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Abstract

Latent variable modeling is commonly used in behavioral, social, and medical sci-

ence research. The models used in such analysis relate all observed variables to latent

common factors. In many applications, the observations are highly non-normal or dis-

crete, e.g., polytomous responses or counts. The existing approaches for non-normal

observations are applicable only for polytomous outcomes, and use models unsuitable

for multi-group analysis. We propose a new generalized linear model approach for

latent variable analysis that can handle a broad class of non-normal and discrete ob-

servations, and that furnishes meaningful interpretation and inference in multi-group

studies through maximum likelihood analysis. A Monte Carlo EM algorithm is pro-

posed for parameter estimation. The convergence assessment and standard error es-

timation are addressed. An application of this new approach in a substance abuse

prevention study is presented.

Keywords and Phrases: Structural equation analysis; Exponential family distributions;

Monte Carlo EM algorithm.



1 INTRODUCTION

Latent variable modeling is a widely used statistical method in multivariate situations where

some concepts or variables are not directly observable. Special cases include factor analysis

and the more general structural equations analysis which is also known as covariance struc-

ture analysis. Statistical methods for analyzing covariances and other relationships between

latent and observed variables were historically originated by psychometricians. Today, la-

tent variable models are extensively used in the behavioral, social, and medical sciences (see,

e.g., Bentler 1995; Bollen 1989; Jöreskog and Sörbom 1996).

Most latent variable models are based on the assumption that the observed variables are

continuous with a multivariate normal distribution. However in many applications, due to

the nature of the problem or the design of the questionnaires, some or all observed outcome

variables are in a non-normal form such as ordered categorical variables. Specifically, in

behavioral and social science studies, data are frequently collected based on Likert scales

(e.g., “disagree”, “neutral”, “agree”). Because of its importance in many application, there

has been a lot of attention in latent variable modeling with ordinal outcomes and it remains

an area of active research. Two main approaches for analyzing latent variable models with

ordinal response have evolved.

The first approach assumes that each ordinal outcome variable is generated by an under-

lying unobserved continuous variables which is usually assumed to be normally distributed.

In this approach, direct maximum likelihood estimation becomes computationally infeasible

in models involving higher dimensional latent variables since it requires maximization over

multiple integrals. To reduce the computational burden of multiple integration, several ver-

sions of multi-stage estimation procedures have been proposed. Christoffersson (1975) and

Muthén (1978) have used a multi-stage estimation procedure to fit factor analysis model with

dichotomous outcome variables. In the first stage of this procedure, the multivariate model

is partitioned into bivariate sub-models. Then the thresholds and polychoric correlations in

the bivariate sub-models are estimated. This requires only the evaluation of bivariate inte-

grals. In the final step, the parameters are estimated by minimizing a weighted least squares

(WLS) function where the weight matrix is the estimated asymptotic covariance matrix of
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the polychoric correlations. Muthén (1984) proposed a multi-stage procedure for structural

equation models with continuous and polytomous responses. Similar multi-stage procedures

have been developed by Lee and Poon (1987), Jöreskog (1990), and Lee, Poon, and Bentler

(1992). All these procedures use a weighted least squares estimator based on first and second-

order sample information using polychoric and polyserial correlations. Today, the underlying

variable approach with multi-stage WLS estimation procedures is widely used to analyze

structural equation models with ordinal responses since it has been implemented in popular

software packages including LISREL/PRELIS (Jöreskog and Sörbom 1996), EQS (Bentler

1995), LISCOMP (Muthén 1987), and Mplus (Muthén and Muthén 1998). However, the

parameterization used in this approach is somewhat inflexible and there are limitations for

multi-sample analysis. Specifically, this parameterization does not allow direct assessment

of group characteristics. Another drawback is that multi-stage WLS estimation procedures

can perform poorly in situations of low prevalence, small sample size, and large number of

indicator variables. In particular, it has been demonstrated that multi-stage WLS proce-

dures can experience problems such as instability, bias, non-convergence, and non-positive

definiteness of weight matrices (Reboussin and Liang 1998). Finally, the underlying variable

approach is limited to finite categorical outcomes while infinite outcomes, such as Poisson

counts, cannot be accomplished.

The second approach for ordinal response data is the item response theory designed

for dichotomous outcomes with a single factor. In this approach, the conditional response

probability for each dichotomous outcome is expressed as a function of the single factor (see,

e.g., Bock and Aitkin 1981; Jöreskog and Moustaki 2001). The item response approach has

been used widely in measurement theory and has been implemented in a number of computer

packages, such as TESTFACT (Wilson et al. 1991).

In this paper, we propose a generalization of the second approach. Specifically, we incor-

porate the generalized linear model concept into the latent variable framework. We introduce

a Generalized Linear Latent Variable Model (GLLVM) approach that can furnish a wide

class of latent variable models and can incorporate various types of outcome variables. The

parameterization used in our GLLVM approach is flexible and particularly appropriate for

coherent multi-sample analyses. We propose a computationally feasible Monte Carlo EM al-
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gorithm to compute full maximum likelihood estimates. This article is organized as follows.

