by B. Boguraev, in
Borland C++ Builder; arationalised and enhanced version of the TFST capability was implemented
in Microsoft Visual Studio .NET by Son Bao Pham.

51

themselves; this makes it possible to notice general patterns in what has, and has
not, been picked up by the grammar(s). At the same time, by maintaining syn-
chronicity between the concordance view of a match, and displaying this match
within it original document context, it is possible to examine the contexts for suc-
cessful and failed matches and form hypotheses for the grammar behaviour—be it
over-, or under-generation.

Any modifications to agrammar, in response to, or exploration of, such hypotheses
will be immediately absorbed by the environment. And, while native grammar
editing and compilation is not currently supported®, a more useful capability is
available, for ‘one-off’, throwaway, pattern specification and testing.

Thebroad WTEXTRACT behaviour allowsfor multiple document filesto be opened,
and at various stages of plugin pipeline execution and inspection; it is not, however,
allowed to have multiple analyses (by the same plugin) of the same document. The
exception to that rule isthe TFST subsystem within WTEXTRACT, where multiple
invocations of the same plugin (nfstxeq), differing only in the FS automaton ap-
plied over the document, can co-exists side by side: thusit is posisble to compare
different sets of outputs, derived from different grammar sources.

6.2 Elementsof the TFst subsystem interface

This section offers a quick tour of the basic visual elements of the TFST analysis
portion of the WTEXTRACT system. The emphasisis on what can be done within a
task of developing TFST gramars; other ares of the WTEXTRACT interface are ei-
ther disabled in the pre-release, or not fully functional (at best). Caveat Emptor?®

Primary entry point is via the PLUGIN menu, invoking FSTEXEQ submenu. Prior
to that,we need adocument file, and aworking configuration of the TFST executor.

Bgtrictly speaking, it is supported, but not enabled.

2 mportant footnote: Best results are obtained with pure text (. txt) files, preferably saved as
"raw text". The FILE=-OPEN menu brings a document file into the workspace. The document
window which opens and display the file is an instance of Microsoft's web browser®; so if the
fonts look odd, or large, this means that the VIEw=-TEXT SIZE settings for your Internet Explorer
settings is too large. Note that most of the display functionality described below is achieved by
dynamically—i.e. in response to the user selecting menu items and clicking on buttons—generating
highly adorned DHTML, behind the covers, and submitting that to an encapsulated web browser
for (native) rendering. One consequence of this approach is that long documents result in slow re-
generation of the DHTML source for each pane (think of all those strings...). Thus, for development
purposes, grammar writers are advised to keep their documents not too long, and in "raw text"
encoding.

52

6.2.1 Configuration

The EDIT=-SETTINGS=-PLUGINS menu brings up amultu-tab panel for setting the
operational parameters of individual plugins. By default, the FstexQtab isactive;
the parameters it allows manipulating map, naturally, to the parametersinan . Ini
file configuring [nfstxeq]. By default, the settings are those for the shallow
parser. The directory button (. . .) selects the FST cascade directory; a standard
file picking interface identifies the . £st files. Multiple file selection is allowed
(with ctrl key); the Up and Down buttons order the cascade filesin sequence, as
desired. The cascade depth should be set to emulate £st_max level (See section
5.2).

Settinos x|
Document Struckure | Mame Entities I POS Tagger
Document Summarization I Tokenizer I Topic Shifts

FstexQ | Shallow Parser I Lexical Lookup I Abbreviations

—Processing Options

F5Txe() Base Directory Ci\Frasier TalentRThTalentDataltFskRef)

Scanner (Fst files |scanner . Fst il
scanner2, fst
scanner3.fst i|
scannerd,fst
scannets,Fst
% scannert, fst Cascade depth 1
scanner 7, fst
scannerd, fst Escape character I |
oF | Cancel | Apply | Help |

With a document file open, and the TFST executor configured, the grammar cas-
cade can be invoked by PLUGIN=FSTEXEQ menu. The results are displayed in a
new window, with two panes. at the bottom is a concordance of al the matches
found by the grammar(s), at the top is an inline display of the same (all) matches
overlayed onto the original document source. Strictly speaking, the display shows
the annotations that have been added to the annotation repository, following suc-
cessful matches, during the cascade invocation (see 3.3).

The two panes are synchronous: rolling the mouse over a matching phrase in the
concordance pane, and holding it there, brings into view into the top pane, and
highlights, the sentence in which this particular match has been found. Thus,
while the concordance offers an overview of what matched, and what did not, on a

53

grammar-per-document basis, for each matched item it is possible to examine the
larger local context of its enclosing sentence.

In the screen shot below, the window at the forefront (....txt:3) is indicative of the
view described above.

,;P_ﬂmchextract - nk_russianresponsetos is.brk ;IEIEI

File Edit Wew Plugin Applicstion Window Help Debug FST
IR
Rk ussionrespenst it _icl <1

i3]
R R
——

By Cristina chd|RoleRel [Fiter Labels | Deletelabel | Fndal |

intensifeing/VBG the/OT crizis/NN . [ROLEREL Duma/HP Speaker/ MNP Gennadiy /NP Seleznew /MP ROLEREL] stated/VBD that/CS "
Russian responi| the/DT United/MP States/MPS tself/PP is/VEZ at/IM Fault/MN " for/ TN the/DT North/1) Korean/l) resurnption/NH of/ TN work/HH
weapens @ sy | onfIH itsfPRE nuclesr/)] powerHN reactorf NN . According/VBG to/TO Seleznew/VE , the/DT United/NP States/NPS had/ALRD
States was part | fajled/VBM tof TO meet/VE its/PP$ Agreed/VEN Framework/NP commitments/MNS , sincefCS constructiondMH of /1N a/DT light-
its withdrawal |y atar/d) raactor/MN in/IN the/DT DPRE/NN had/AUXD nat/RE yat/RE been/AUXN completed/VEN . [18/CD] Similardy/RE .
;ﬁtphﬂrtu?"tg 0 5| leaderfHN of/IN the/DT Naradnyy/1) deputat/HNS (People/NP 's deputy/NH) parliamentary/] groupdHH Gennadiy/TH Raykou/NP
ough Russi{lec = LSRR A I TERTEER T L TR [L SR arenpi T REnAe i T

crisis, Toward ©
providing aid wh| o
impasition of an|
provocative, Effll 5
as a global pow