The general model and motivation for our approach is given in Section 2. The maximum

likelihood estimation via Monte Carlo EM algorithm is described in Section 3. This section

includes subsections on how to compute standard errors and how to determine the conver-

gence of the Monte Carlo EM algorithm. In Section 4 an example from a substance abuse

intervention study is discussed, where the approach proposed in this article was successfully

applied to perform a multi-group analysis. Finally, a brief summary is given in Section 5.

2 THE MODEL

Consider a set of G groups which may represent different treatment groups, sex groups, etc.

Let y
(g)
i =

(
y

(g)
1i , · · · , y(g)

pi

)′
denote a set of p observed variables for the gth group, measured

on the ith individual, i = 1, · · · , N (g), where N (g) denotes the number of observations within

group g. We assume independence between the groups and i.i.d. samples within each

group. To motivate our model we assume that the expectations of the outcome variables

are functionally related to the q dimensional latent variable f
(g)
i with a density function

pf (g)

(
· ;γf (g)

)
, where γf (g) denotes an unconstrained latent variable distribution parameter

for the gth group. We assume that y
(g)
1i , · · · , y(g)

pi are conditionally independent given f
(g)
i and

that each observed variable given f
(g)
i is from a regular exponential family with canonical

parameterization. That is,

p
y
(g)
k

(
y

(g)
ki | f (g)

i ; η
(g)
ki , ϕ

(g)
k

)
= exp

η
(g)
ki y

(g)
ki − b

(
η

(g)
ki

)
a
(
ϕ

(g)
k

) + c
(
y

(g)
ki , ϕ

(g)
k

) (1)

for k = 1, · · · , p, where

E
(
y

(g)
ki

)
= b′

(
η

(g)
ki

)
,

Var
(
y

(g)
ki

)
= a

(
ϕ

(g)
k

)
b
′′ (

η
(g)
ki

)
.

The canonical link function gk (·) relates E
(
y

(g)
ki

)
to the linear function α

(g)
k + β

(g)′
k f

(g)
i , i.e.,

gk

(
E
(
y

(g)
ki

))
= α

(g)
k + β

(g)′
k f

(g)
i = η

(g)
ki . (2)
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The general formulation of the GLLVM approach in (1) allows for various type of outcome

variables, e.g., normal, gamma, Poisson, binomial, etc., though outcomes don’t have to come

from the same exponential family. For example, let y
(g)
ki | f (g)

i be a dichotomous variable

with categories 0 and 1 (e.g., 0 = “disagree”, 1 = “agree”). In this case the canonical link

function is given by

gk

(
E
(
y

(g)
ki

))
= ln

 E
(
y

(g)
ki

)
1− E

(
y

(g)
ki

)
 ,

where

E
(
y

(g)
ki

)
=

1

1 + exp
{
−
(
α

(g)
k + β

(g)′
k f

(g)
i

)} .
This model is equivalent to the model that uses an underlying variable for each dichoto-

mous response, and its threshold (see, e.g., Christoffersson 1975; Muthén 1984). With the

restriction that the underlying variable for each outcome has mean zero and variance one,

the threshold parameter in the latter model is given by α
(g)
k /

√
1− β(g)′

k Σf (g)β
(g)
k , and the la-

tent variable slope parameter is given by −β(g)
k /

√
1− β(g)′

k Σf (g)β
(g)
k . However, the threshold

model with common mean and variance over groups limits its use in multi-group analysis

where comparisons of group characteristics may be of interest.

Model (1) contains the factor indeterminacy inherent in this type of latent variable

models. That is, the same model can be expressed using transformed parameters and factors.

To remove this indeterminacy we use a parameterization suitable for multi-group analysis

(see, e.g., Fuller 1987; Wall and Amemiya 2000). With possible re-ordering of p outcome

variables, k = 1, · · · , p, we assume that, for the first q outcome variables,

(
g1

(
E
(
y

(g)
1i

))
, · · · , gq

(
E
(
y

(g)
qi

)))′
= 0q + Iqf

(g)
i ,

where gk ( · ) is given in (2) and q denotes the dimension of the latent variable. This is a

interpretable and meaningful identification parameterization where the group characteristic

parameters γf (g) are unrestricted. Therefore, differences between groups can be assessed by

comparing γf (g) over different groups.

In our model, the parameters α
(g)
k , β

(g)
k , and ϕ

(g)
k describe the measurement properties

for the kth case outcome variable. For many studies, the same instrument is administered

to all groups. For this typical multi-group analysis situation, it is reasonable to assume that
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the measurement properties are invariant over groups, i.e., for k = q + 1, · · · , p,

α
(1)
k = · · · = α

(G)
k = αk,

β
(1)
k = · · · = β(G)

k = βk,

ϕ
(1)
k = · · · = ϕ

(G)
k = ϕk. (3)

Thus, for the brevity of the presentation, we assume that model (1) satisfies the assumptions

of common measurement properties (3) over groups. However, our approach and methodol-

ogy can be used without these assumptions.