L]

1 [T

but have also questioned U 2. actions . [ROLEREL Deputy Chairman of the Duma Foreign Affairs Committee Konstantin
the United States was intensifying the crisis . [ROLEREL Duma Speaker Gennadiy Seleznev ROLEREL] stated that " the United S
about Morth Korean nuclear capzbilities , [ROLEREL Minister of Atomic Energy Aleksandr Rumyantsev ROLEREL] hzs decla

. 0in the settlement " of the crisis . [4] Similarly , [ROLEREL Russian Defense Minister Sergey Ivanow ROLEREL] said on January 6
HI-E] e RN
&6 d Russis 's positic
L R B RS M GR aid that the Unitec
Rus | Filter Labels I Delete Label | Find Al | FEL] =sid that the
| ' on Morth Korear
while ensuring that the [PLACE Korean Peninsula PLACE] rernains free of nuclesr weapons . [COUNTRY Russia COUNTRY] ;' =tated on January
D2l has spoken out against the irmposition of any sanctions or taking up the issue in the [ORE United Nations Security =
S0 council Ora] ., calling both moves excessively provocative . Efforts by the [NaMEDAD] Russian MAMEDADI] executive
favil Branch to broker s solution are motivsted by a desire to maintain [COUNTRY Russia COUNTRY] 's role as 5 globsal power
2U0 | and by real concerns over the prospect of 2 nuclear [MAMED DPRK Mamer] , but other government actors such as the
[ORG Ministry of Atomic Energy OrG] hope to gain economic benefits from increased international assistance to
[CounTry North Korea COUNTRY] . [MAMEDAL] Russian MAMEDADI] officials are united in the view that negotiations rather
than confrontation are crucial to resolving the issue , and that the [NaMEDAD] Korean NAMEDADI] crisis is not sufficiently :I
[3] Peninsula rermzins free of nuclear weapons . [COUNTRY Russia COUNTRY] has spoken out agzinst the impositio)a
0 sanctions or taking up the issue in the [ORa um@d Nations Security Council OrG] |, calling both m
1] excessively provocative . Efforts by the [MAMERAD] Rus MAMEDADI] executive branch to braker a soluticel
[} solution are motivated by a desire to maintain [COUNTRY Rus: CountrY] 's role as a global power and by real
0 by resl concerns ouver the prozpect of 5 nuclesr [MAMED DPRK NAMED] , but ather governmment sctors such as
0 but other governmment actors such as the [ORrG Ministy of Atomic Energy ORrs] hope to gain econom
1] from increased international assistance to [COUNTRY North Korea COuNTRY] . Russian officials are united in
1] assistance to North Korea . [MAMEDAD] Russian MSMEDADI] officials are united in the view that
[} crucial to resoluing the issue , and that the [MAMEDAD] Korean MaMEDADI] crisiz is not sufficiently urgent to
o sanctions or the use of force . [COUNTRY Russia COUNTRY] 's Official Views and Adtions Dzspwtz_lll
| >

File: /i [FrasierfmFcTextractR T nk_russianresponsetacrisis.bxk2, concl.htm#

I 7

When the TFST executor has been invoked, and the focus is on a system window
populated by its output results, an additional menu item is added to the main ap-
plicaiton menu bar: FST. It offers six commands; these are described below. Each
of the commandsis also directly available viaa button, on atoolbar attached to the
TFST executor output window.

6.2.2 FST=-Concord L eft

This acts as atoggle between the default ordering of the concordance list (sequen-
tial, asper appearance in the document), and sorted by left-most token in the match-
ing items. It allows examination of left context of similar match items. Shortcut is
available via button L.

The . . . txt:2 window, just in the background in the figure above, shows a (fil-
tered selection; see 6.2.4, 6.2.10 below) sorted to the left.

6.2.3 FST=-Concord Right

A toggle between the default ordering of the concordance list (sequential), and
sorted by right-most token in the matching items. This allows examination of right
context of similar match items. Shortcut is available via button R.

6.24 FST=-Show Label

As discussed earlier (see, in particular, section 4.9.1), TFST grammars currently
post only syntactic family annotations. All such annotations have labels, either
predefined for TEXTRACT, or dynamically defined by a grammar. This menu item
(also available viabutton LB) isatoggle between hiding (by default) and displaying
the labels on the annotations posted for each matching item. The toggle affects the
diaply in both panes of the TFST executor output window.

The .. .txt:3 window in the foreground in the figure above, shows a concor-
dance list, unsorted, with labels on matches displayed.

6.2.5 FST=-Show Pos

A majority of TFST grammars will query morphosyntactic features on the lexical
elements (usually word tokens) in the document. Some partial support for exam-
ining the ‘bottom-level’ token stream, the lexical lookup results, and the output of
the part-of-speech tagging analysis is available via corresponding menu items on
the PLUGIN menu: PLUGIN=TOKENISE, PLUGIN=LEXALY SE, PLUGIN=TAG.%!
At best, thisisonly of partia utility.