3 MAXIMUM LIKELIHOOD ESTIMATION VIA

MONTE CARLO EM ALGORITHM

3.1 Monte Carlo EM Algorithm

We consider now full maximum likelihood estimation for the parameters of the GLLVM in (1)

which includes the measurement parameter αk,βk, ϕk and the latent variable distribution

parameter γf (g) . Let y =
(
y(1)′, · · · ,y(G)′

)′
and f =

(
f (1)′, · · · ,f (G)′)′. Moreover, for

k = 1, · · · , p, let

θk = (αk,β
′, ϕ)′ , (4)

ψ =
(
θ′1, · · · ,θ′p,γ ′

f (1) , · · · ,γ ′
f (G)

)′
.

For future reference we also define the gth group specific parameter

ψ(g) =
(
θ′1, · · · ,θ′p,γ ′

f (g)

)′
, (5)

where the measurement parameter θk is common for all G groups.

The log-likelihood function is given by

� (ψ | y) =
G∑

g=1

N(g)∑
i=1

p∑
k=1

ln
∫
p

y
(g)
k

(
y

(g)
ki | f (g)

i ;θk

)
dP
f (g)

i

. (6)
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In general, direct maximization of (6) is computationally difficult, involving intractable

multiple integrals which cannot be evaluated in closed form. To solve this difficulty, we

treat the latent variable f (g) as a missing variable, and utilize the EM approach (Dempster,

Laird, and Rubin 1977). In this approach, the complete log-likelihood function

�c (ψ | y,f) =
G∑

g=1

�c
(
ψ(g) | y(g),f (g)

)
, (7)

does not involve integration. The E-step of the EM approach computes the conditional

expectation of (7) given the observed variables evaluated at the current parameter estimate.

Specifically, the E-step at iteration (j + 1) computes

Q
(
ψ | ψ(j)

)
=

G∑
g=1

E
[
�c
(
ψ(g) | y(g),f (g)

)
| y(g);ψ

(g)
(j)

]
, (8)

where ψ(j) and ψ
(g)
(j) are the estimates of ψ and ψ(g) at iteration (j). Each conditional

expectation in (8) is with respect to the conditional density

pf (g)|y(g)

(
f

(g)
i | y(g)

i ;ψ
(g)
(j)

)
. (9)

However, no closed form is generally available for this conditional density. In our approach,

we rewrite (9) as

pf (g)|y(g)

(
f

(g)
i | y(g)

i ;ψ
(g)
(j)

)
=

py(g)|f (g)

(
y

(g)
i | f (g)

i ;ψ
(g)
(j)

)
∫
py(g)|f (g)

(
y

(g)
i | f (g)

i ;ψ
(g)
(j)

)
pf (g)

(
f

(g)
i ;γf (g)(j)

)
df

(g)
i

pf (g)

(
f

(g)
i ;γf (g)(j)

)

=

exp


p∑

k=1

η
(g)
ki y

(g)
ki − b

(
η

(g)
ki

)
a
(
ϕk(j)

) + c
(
y

(g)
ki , ϕk(j)

)
∫

exp


p∑

k=1

η
(g)
ki y

(g)
ki − b

(
η

(g)
ki

)
a
(
ϕk(j)

) + c
(
y

(g)
ki , ϕk(j)

) pf (g)

(
f

(g)
i ;γf (g)(j)

)
df

(g)
i

× pf (g)

(
f

(g)
i ;γf (g)(j)

)
= w

(g)
i

(
ψ

(g)
(j)

)
pf (g)

(
f

(g)
i ;γf (g)(j)

)
(10)

and use this expression in our simulation based (Monte Carlo) E-step.
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3.2 Monte Carlo E-Step

We use (10) to express the conditional expectation of the complete log-likelihood function

given the observed variables at iteration (j + 1) as

Q
(
ψ | ψ(j)

)
=

G∑
g=1

N(g)∑
i=1

∫
�c
(
ψ(g) | y(g)

i ,f
(g)
i

)
w

(g)
i

(
ψ

(g)
(j)

)
pf (g)

(
f

(g)
i ;γf (g)(j)

)
df

(g)
i

=
G∑

g=1

N(g)∑
i=1

p∑
k=1

∫ η
(g)
ki y

(g)
ki − b

(
η

(g)
ki

)
a (ϕk)

+ c
(
y

(g)
ki , ϕk

)
+ ln pf (g)

(
f

(g)
i ;γf (g)

)
×w

(g)
i

(
ψ

(g)
(j)

)
pf (g)

(
f

(g)
i ;γf (g)(j)

)
df

(g)
i . (11)

Evaluation of the expression above requires integration over f
(g)
i . Note that evaluation of the

denominator of w
(g)
i

(
ψ

(g)
(j)

)
itself also requires integration over f

(g)
i . Numerical integration

approximation such as Gauss-Hermite quadrature may be possible if the dimension of f (g)

is very small. However, for higher dimensional f
(g)
i , any numerical integral approximation

becomes computationally infeasible and unreliable (Meng and Schilling 1996). Our approach

is to take advantage of (11), and use a version of Monte Carlo integration. At iteration (j+1)

of our EM algorithm, we draw a large number M of independent samples,

f̂
(g)

1i , · · · , f̂
(g)

Mi ∼ pf (g)

(
· ;γf (g)(j)

)
and approximate (11) by

Q̂
(
ψ | ψ(j)