The FST=-sHow POs command, also available viathe Pos button, toggles between
inline expansion of all tokens in the document pane of the TFST executor output

1The intent is to show the results of TEXTRACT’s base services, insofar as they generate fea-
tures used extensively by TFST grammar symbols; cf. section 4. However, not all such features
are currently visible through the custom displays. Also, note that the PLUGIN menu offers access
to the document structure analysis service too, as at least the sentence level annotations are used to
constrain the operation of the TFST executor; section 2.1

55

window to atoken/tag format. This makes explicit the underlying POS stream that
drives the matching. What makes this feature particularly useful is that given the
stochastic nature of TEXTRACT’s part-of-speech tagging agorithms, it isimpossi-
ble to always correctly predict (or, worse, intuit) what part of speech might have
been assigned for atoken in any particular context.

Thetop paneof the . . . txt : 2 window, just in the background in the figure above,
shows adisplay of part-of-speech information for the document stream.

6.2.6 FST=-Switch View

Some match items reflect composite application of rules, in that complex gram-
mars, and/or multi-level grammar cascades typically result in posting annotations
over annotations, in a hierarhic fashion. This s, indeed, the conventional way of
constructing a tree-like representation over a matched string. However, an in-line
view of amultiply-embedded set of labels and substrings tends to be hard to parse
by a naked eye. Consider, for example, the view of the shallow parser output,
which produces syntactic analysis of phrasal and clausal fragments of text.

D mfcTextract - coref.txt =] 3
[FE]

File Edit Wew Plugin Applicstion Window Help Debug FST

o

During theit nine-year occupation of Afghanistan, the Soviets attacked the camps outside the town of Khost with Scud ;I
missiles, 500-pound bombs dropped from jets, barrages of artillery, flights of helicopter gunships and their crack special

i e -Ioix]
[k i8R %GR

| Filter Labels I Delete Label I Find All I

[PP During [PNP [MPS their NPS] [NP nine-year occupation HP] PHP] PP] [PP of [NP Afghanistan NP] PP] , [SUB [HP the Soviets MP] SUB] [VG ;'

attacked V&] [@B] [NPP [HP the camps HP] [PP outside [NP the town NP] PP] NPP] 081] [PP of [NP Khost NP] PP] [PP with [NP Scud missiles |

HP] PP] ., [SUB [MP 500-pound bombs MP] SUB] [VG dropped wG] [PP from [MP jets NPT PP], [NPLIST [MPP [MP barrages MP] [PP of [NP artillery
MRT PRI MPET, [NPP [MP flights HP] [FP of [NP helicopter gunships HP] PP] NPRT and [PHP [NES their MPS] [NP crack special forces HP] PHP] J

MPLIST] . [CHP [MPP [MP The toughest Soviet commander NP] [PP in [MP Afghanistan NP] PR] NPP] , [NP Lt. Gen. Boris Gromow NP] CHP] , [MC
[v& personally led WG] [NP the last assault NP] MC] .

Eut [SUB [MPLIST [NP neither carpet bombing NP] nor [NP c dos NP] NPLIST] $UB] [VG drove W&] [OBJ [NPP [MP the Afghan holy
warriors NP [PP from [NP the mountains NP] PP] NPP] OBJ] . [SUB [NP Afghanistan NP] SUB] [WG has vG] [OB) [NP & long history NP] 08J] of
[v& repelling ¥&] [NP superpowers NP1 . [SUB [FNP [NPS Its MPS] [HP tervain MP] PNP] SUB] [WG favors wa] [SUB (NP defenders NPT SUB] [TC
as well as any [FP in [NF the wordd NP] PR] TC] , [TC whether [PNP [MPS their MPS] [NP opponents NP] PHP] TC] , [TC like [NP the Soviets NP]
TG, VG are bvina V61 [SC VG to defeat VG [OB) [NPP HP them NP1 TPP on [MP the around NP1 PP HPPT ©BJT €1 ar whether | [TC like THP

, the Souist Unian threw almast susry weapon it [VG had ¥G] , short of nudear bombs |, at the Afahan camps =
Union threw almost every weapan it had , short [PP of nuclear bombs PR] , =t the Afghan camps attacked by the United
threw almast zvery weapan it had , short of [MP nuclear bombs NP1 | at the Afghan camps attacked by the United
L suary wespon it had , short of nudear bombs , [P at the Afghan camps PP] sttacked by the United States last wesk . J

suery weapon it had , short of nuclear bormbs , st [NP the Afghan camps NP] attscked by the United States last week .
o shovt of nudlesr bambs , at the Afghan camps [MS attacked by the United States lastweek MC] . During their nine-year occupation o
. short of nuclear bombs , at the Afghan camps [VG attacked V@] by the United States last wesk . During their
of nuclear barnbs . at the Afghan carmps attacked [PP by the United States last week PP] . During their nine-year occupation of
nuclear bombs , at the Afghan camps sttacked by [NP Hle Unlted Stal:es lastweek MP] . During their nine-yzar accupstion of
attacked by the United States last week . [PP Dur upation PP] of Afghanistan , the Soviets attacked the ca
by the United States last week . During [PNP ther PNP] of Afghanistan , the Soviets attacked the camps
by the United States last wesk . During [MPS their NPS] nine-year occidation of Afghanistan , the
by the United States last week . During their [MP nine-year occupation MP] of Afghanistan , the Souviets sttscked the carmps
last week . During their nine-year occupation [PP of Afghanistan PP] | the Soviets sttacked the camps outside the
week . During their nine-year occupation of [MP Afghanistan MP] | the Soviets attacked the camps outside the
their nine-year occupation of Afghanistan , [SUB the Soviets SUB] sttacked the carmps outside the town of Khost
their nine-yzar accupstion of Afghanistan . [NP the Soviets NP] attscked the camps outside the town of Khost
occupation of Afghanistan , the Soviets [V& attacked V&] the camps outside the town of Khost with Scud
oceupation of Afghanistan | the Soviets sttacked [OBJ the camps outside the town OBJ] of Khost with Scud missiles , 500-pound bormbs
occupation of Afghanistan , the Soviets attacked [NPP the camps outside the town NPP] of Khost with Scud missiles , 500-pound bombs
k.

outside the toun of khast ud rrissiles . =
e g bt Jod |
1

P TP,
File: /i [FrasierfmFcTextrackR T fcaref kxS, cancl. htm# v

-
I cococcocoocooocoocooocoooooo

56

The FST=sSwITCH VIEW command, also available via the TREE/DOC button, al-
ternates between a document (with inline labels) view and a tree view32.

(P mfcTextract - coref.bat =10 x
LFE}

File Edit Wew Plugin Application ‘Window Help Debug FST
DEHE|fERS 7N
e

During their nine-yesr accupation of Afghanistan, the Soviets attacked the camps outside the town of Khast with Scud ;I
missiles, S00-pound bombs= dropped from jets, barrages of artillery, flights of helicopter qunships and their crack special

S -Ioix]
[R BRs 2GR

| Filter Labels I Delete Label I Find Al I

® ¥ [PP During [PHP [MPS their NPS] [NF nine-year occupation KP] PNR] PR] =
® During [% t
* ¥ [PNP [NPS their NPS] [MP nine-year occupation NP] PNR]
o P [ups theirnes) J

s P[NP nine-year occupation NP
P (PP of [MP Afghanistan NP PR]

P [ua attacked va]

.
.,

o P [0 [ne the soviets nB] sUE]
.

.

P [08) [MBR [NP the camps NPT [FF outside [NP the town NB] PP] NPP] ORI

El
= T TR UE TE SO T T SO O RS T IO TS T
, the Soviet Union threw almeost every weapon [NP i€ MP] had , short of nudear bombs , at the Afghan [=|
. the Souiet Unien threw almost every weapen it [VG had V@] | short of nuclear bombs , at the Afghan camps
Union threw almost every weapon it had . short [PP of nuclear bombs PP] |, st the Afghan carps attacked by the United L
threw almost every weapon it had , short of [NP nuclear bombs WP] | at the Afghan camnps attacked by the United
every weapon it had | short of nudear bombs . [PP at the Afghan camps PP] attacked by the United States last wesk .
every weapan it had . short of nuclear bornbs . at [NP the Afghan camps NP] attacked by the United States last week .
. shovt of nuclesr bambs , at the Afghan camps [MC attacked by the United States last week MC] . During thair nine-year occupation o
. short of nuclear bormbs , at the Afghsn camps [VG attacked V&] by the United States last week . During their
of nuclear barnbs . at the Afghan carmps attacked [PP by the United States lastweek PP] . During their nine-year occupation of
nuclear bombs , at the Afghan camps sttacked by [NP the United $tates last week NP1 . Turing their nine-year occupation of
attacked by the United States last week . [PP During their nine-year occupation PP] of Afghsnistan , the Soviets attacked the cs
by the United States last wesk . During [PNP their nine-year occupation PHP] of Afghanistan , the Soviets attacked the camps
by the United States last wesk . During [MPS their NPS] nine-year occupation of Afghanistan , the
by the United States last week . During their [NP nine-year occupation NP1 of Afghanistan , the Sovists atbacked the camps
last week . During their nine-year occupation [PP of Afghanistan PP] |, the Soviets attacked the camps outside the
week . During their nine-year sccupstion of [MP Afghanistan MP] | the Soviets sttacked the carmps outside the -
v

|- cocooccococoocooocoooo

«

I I

6.2.7 FST=Edit Grammar

As already mentioned, the current pre-release does not support native grammar
editing and compilation. The edit-run-debug cycle requires, for the time being, a
context switch between WTEXTRACT, your favourite editor, and a command line
shell (for re-compiling the grammar). Clearly, at any point the runtime settings for
the TFST executor can be explicitly changed viathe EDIT=-SETTINGS=-PLUGINS
dialog. If the only change between two runs, however, is the grammar source,
simply rerunning the executor from within WTEXTRACT is going to pick up, and
load, the new . £st33, and reapply the cascade, displaying the results in a new
TFsT executor window. (The old window is kept, so that new and old output can

2Arguably, a marginally better rendering of a tree view is available by running
APPLICATION=-PARSER, with the same settings as PLUGIN=-FSTEXEQ. The intent here isto bring
thiskind of display within the TFST executor output subsystem.

A ssuming, of course, that the modified . c£g has been recompiled.

57

be compared, thus assessing the effect(s) of modifying the grammar. Old windows
can be closed, from the CLOSE (x) generic window manager button, at any time.)

Often in the course of grammar development, the grammar writer may focus on a
particular rule, and even a specific symbol, with a question: what are the effects of
applying this to the current document? To determine this, it would be necesary to
create a new grammar file; input a simple rule which exercises the symbol, or pat-
tern, in question; remember to post an annotation (so the matches can be viewed);
name the file appropriately, and save it; compile it; reset the TFST executor to pick
that . £st and load it; run the plugin; and view the results.