)
=

G∑
g=1

N(g)∑
i=1

M∑
m=1

�c
(
ψ(g) | y(g)

i , f̂
(g)

mi

)
ŵ

(g)
i

(
ψ

(g)
(j)

)

=
G∑

g=1

N(g)∑
i=1

p∑
k=1

M∑
m=1

 η̂
(g)
kmiy

(g)
ki − b

(
η̂

(g)
kmi

)
a (ϕk)

+ c
(
y

(g)
ki , ϕk

)
+ ln pf (g)

(
f̂

(g)

mi ;γf (g)

)
×ŵ

(g)
mi

(
ψ

(g)
(j)

)
, (12)

where

η̂
(g)
kmi = αk + β

′f̂
(g)

mi ,

7



and

ŵ
(g)
mi

(
ψ

(g)
(j)

)
=

exp


p∑

k=1

 η̂
(g)
kmi(j)y

(g)
ki − b

(
η̂

(g)
kmi(j)

)
a
(
ϕk(j)

) + c
(
y

(g)
ki , ϕk(j)

)
M∑

h=1

exp


p∑

k=1

 η̂
(g)
khi(j)y

(g)
ki − b

(
η̂

(g)
khi(j)

)
a
(
ϕk(j)

) + c
(
y

(g)
ki , ϕk)(j)

)
=

py(g)|f (g)

(
y

(g)
i | f̂ (g)

mi ;ψ
(g)
(j)

)
M∑

h=1

py(g)|f (g)

(
y

(g)
i | f̂ (g)

hi ;ψ
(g)
(j)

) ,

with

η̂
(g)
kmi(j) = αk(j) + β

′
(j)f̂

(g)

mi .

Note that, for any given i and g,
∑M

m=1 ŵ
(g)
mi = 1.

As the Monte Carlo sample size M increases, Q̂
(
ψ | ψ(j)

)
approaches Q

(
ψ | ψ(j)

)
. An

adapted method of choosing M is a part of our algorithm, and is discussed in section 3.4.

3.3 Maximization Step

Because of the conditional independence of the observed variables given the latent variable,

we can separate the parameter space of ψ into components corresponding to each outcome

variable and the latent variable. Therefore expression (12) can be written as

Q̂
(
ψ | ψ(j)

)
=

p∑
k=1

Q̂k

(
θk | ψ(j)

)
+

G∑
g=1

Q̂f (g)

(
γf (g) | ψ(j)

)
,

with

Q̂k

(
θk | ψ(j)

)
=

G∑
g=1

N(g)∑
i=1

M∑
m=1

ln p
y
(g)
k

(
y

(g)
ki | f̂ (g)

mi ;θk

)
ŵ

(g)
mi

(
ψ

(g)
(j)

)

=
G∑

g=1

N(g)∑
i=1

M∑
m=1

 η̂
(g)
kmy

(g)
ki − b

(
η̂

(g)
km

)
a (ϕk)

+ c
(
y

(g)
ki , ϕk

) ŵ
(g)
mi

(
ψ

(g)
(j)

)
,

and

Q̂f (g)

(
γf (g) | ψ(j)

)
=

N(g)∑
i=1

M∑
m=1

ln pf (g)

(
f̂

(g)

mi ;γf (g)

)
ŵ

(g)
mi

(
ψ

(g)
(j)

)
,
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where θk is defined in (4) and γf (g) denotes the latent variable distribution parameter.

Hence we can maximize (12) by maximizing each Q̂k with respect to θk and each Q̂f (g) with

respect to γf (g) separately. Note that Q̂k and Q̂f (g) are in the form of a weighted likelihood.

Thus each maximization can be carried out by modifying the existing maximum likelihood

procedures. The Q̂k is a weighted generalized linear model likelihood, and can be maximized

by modified iteratively re-weighted least squares with an additional weight ŵ
(g)
mi . The Q̂f (g)

depend on the density function pf (g)( · ;γf (g)). A maximum likelihood algorithm for the

distribution pf (g)( · ;γf (g)) can be modified to include the weight ŵ
(g)
mi for maximization of

Q̂f (g) . If f (g) is normally distributed, i.e., if pf (g)( · ;γf (g)) is n
(
· | µf (g) ,Σf (g)

)
, then the

closed form solutions for the next step estimate µ̂(j+1) and Σ̂(j+1) are given by

µ̂f (g)(j+1) =

N(g)∑
i=1

M∑
m=1

f̂
(g)

miŵ
(g)
mi

(
ψ

(g)
(j)

)
N(g)∑
i=1

M∑
m=1

N (g)ŵ
(g)
mi

(
ψ

(g)
(j)

) ,

Σ̂f (g)(j+1) =

N(g)∑
i=1

M∑
m=1

(
f̂

(g)

mi − µ(j+1)

f (g)

)(
f̂

(g)

mi − µ(j+1)

f (g)

)′
ŵ

(g)
mi

(
ψ

(g)
(j)

)
N(g)∑
i=1

M∑
m=1

N (g)ŵ
(g)
mi

(
ψ

(g)
j

) .