The FST=EDIT GRAMMAR command, also available via the GRM button, encap-
sulates this procedure into asingle click:

|;fj,ﬂ mfcTextract - iraq_russiaposition.txt _ ol x|

File Edit Wew Plugin Applicstion Window Help Debug FST

DS =R S 7 N

Elirag_russiaposition.txt:1

[iraq_russiaposition.txt:2

LR BRI GR

R | Filter Labels I Delete Label Find All

Fedotou also said an [MP Nowember 13 MP] , 2002 , that [NP he NP] hoped there would be [MP no repetition MP] of ;I
[HP the 1998 U.5. air strikes MP] that [PWG were conducted PwG] while [MP the UNSC MP] was reviewing [NP the
UNSCOM report NP] . [44] [MP Russia MP] also termed the [HP ™ no-fly zones ™ NP] unlawful , unilateral , and not
1| based on [MP any UNSC resolution NP] . including [NP Resolution 1441 NP] . Therzfare [NP Russia NP] would not
d| consider [NP any Iraqi actions NE] against [NP U.S. NP] snd [NP British aircraft NP] enforcing [NP these zones WP s | |
o | [MP viclations MP] of [MP Resolution 1441 NP] . [45]
n| s discussed earlier, [MP the Russian desire NP] to avert [NP an armed conflict MP] was to [NP a significant degree
MP] affected by [PHP [MPS its NPS] [NP economic interests NP] FNF] in [NP Iraq MP] | and [NP the Russian economy
MP] 's [NP vulnerability MP] ta [NP sudden shifts MP] in [NP the global economic situation NP] | including [MP swings
HP] in [MP the price NF] of [MP oil NP1, In [MP the view HP] of [HP Yuriy Shafranilk NPT, [MP President HP] of [P the
Committee NP] for [NP International MP] , [NP Cultural NP] , [NP Scientific MR, and [NP Business Cooperation MR], |

ptvesssaaaeoiaoo x

PR Tt
19938 W5, air strikes that were conducted while [MP the UNSC NP] was re

conducted while the UNSC was reviewing [NP the UNSCOM peport N
was reviewing the UNSCOM report . [44] [MP Russia NP] 4% termr
the UMSCOM repart, [44] Russia also termed the [MP ™ no-fly zoned— NP] <UPPER.>

unlawful , unilsteral , and not bazed on [MP any UNSC resolution

o
o

o

o

o

o based on any UNSC resolution | including [NP Resolution 1441 HP] I
o . including Resolution 1441 . Therefore [MP Russia NP1 would rof

o 1441 . Therefore Russia would not consider [NP any Iraqgi actions NP]

o not consider any Iragi ackons against [MP U.§, MP] and British

o any Iragi actions against U5, and [MP British aircraft NP] =

[1} against U.S. and Britizh sircraft enforcing [MP these zones HP] as o

o and British aircraft enforcing these zones as [MP violations NP] of Res

o enfording these zones as violations of [MP Resolution 1441 NP]

o 1441, [45] ms discussed eatlier, [MP the Russian desire NI

o discussed eatlier , the Russian desire to avert [MP an armed conflict NP

o to avert an armmed conflict was to [NP a significant degree |

o was to 2 significant degres affected by [PNP its economic interest

o was to a significant degree affected by [MPS its NPS] economic in [Ciear Annotation Repository:

0 ;

o
o
o

w3 £-3

to & significant degree affected by its [MP economic i -

degres affected by its economic interests in [NP Iraq MP] , and the R ¥ Lexical Type
affected by its economic interests in Irag , and [NP the Russi
in Irag . and the Russian economy ‘s [MP wules

BT P VT Tt RO AT it

MP] to [s]4 Cancel |

File: /i [FrasierfmFcTextractR T firaq_russiaposition. bxt#. concl. htm# v

A modal dialog offers atext edit pane into which a simple rule (unnamed, no need
to explicitly post a covering annotation) can be typed. The system does the rest; it
also offers a choice between running the test over an annotation repository which
has been cleared of the most recent set of TFST-created annotations, or which
retains those analysis. Clearing the repository will alow for base-level analysis
through asimple pattern: for instance, the output of the interaction from the screen

58

shot above would be all occurrences of a <MIXED> tokens:

‘ﬁn'lchthract—iraq_russiapusition.txt - Ellll
File Edit Wiew Plugin Applicstion ‘Window Help Debug FST

DEH B2 S 2 N
Eiliraq_russiapositinn.tut:1
e, BEE
RE [iraq_russiaposition.txt:3 ;|g|5||
e S o

J R R R o
— ¥
‘ Filter Labels I Delete Label | Find &ll | has
1 the
i Cormpensate Russia for any econamnic losses suffered as a result of war in Iraq . Khodorkovskiy <Iler”
o also said that although he'did not know how the Russian position at the UNSE was formed , Russia F he
o 's velstionship with Traq had an scanomic , rather than political , nature . Khodarkouskiy belisved he
that Russia could be induced to support the United States if it were willing to compensate Russia The
for itz economic losses | [48] 1
Q Russis 's economic concerns also translated into a desire to relax or lift sanctions on Iraq NP
1 During the negotiztions on UNSC Resolution 1441 , Russia supported the idea of extending the "

food For oil " aid program for Iraq .[43] and proposed that the resolution include the promise of .
lifting sanctions as a reward for Iragi cooperation . [50] Although Russia was opposed to the [T
tightaning of restrictions on goods which may be i ed into Iraq . it chose to abstain rather = d“t“h]

;) i S . oo e o =

i] the deteriorsting U5, respect forthe UN and the international soaety . [36 1 o] ul
to some Russian experts , the prospec of W.§. military action only enhances the baszed ¢
. [37] Russis 's ambasszador to the UN , Sergey Lavrov , cited Moscow 's Nord-w #1 . The
1 the Russian gavernmment also opposed any U.§. actions it deermed provocative . On a considel
©n a number of occasions , Russia spoke against U.§, and British air strikes in the
such air strikes following the adoption of UNSC Resolution 1441, stating that such aft

oT A

would be no repetition of the 1998 W.§. air strikes that ware conducted whils t [[as
UG, air strikes that were conducked while the UNSE was reviewing the UNSCOM repart . [| Jtions of
while the UNSC was reviewing the UNSCOM report. [44] Russia also termec L4571
unlawful , unilateral , and not based on any UNSC resolution , induding Resolution 144
not consider any Iraqgi actions against U.S. and Britizh sircraft enforcing these zaor the
Scientific, and Business Cooperation , a U.5. occupation of Irag would reduce oil as to a
businessrman Mikhail Khodorkouskiy , head of the YUKO$ il company that has dealings with fsffacted
know how the Russian position at the %ﬁ was forrned , Russia 's relationship v |nterests

u

u

w

sanctions on Iraq . During the negotiations on Resolution 1441 , Russia supported ian ecor
the decision . Following the passage of Resolution 1441 , the Russian Forei

the inspectors either do not find any WMD |, or find and eliminate them , after ¢ Jeconomy

a war against Iraq be put on the UNSC agenda . the mast likely Russian cou

w3 £ -3
ooncu:Douoonoanouoonoancl's Trizoozz= |

5
£occccoconconcoconnanolizsnersnzy

I coccococococooocoooooooooo

United States snd the importance of the UNSC |, another factor may be the .S, n shifts
of the UNSC , another factor rmay be the W.§, willingness to help preserve its nomic &
inspektorou v Irake , zayavil Igor Ivanow " ITAR-TASS , February 5, 2003 ; in Inteiill D
4 »

file: {1fC: {FrasierfmfcTextractRT firaq_russiaposition, txté, concL.hkma 4

On the other hand, not resetting the annotation reporitory might be useful in inves-
tigating a question like: have al the <MIXED> tokens been subsumed, one way or
another, inside of a generic noun phrase analysis?

This feature acts like a generalised grep: thus the annotations it posts are labelled
TGREP.

The following three operations are only available from a TFST executor window
toolbar. They take as argument a string typed into the EDIT Box, and interpret it
to their own semantics.

6.2.8 Find All

A generic FIND command is available for any TFST executor window, from the
EDIT=FIND menu. This uses the familiar FIND interface, and operates over the

59

currently selected pane of the currently active TFST executor window. This offers
some limited navigation through a document source and/or a concordance list. One
possible use of FINDiINg is to scan all the occurrences of a text string in the top
(document) pane, and observe whether they have been picked up by a grammar or
not.

The FIND ALL button is an attempt to encapsulate such an operation; it is useful in
observing the global behaviour of a grammar, acorss the entire document.

If atoken string istyped into the EDIT BOX, the system will generate automatically
a(TGREP) grammar (see 6.2.7 above), and run that against a (popul ated) annotation
repository. If it finds any occurrences of the string which are not matched by the
current grammar(s), they will be marked with an F (for FAILED?) label. Using the
concordance navigation facilities we have at our disposal, it is now possible to get
adisplay like the one below, which shows that on occurrence of a string, “North
Korea”, has not been picked up as a COUNTRY; looking at the concordance view
alone, it is posisble to conjecture why; looking further into the document context
view, it is aso possible to both confirm the conjecture, and to discover that the
grammar iswrong in a particular way.

|;§’,ﬂn1chextract - nk_russianresponsetocrisis.txt _ Dlil

File Edit Wiew Plugin Applicstion Window Help Debug FST

DEE =22 378

=L |

[nk_russianresponsetocrisis.txt:4

K LB B %GR

Morth Korea [Fiter Labels | Delete Label Find Al

[&]Jarmes [MNaMED Risen MaMen] , " [CounTry Russia Helped [Grer U.5. GREP] COUNTRY] on [COUNTRY Nuclear Spying Inside [F North Korea F]
COUNTRY] " [ORG New York Times QRG] , http iff www. nyptirnes, carm L January 20, 2003

[7 1Andrey [MAHED Lebedew M&HER] . " [MAMED Razvedla MAMER] velas dlva [MeMED TsRU MAHER] . 2 ne protiv [GREP KMDR GREP] " [MAMED
Izvestiya NaMED] online edition , hitp :ff www.izvestia.ru , January 21 , 2003 .

[&] [ORa Russian Ministry of Foreign Affairs Daily News Bulletin ORG] , Janusry 10, 2003 .

[& 1vlzdizlay [MaHer Yorobyey MaMmep] , " [MaMED Sushi Mamec] rinogo ne bywayet " [NaMER Rossiyskaya MaMER] gazeta | hitp o/ wwwordory
January 13, 2003

[10] Interfax , January 16 , 2003 ,

[11] [ORe Russian Ministy of Foreign Affairs Daily News Bulletin ORG] . January 13 , 2003 .

[12]" Aleksandr [MAHED Losyukow MAMEE] : ' [MaMER Osnowaniya MEHED] dlya optirnizrna yest ' [MAMER Strana.u MBHED] | http o)
www,strana,ru/stories/02/ 04/ 27/2938/169419. htrnl , January 21, 2002 .