3.4 Adaptive method of checking convergence and choosing the

Monte Carlo sample size

Assessing the convergence of the Monte Carlo EM algorithm is a challenging task. A method

suggested in the literature is to plot each component of the parameter vector versus the it-

eration step j, and to terminate the algorithm when each plot shows only small fluctuations

around an horizontal line. In addition to the difficulty associated with subjective examina-

tions of plots, this method is limited to cases with only a few parameters. In our problem,

the number parameters can be very large, even for a moderately sized model. Also, a plot

of ψ(j) versus the iteration step (j) does not by itself differentiate fluctuations over the iter-

ations and the variability due to the Monte Carlo integration. In particular, the celebrated

monotonicity property of the EM algorithm no longer holds and the change in the parameter

values from iteration (j) to (j + 1) may be swamped by the Monte Carlo error. The Monte
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Carlo error can be controlled by the Monte Carlo sample size. Therefore it makes sense

to increase the Monte Carlo sample size over the EM algorithm iterations. Several ad-hoc

strategies, where the Monte Carlo sample size is deterministically increased over iterations,

have been proposed (see, e.g., Chan and Kuk 1997; McCulloch 1997; Booth and Hobert

1999).

We introduce a likelihood based approach, under which the Monte Carlo sample deter-

mination and convergence assessment are performed for each iteration at the same time.

The basic idea behind our approach is to measure the distance between any two values of

the parameter vector by the difference in log-likelihoods evaluated at them.

For an absolute distance criterion for the likelihood, we hypothetically consider perform-

ing the likelihood ratio test for the goodness of fit of the proposed model within a natural

unrestricted model. Then, the asymptotic likelihood ratio goodness of fit test compares the

difference in minus twice the log-likelihood evaluated at the maximum likelihood estimate

under the proposed model and at the maximum likelihood estimate under the unrestricted

model to a chi-squares distribution with degrees of freedom given by the difference in the

number of parameters. For most values of degrees of freedom, a small difference in the

test statistic value, e.g., δ0 = 0.005, 0.05, or even 0.5, has no practical effect on statistical

judgment. However, the test statistic value typically increases with the sample size, because

the approximate non-centrality parameter is of order N =
∑

N (g), the sample size. Taking

into account the effect of different sample sizes N , we consider the log-likelihood difference

to be neglible if it is smaller in absolute value than
√
Nδ = δ0/2 for a fixed value δ. That

is, the estimates from iteration (j) to (j + 1) are considered sufficient close to each other if

∣∣∣� (ψ(j) | y
)
− �

(
ψ(j+1) | y

)∣∣∣ < √
Nδ. (13)

For example, the practical small difference of δ0 = 0.5 for likelihood ratio test is achieved

for any N ≤ 10, 000 if we choose δ = 0.0025. The same is achieved for any N ≤ 1, 000 if we

choose δ = 0.008. This gives us a way to set a criterion for the log-likelihood difference.

However, in the Monte Carlo EM algorithm, the log-likelihood functions in (13) are not

explicitly available. Thus, we use Monte Carlo integration to obtain a probability upper
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bound for the difference in (13). For this, let

f̂
(g)

1i , · · · , f̂
(g)

Mi ∼ pf (g)

(
· ;γf (g)(j+1)

)
be the independent Monte Carlo sample at iteration (j+1) of the Monte Carlo EM algorithm

described in Section 3.2. Then, an approximate value of the log-likelihood function evaluated

at ψ(j+1) is given by

�̂
(
ψ(j+1) | y

)
=

G∑
g=1

N(g)∑
i=1

p∑
k=1

ln p̂
y
(g)
k

(
y

(g)
ki ;θk(j+1)

)
,

where

p̂
y
(g)
k

(
y

(g)
ki ;ψ(j+1)

)
=

1

M

M∑
m=1

p
y
(g)
k

(
y

(g)
ki | f̂ (g)

mi ;θk(j+1)

)
and θk is defined in (4). Using this notation, and the triangle inequality we note that∣∣∣� (ψ(j) | y

)
− �

(
ψ(j+1) | y

)∣∣∣ ≤
∣∣∣�̂ (ψ(j+1) | y

)
− �

(
ψ(j+1) | y

)∣∣∣
+
∣∣∣�̂ (ψ(j) | y

)
− �

(
ψ(j) | y

)∣∣∣
+
∣∣∣�̂ (ψ(j) | y

)
− �̂

(
ψ(j+1) | y

)∣∣∣ . (14)

Our approach is to bound each of the three terms of the right hand of (14) by δ1 =
√
Nδ/3.

The third term on the right-hand side of (14) is observable, and its size can be assessed di-

rectly. The first two terms are of the same form corresponding to two consecutive iterations.