[13]%ee, forinstance |, Vasiliy [NaMED Mikheyew MaMED] | " [PERSON Kimn Chen Ir PERSON] podstavil [MAMED Putina MeMED] " [MAMED Wremya

T

{1 I

Llle

2L TTlyers . - Moscow 15 [MAHED TEMED] with Morth Forean OToals mhquet
the Korezn program clasely . The [ORrG New Tork Times Ore] reported on January 20 that Russian
in Cquiet Effort to Defuse Tensions ," [ORG New York Times OR&] , http i/ www. nytirnes.carn , January 12,
on Mudaar Spying Inside Narth Koraa " [ORG New York Times ORa] . http o/ www, nytimes.com , January 20, 2003,
announced its withdrawal from the nuclear [MAMED Non-Proliferation Treaty NaMER] [WPT) on January 10 . The Russian

is unlikely to use its limited leverags ousr
Russian responses to the crisis in

issued a denial that Russia had spied sgainst
bilateral and raultilateral talks with

Russian gouernmeant bacame mare angagad aftar
Ahesd Russia s future policy toward

Raykav believes that " this is all

23] On January 10 , Rurmyantsew said that
situztion with the nudear program in

there . "[24] Rumyantsev has pointed out that
U8, estimates , on the other hand , suggest that
to tone down its thetaric and offer

frorn increased international assistance to
official Russian position is that at present

that the United States has provoked

Russis is in denial about the dangers posad by
when asked about prospects for cooperation with
. Some Russian scholars sugnest that

Russians feel that the United States has pushed

I ococococoocococoooocooooooooooodg

COUNTRY North Korea COUNTRY,
CounTRY North Korea COuNTRY)
COUNTRY North Korea COUNTRY,
COUNTRY North Korea COUNTRY)
CounTRY North Korea COUNTRY)
COUNTRY North Korea COUNTRY,
COunTRY North Korea COUNTRY]

. " Russia Helped U., on Muclesr Spying Inside [F Norlly Korea F] " He
COUNTRY Noi orea COUNTRY

ounTRY North Korea COuNTRY)
COUNTRY North Korea COUNTRY,
COUNTRY North Korea COUNTRY)
CounTRY North Korea COUNTRY)
COUNTRY North Korea COUNTRY,
CounTRY North Korea COUNTRY)
COUNTRY North Korea COUNTRY,
COUNTRY North Korea COUNTRY,
CounTRY North Korea COuNTRY)
COUNTRY North Korea COUNTRY,

openly . As noted sbove , Moscow believes
{ DPRE) have ranged fram strong cancern
. but a spokesman neither confirmed nor
that would produce security guarantees , and
announced itz withdrawal fram the
will continue to ermphasize the
's business , and , besides , the USA has
w York Times , http /4 www.nytimes. com |,
was 50 years away from creating nuclear
. there are no weapons technalogies
has declared that its nuclear program
ray already have one or twa nudear
diplomatic cover for backing off itz
. Russian officials are united in the
does not possess nuclear weapons .
. and suggested that Russia could take over the
's nucear weapons program . [27]
in the nuclear sphere , Rumyantsey noted
is in fact developing nudear weapons . while

COUNTRY North Korea COUNTRY)

into @ corner, Instead of continuing

File: /i [FrasierfmFcTextractR T fnk_russianresponsetacrisis.bxk, concl.htm#

60

6.2.9 Delete Label

Some of the annotations posted to the AR through the ‘snooping’ operations de-
scribed above are, by their nature, only relevant to a very particular moment in
time, and they should not survive further interaction cycles. However, it may be
necessary for the annotation repository—as it has been populated by the recent
grammar application—to remain intact for awhile.

TheDELETE LABEL interface allowsfor selective deletion of specified annotations.
It is primarily a book-keeping device.

6.2.10 Filter labels

Any matching regime, especially one implementing complex grammars and multi-
level cascades, may deposit a range of new annotation types into the annotation
repository. This command offers a way of temporarily suppressing from display
some of these annotations; it isaway of viewing, selectively, only a subset of new
annotations, identified by their labels.

A sequence of label strings, separated by blanks, needs to be input into the EDIT
BOX. The sequence is parsed out into one or more labels; these will be used as a
filter by the display functions described earlier. A label so parsed needs to match
(string, and case, equality) with the label of an AR annotation, for that annotation
to be displayed.

In addition to reducing potential information overload (see the ROLEREL pattern
filtered out in the figure on p.54), thisis useful asarudimentary facility for seeking
patterns underlying relationships among items identified by patterns so far. For in-
stance, the screen shot below illustrates the distribution of subjects and verb groups
(both active and passive) across a document—an exercise which would facilitate
the development of agrammar for relation finding.

61

g mfcTextract - coref.txt —5 il

File Edit Wew Plugin Applicstion Window Help Debug FST

DS =R S 7 N

During theik - Ellll

missiles, S(

foees. 1he [R LB RS W GR

. SUE WG PSUE PYG Filter Labels I Delete Label | Find Al |
But neither

history of re[Afghan Carnps . VG Hidden VG in Hills , Styrnied Sovist Attacks for Tears |
Souiets, are | Throughout the 13805 , [SUB the Soviet Union SUB] [VG threw almost WG] every weapon [SUB it SUB] [wG had Wa] | short of
disrupt ther| | nuclzar bombs , st the Afghan carps [WG attacked WG] by the United States last week .

on Thursday| During their nine-year occupation of Afghanistan , [SUB the Soviets SUB] [WG attacked WG] the camps outside the town of Khost
with Scud missiles , [SUB 500-pound bombs $UB] [VG dropped YG] from jets , barrages of artillery , flights of helicopter gunships
and their crack special farces . The toughest Soviet cormrander in Afghanistan , Lt Gen. Baris Grormow , [VG personally led VG]
the last assault .