For the first term, over the Monte Carlo simulation distribution,

�̂
(
ψ(j+1) | y

)
− �

(
ψ(j+1) | y

)
=

G∑
g=1

N(g)∑
i=1

p∑
k=1

ln

 p̂
y
(g)
k

(
y

(g)
ki ;θk(j+1)

)
p

y
(g)
k

(
y

(g)
ki ;θk(j+1),γf (g)(j+1)

)


=
G∑

g=1

N(g)∑
i=1

p∑
k=1

 p̂
y
(g)
k

(
y

(g)
ki ;θk(j+1)

)
p

y
(g)
k

(
y

(g)
ki ;θk(j+1),γf (g)(j+1)

) − 1

+Op

(
1

M

)

=
1

M

M∑
m=1

G∑
g=1

N(g)∑
i=1

p∑
k=1

 p
y
(g)
k

(
y

(g)
ki | f̂ (g)

mi ;θk(j+1)

)
p

y
(g)
k

(
y

(g)
ki ;θk(j+1),γf (g)(j+1)

) − 1

+Op

(
1

M

)
,

as M −→ ∞. Hence, ignoring the terms Op

(
1
M

)
,

E
[∣∣∣� (ψ(j+1) | y

)
− �̂

(
ψ(j+1) | y

)∣∣∣2] ≈ V

M
,
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where

V =
G∑

g=1

N(g)∑
i=1

p∑
k=1

Var
[
p

y
(g)
k

(
y

(g)
ki | f̂ (g)

mi ;θk(j+1)

)]
p2

yk

(
y

(g)
ki ;θk(j+1),γf (g)(j+1)

) , (15)

and the variance is with respect to the distribution pf (g)

(
· ;γ

f (g)(j+1)

)
. By the Markov’s

inequality, for any δ1,

P
(∣∣∣� (ψ(j+1) | y

)
− �̂

(
ψ(j+1) | y

)∣∣∣ > δ1

)
≤ V

Mδ2
1

. (16)

Again, using the Monte Carlo integration, we can approximate (15) by

V̂ (j+1) =
1

M (j)

G∑
g=1

N(g)∑
i=1

p∑
k=1


M(j)∑
m=1

p2

y
(g)
k

(
y

(g)
ki | f̂ (g)

mi ;θk(j+1)

)
(
p̂

y
(g)
k

(
y

(g)
ki ;θk(j+1)

))2 −M (j)

 , (17)

where M (j) was the Monte Carlo sample size at the previous iteration. The probability in

(16) can be made small, e.g., at most ε = 0.01, if we choose the Monte Carlo sample size

M
(j+1)
0 satisfying

M
(j+1)
0 ≥ V̂ (j+1)

εδ2
1

.

Similarly, the Monte Carlo sample size of M
(j)
0 in the previous iteration should have been

chosen to satisfy

P
(∣∣∣� (ψ(j) | y

)
− �̂

(
ψ(j) | y

)∣∣∣ > δ1

)
≤ ε,

i.e.,

M
(j)
0 ≥ V̂ (j)

εδ2
1

.

Then we set M (j+1) to be the maximum of M
(j)
0 and M

(j+1)
0 and compute the Monte

Carlo log-likelihood functions �̂
(
ψ(j) | y

)
and �̂

(
ψ(j+1) | y

)
using the Monte Carlo sample

size M (j+1). If the third term of the right hand of (14) is less than
√
Nδ/3, then the Monte

Carlo EM algorithm is considered to have converged. Otherwise, we go to iteration (j + 2)

where the Monte Carlo sample size M (j+1) is used in the E-step.

In practice we start with a fixed Monte Carlo sample size for a few iterations without

checking the convergence. After this “burn in” phase, the following steps are performed at

iteration (j + 1):

12



1. Obtain ψ(j+1) based on the sample size M (j).

2. Compute expression V̂ (j+1) of (17).

3. Compute the smallest integer M
(j+1)
0 , satisfying

M
(j+1)
0 ≥ V̂ (j+1)

εδ2
1

,

and smallest integer M
(j)
0 , satisfying

M
(j)
0 ≥ V̂ (j)

εδ2
1

,

and set

M (j+1) = max
{
M

(j)
0 ,M

(j+1)
0

}
.

4. Compute �̂
(
ψ(j+1) | y

)
and �̂

(
ψ(j) | y

)
based on M (j+1). If∣∣∣�̂ (ψ(j) | y

)
− �̂

(
ψ(j+1) | y

)∣∣∣ < 1

3

√
Nδ,

then stop the Monte Carlo EM algorithm and report ψ(j+1) as the maximum likelihood

estimate. Otherwise, go to iteration (j + 2) and return to step 1.

3.5 Estimation of Standard Errors

Let ψ̂ denote the maximum likelihood estimate obtained by the Monte Carl EM, and ψ̂
(g)

be the part of ψ̂ corresponding to ψ(g) as defined in (5). Then the empirical observed

information matrix (see, e.g, Meilijson 1989) is given by

Îe

(
ψ̂
)

=
G∑

g=1

N(g)∑
i=1

∂

∂ψ(g)
ln py(g)

(
y

(g)
i ; ψ̂

(g)
) [

∂

∂ψ(g)
ln py(g)

(
y

(g)
i ; ψ̂

(g)
)]′

. (18)

Note that, the gradient vector of the complete log-likelihood function given the observed

data for observation i in group g can be written as

∂

∂ψ(g)
E
[
�c
i

(
ψ | y(g)

i ,f
(g)
i

)
| y(g)

i

]
=

∂

∂ψ(g)
ln py(g)

(
y

(g)
i ;ψ(g)

)
,

i.e., the individual score functions of the observed data can be computed as a by-product of

the EM algorithm. Therefore, expression (18) can be approximated by

Îe

(
ψ̂
)
≈

G∑
g=1

N(g)∑
i=1

∂

∂ψ(g)
E
[
�c
i

(
ψ̂ | y(g)

i ,f
(g)
i

)
| yi

] [ ∂

∂ψ(g)
E
[
�c
i

(
ψ̂ | y(g)

i ,f
(g)
i

)
| y(g)

i

]]′
,
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where
∂

∂ψ(g)
E
[
�c
i

(
ψ̂ | y(g)

i ,f
(g)
i

)
| y(g)

i

]
can be obtained in the same way as described in Section 3.2 using Monte Carlo integration.

This Monte Carlo integration needs to be performed only once after the convergence of the

Monte Carlo EM algorithm has been determined.

4 AN EXAMPLE

To demonstrate our multi-group GLLVM approach with a real life example, we analyze

data from a substance abuse prevention study. The data are from the Project Family study,

which was conducted at the Institute for Social and Behavioral Research at Iowa State Uni-

versity. Project Family investigations address the efficacy of universal competency-training

interventions for families with young adolescents, factors influencing family participation in

these interventions and strategies for the dissemination of validated preventive interventions

(Spoth et al. 1998). Participants in the study were families of sixth grader enrolled in 33

rural schools of a Midwestern state. Sixth graders from these schools and their families

were randomly assigned to one of three experimental conditions: the seven-session Iowa

Strengthening Families Program (ISFP), the five session Preparing for the Drug Free Years

Program (PDFY), and a minimal-contact control condition. Data were based on parent

report and observational report items of in-home interviews. In this example, we analyze

data which were collected one year after the initiation of the intervention programs. There

were 134 families assigned to ISFP, 146 to PDFY, and 149 to the control group. Based

on the knowledge of the underlying study, a confirmatory factor analysis models that in-

volves two non-overlapping factors is used to analyze the data. The first factor is denoted

as Parent-Child Affective Quality (PCAQ) and consists of four indicators. Two of them are

based on a parent report while the remaining are based on an observational report. The

parent report indicators are computed as averages over four 5-point Likert type questions.

The observational report indicators are averages over three 7-point Likert type questions.

Therefore all 4 indicators are treated as continuous responses. The second factor is denoted
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as Intervention Targeted Behaviors (ITB). This factor consists of four parent reported in-

dicators. Two of these parent reported indicators are averages over three 5-point Likert

type questions. The other two indicators are both based on a single questions with 5-point

Likert scale ranging from 1 = “strongly disagree” to 5 = “strongly agree”. The indicator

variables are denoted as follows: PosAffO = positive affect observational report (continu-

ous), NegAffO = negative affect observational report (continuous), PosAffP = positive affect

parent report (continuous), NegAffP = negative affect parent report (continuous), InvolveP

= involving child in family activities and decisions parent report (continuous), CommP =

communication with child parent report (continuous), RulConP = communications of sub-

stance use rules parents report (polytomous), and AngMgtP = anger management parents

report (polytomous). The following confirmatory factor analysis model has been proposed

PosAffO(g)
i

InvolveP(g)
i

NegAffO(g)
i

PosAffP(g)
i

NegAffP(g)
i

CommP(g)
i


=



0

0

α3

α4

α5

α6

1 0

0 1

β31 0

β41 0

β51 0

0 β62




1

f
(g)
1i

f
(g)
2i

+



ε
(g)
1i

ε
(g)
2i

ε
(g)
3i

ε
(g)
4i

ε
(g)
5i

ε
(g)
6i



P
(
RulConP(g)

i ≤ c1 | f (g)
i

)
=

1

1 + exp
{
−
(
α7 + β72f

(g)
2i

)}

P
(
AngMgtP(g)

i ≤ c2 | f (g)
i

)
=

1

1 + exp
{
−
(
α8 + β82f

(g)
2i

)} ,
for g = ISFP, PDFY, Control, c1, c2 = 1, · · · , 4, and i = 1, · · · , N (g). We assume f

(g)
1i

f
(g)
2i

 ∼ N


 µ

(g)
f1

µ
(g)
f2

 ,

 σ
2(g)
f1

σ
(g)
f1f2

σ
(g)
f2f1

σ
2(g)
f2




and ε
(g)
i ∼ N

(
0,Ψ(g)

)
, where Ψ(g) is a diagonal matrix.

Note that this model allows to compare latent variable parameters of PCAQ and ITB

across the three intervention groups which cannot be accomplished by using the underlying
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response variable approach with a multi-stage WLS estimation procedure. We used the

Monte Carlo EM algorithm as described in Section 3 to compute the maximum likelihood

estimates. The initial Monte Carlo sample size in the first 10 iterations ( “burn in” phase)

was set to be M = 50, while the tolerance level of the likelihood ratio statistic, δ0, was set

to be 0.05, and the upper bound for the probability of the approximation error in (16), ε,

was set to be 0.01. The Monte Carlo sample size increased steeply for about 80 iterations

to about 10, 000 and stabilized after it. Convergence was determined after 108 iterations.