But [SUE neither carpet bombing nor commandos SUB] [Va drove VG] the Afghan holy warriors from the mountains . [SUB
Afghanistan SUB] [¥G has vG] a long history of [v@ repelling WG] superpowers . [SUB Its terrain SUB] (VG favors va] [SUB
defenders SUB] as wall a5 any in the world . whether their opponants | like the Soviets , [VG are trying V&) [VG to defeat wa]
thern an the ground or whether , like the United States , [SUB they SUB] [VG are trying Wa] [VG to disperse VG] , [VG deter V&)
.5, officizl | and [wE disrupt V] therm . [SUB It SUB] [V& is WG] uncertain that the United States | which [VG fired WG] dozens of million-daliar
rmonth 's bel| truise missiles atthose same camps on Thursday , [VG can do V@] better than the Soviets .
damage infll [SUB The camps SUB] , [VG hidden VG] in the steep mountains and mile-deep valleys of Paktia province , [WG were VG] the
place where [SUB all seven ranking Afghan resistance leaders SUB] [vG maintained v&] underground headguarters , mountain
redoubts and cdandestine weapons stocks during their bitter and ultimately successful war against Souiet troops from December
@n to February Crisis , [VG according VG to Ametican intelligence veterans .

[SUB U.5. officials SUB] [G said WG] [PSUE their attack PSUB] [PV was intended PVG] [V6 to deter WG] bin Laden , whom
[SUB they SUB] [W& call ¥G] the finsncier and intellectual authar of this month 's bombinas of teo American embassies in Aftics |
which [V@ killed WG] Iraq people , [W6 including W&] Views Americans , [SUB They SUB] [VG said VG] the damage [Va inflicted WG]
on the Khost camps [W@ was Y&] " moderste to heavy . "

The camps,
Afghan resi
their bitter
American in

[r L4l

in Afghanistan , Lt Gen, Boris Gromov . (¥4 personally led VG] the last assault. Buk neither carpet bombing
Gromou , persenally led the last assault. But [SUB neither carpet bombing nor commandos SUB] drove the Afghan holy w
. But neither carpet barmbing nor commandas [¥E drove V@] the Afghan holy warriors from the mountains |
the Afghzn holy wariors from the mountains . [SUB Afghanistan SUB] hzs a long histary of repelling superpowsrs .
hely warriors from the mountains . Afghanistan [¥@ has V@] a long history of repelling superpowers . Its
rountains . Afghanistan has a long history of [VG repelling V&] superpawers . Its terrain favors defenders as
has 2 lang history of repelling superpowers . [SUB Its terypin SUB] favors defenders as well as any in the world |
history of repelling superpowers . Its terrain [VG F 1 defenders sz well as any in the world , whether
of repelling superpowers , Its tarrain favors [SUB defenders SUB] as well as any in the world , whether their
. whether their oppenents | like the Souists . [V@ are trying V@] to defeat them on the ground or whether | like
their sppanents , like the Soviets , are trying [to defeat vG] them on the ground or vhether | like the United _'Ll
»

FTTeTE [o T

File:/{{C: [FrasierfmFcTextractRT coref kxtd, concl. htm# A

L

-
I ococoococooooao

62

References

Becker, Marcus, Witold Drozdzynski, Hans-Ulrich Krieger, Jakub Poskorski, Ul-
rich Schfer, and Felyu Xu. 2002. SProUT-shallow processing with unification
and typed feature structures. In Proceedings of the International Conference on
Natural Language Processing (ICON 2002), Mumbal, India.

Boguraev, Branimir. 2000. Towards finite-state analysis of lexical cohesion. In
Proceedings of the 3rd International Conference on Finite-State Methods for
NLP, INTEX-3, Liege, Belgium, June.

Cunningham, Hamish, Diana Maynard, and Vaentin Tablan, 2000. JAPE: A
Java Annotation Patterns Engine. Institute for Language, Speech and Hearing
(ILASH), and Department of Computer Science, University of Sheffield, UK.
Research memo CS-00-10.

Ferrucci, David and Adam Lally. 2003. Accelerating corporate research in the
development, application and deployment of human language technologies. In
Proceedings of HLT-NAACL Workshop on Software Engineering and Architec-
tures of Language Technology Systems, Edmonton, AL berta, Canada.

Karttunen, Lauri, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller.
1996. Regular expressions for language engineering. Natural Language Engi-
neering, 4(1):305-328.

Kornai, Andras, editor. 1999. Extended finite state models of language. Cam-
bridge University Press.

Neff, Mary, Branimir Boguraev, Herb Chong, Albert Eskenazi, Youngja Park, and
Max Silberztein, 2003. The Talent System: Design Document and Usage Notes.
IBM T.J. Watson Research Center, Yorktown Heights, NY, v. 2 edition.

Neff, Mary, Roy Byrd, and Branimir Boguraev. 2003. The Talent system: TEX-
TRACT architecture and data model. In Proceedings of HLT-NAACL Workshop
on Software Engineering and Architectures of Language Technology Systems,
Edmonton, Alberta, Canada.

Park, Youngja, Roy Byrd, and Branimir Boguraev. 2002. Automatic glossary
extraction: beyond terminology identification. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING), pages 772—778,
Taiwan.

Ravin, Yael and Nina Wacholder. 1997. Extracting names from natural-language
text. Technical Report RC-20338, IBM T.J. Watson Research Center, Yorktown
Heights, NY.

Santorini, Beatrice, 1995. Part-of-Speech Tagging Guidelines for the Penn Tree-
bank Project. University of Pennsylvania, (3rd revision, 2nd printing) edition.

63