The convergence of the Monte Carlo approximated log-likelihood function is monitored in

Figure 1.

Figure 1 here

The estimates for the parameters corresponding to the latent variable for the three

intervention groups are summarized in Table 1. The estimated correlations between the

two latent constructs PCAQ and ITB are 0.346 for ISFP, 0.435 for PDFY, and 0.363 for

the control group which indicates a positive linear association between the Parent-Child

Affective Quality and Intervention Targeted Behaviors for all three experimental conditions.

It appears that the variability of the factors PCAQ and ITB for the ISFP group is higher

than for the PDFY and Control group. The researchers were particularly interested in

comparing the factor means of PCAQ and ITB between the three intervention groups. A

test of equivalence between the factor means of the three groups provided a p value of 0.0002

for PCAQ and 0.0014 for ITB, respectively. The p values of the two-sided pairwise tests for

the factor means are summarized in Table 2. The results indicate that there is a significant

intervention effect on both factors for ISFP and PDFY.

Table 1 here

Table 2 here
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5 SUMMARY

In this paper we have proposed a generalized linear latent variable modeling approach

which allows outcome variables from any regular exponential family. The existing approaches

for latent variable models with non-normal outcome variables are restricted to finite discrete

response variables and can be considered lacking for multi-sample situations. The param-

eterization used in our approach is particularly useful for coherent multi-sample situations

and provides meaningful parameter interpretation for those parameters which vary across

groups. Additionally, our approach allows a flexible choice for the distribution of the latent

variable. We use an EM algorithm to compute full maximum likelihood estimates. The

E-step can be conveniently carried out using Monte-Carlo integration. The M-step can be

computed using an iteratively re-weighted least square procedure. We also introduced a

novel procedure for determining the convergence of the Monte EM algorithm. This proce-

dure is described in a general framework and can be easily applied to any situation where a

Monte Carlo EM algorithm is used. We conclude that the approach described in this article

provides an important contribution for multi-group analysis of latent variable models with

non-normal outcome variables.
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Jöreskog, K., and Moustaki, I. (2001), Factor Analysis of Ordinal Variables: A Comparison

of Three Approaches. Multivariate Behavioral Research, 36, 347–387.

Lee, S.Y., and Poon, W.Y. (1987), Two-step estimation of multivariate polychoric correla-

tions. Communications in Statistics: Theory and Methods, 16, 307–320.

Lee, S.Y., Poon, W.Y., and Bentler, P.M. (1992), Structural equation models with contin-

uous and polytomous variables Psychometrika, 57, 89–105.

McCulloch, C.E. (1997), Maximum likelihood algorithms for generalized linear mixed mod-

els. Journal of the American Statistical Association, 92, 162–170.

Meilijson, I. (1989), A fast improvement to the EM algorithm on its own terms. Journal

of the Royal Statistical Society, Series B, 51, 127–138.

18



Meng, X.L., and Schilling, S. (1996), Fitting full-information item factor models and and

empirical investigation of bridge sampling. Journal of the American Statistical Asso-

ciation. 91, 1254–1267.

Muthén, B. (1978), Contributions to factor analysis of dichotomous variables. Psychome-

trika, 43, 551–560.

Muthén, B. (1984), A general structural equation model with dichotomous, ordered cate-

gorical and continuous latent variable indicators. Psychometrika, 49, 115–132.

Muthén, B. (1987), LISCOMP: Analysis of linear statistical equations using a comprehen-

sive measurement model. Mooreville, IN: Scientific Software, Inc.

Muthén, B., and Muthén, L. (1998), Mplus User’s Guide Los Angeles, CA: Muthén &

Muthén.

Reboussin, B.A., and Liang, K.Y. (1998), An estimating equations approach for the LIS-

COMP model. Psychometrika, 63, 165–182.

Spoth, R.L., Redmond, C., and Shin, C. (1998), Direct and indirect latent-variable par-

enting outcomes of two universal family-focused preventive interventions: Extending

a public health oriented research base, Journal of Consulting and Clinical Psychology,

66, 385–399.

Wall, M.M., and Amemiya, Y. (2000), Estimation for polynomial structural equation mod-

els. Journal of the American Statistical Association, 95, 929-940.

Wilson, D. Wood, R.L., and Gibbons, R. (1991), TESTFACT 2. Chicago: Scientific Soft-

ware International.

19



Figure 1: Values of the Monte Carlo approximated negative log-likelihood function at each

EM iteration
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Table 1: Parameter estimates of latent variable means, variances, and covariances for the

three intervention groups

Parameter ISFP PDFY Control

µPCAQ 5.532 5.453 5.326

µITB 3.772 3.929 3.695

σ2
PCAQ 0.292 0.202 0.170

σ2
ITB 0.242 0.207 0.231

σPCAQ,ITB 0.092 0.089 0.072

Table 2: p values for two-sided pairwise tests between ISFP, PDFY, and control group for

PCAQ and ITB factor means

Contrast PCAQ ITB

ISFP vs. Control < 0.0001 0.0353

PDFY vs. Control < 0.0001 < 0.0001

ISFP vs. PDFY 0.1203 0.0031
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