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Abstract

This paper reports on the design and implementation of
Chianti, a change impact analysis tool for Java that is imple-
mented in the context of the Eclipse environment. Chianti
analyzes two versions of an application and decomposes
their difference into a set of atomic changes. Change im-
pact is reported in terms of affected tests whose execution
behavior may have been modified by the applied changes.
For each affected test, Chianti also determines a set of af-
fecting changes that were responsible for the test’s modified
behavior. We evaluated Chianti on 6 months of data fromM.
Ernst’s Daikon system, and found that, on average, 62.4% of
the tests is affected. Furthermore, each affected test, on av-
erage, is affected by only 5.6% of the atomic changes. These
findings suggest that change impact analysis is a promising
technique for assisting developerswith programunderstand-
ing and debugging.

1. Introduction

The extensive use of subtyping and dynamic dispatch in
object-oriented programming languages make it difficult to
understand value flow through a program. For example,
adding the creation of an object may affect the behavior of
virtual method calls that are not lexically near the allocation
site. Also, adding a new method definition that overrides an
existing method can have a similar non-local effect. This
nonlocality of change impact is qualitatively different and
more important for object-oriented programs than for im-
perative ones (e.g., in C programs a precise call graph can
be derived from syntactic information alone, except for the
typically few calls through function pointers).

∗This research was supported by NSF grant CCR-0204410 and in part
by REU supplement CCR-0331797.

Change impact analysis [3, 12, 13, 17] consists of a col-
lection of techniques for determining the effects of source
codemodifications, and can improve programmer productiv-
ity in severalways. First, change impact analysis allows pro-
grammers to experiment with different edits, observe their
effect, and use this information to determine which edit to
select. Change impact analysis may also reduce the amount
of time and effort needed in running (unit or regression)
tests, by determining that some tests are guaranteed not to
be affected by a given set of changes. Finally, change im-
pact analysis [17] may reduce the amount of time and effort
spent in debugging, by determining a safe approximation of
the changes responsible for a given test’s failure.
Previous work on change impact analysis is either based

on dynamic execution data and thus captures impact with
regard to a particular execution only [12, 13], or it uses a
reachability measure on static call graphs that is quite im-
precise [3]. In contrast, the analysis studied in this paper [17]
is based on reasonably precise static call graphs (computed
using the 0-CFA algorithm [9, 16]), and reports possible im-
pact over all program executions.
Our analysis comprises the following steps. First, a

source code edit is analyzed to obtain a set of interdependent
atomic changes A, whose granularity is (roughly speaking)
at the method level, so that it matches that of the static anal-
ysis we use. Second, for a given set T of (unit or regression)
tests, the analysis determines a subset T ′ of T that is poten-
tially affectedby the changes inA, by correlating the changes
in A against the call graphs for the tests in T . Third, for a
given test ti ∈ T ′, the analysis finds a subset A′ of A that
contains all the changes that affect ti, by correlating the call
graph for ti with the changes in A.
This paper reports on the engineering of Chianti, a proto-

type change impact analysis tool, and its validation against
a 6-month long revision history (taken from the developers’
CVS repository) of Daikon, a large, realistic Java system
developed by M. Ernst et al. [7]. Since the primary goal of
our research has been to assist programmers during devel-
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opment, Chianti has been integrated closely with Eclipse, a
widely used open-source development environment for Java
(see www.eclipse.org). The main contributions of this
research are as follows:

• Demonstration of the utility of the basic change im-
pact analysis framework of [17], by implementing a
proof-of-concept prototype, Chianti, and applying it to
Daikon, a moderate-sized Java system built by others.

• Extension of the originally specified techniques [17] to
handle the entire Java language, including such con-
structs as anonymous classes. This work entailed ex-
tension of the model of atomic changes and their inter-
dependences.

• Experimental validation of the usefulness of change im-
pact analysis by determining the percentages of affected
tests and affecting changes for 21 versions of Daikon.
For the 20 sets of changes between these versions, we
found that, on average, 62.4% of the tests are poten-
tially affected. Moreover, for each potentially affected
test, on average, only 5.9% of the changes affected it.

Clearly, the small number of affecting changes per affected
test indicates that our techniques are useful for program un-
derstanding and debugging. The performance ofChianti has
thus far not been our primary focus, and the running time of
the tool currently is disappointing. However, we have sev-
eral concrete ideas for improving performance (discussed in
Section 4) that we are pursuing.
In Section 2, the model of atomic changes is discussed, as

well as engineering issues arising from handling Java con-
structs that were previously not modeled. Chianti’s imple-
mentation is described in Section 3. Section 4 describes the
experimental setup and presents the empirical findings of
the Daikon study. Related work and conclusions are sum-
marized in Sections 5 and 6, respectively.

2 Atomic Changes and Their Dependences

Chianti is based on a conceptual framework for change
impact analysis of object-oriented programs that was origi-
nally presented at PASTE’01 [17]. This framework assumes
that an original program P is edited to yield a changed
program P ′, where both P and P ′ are syntactically cor-
rect and compilable. The edit itself is decomposed into a
set A of atomic changes such as “add an empty class’’ or
“delete a method’’. Associated with P is a set of tests T
= t1,...,tn. Each ti exercises a subset Nodes(P, ti) of P ’s
methods, and a subset Edges(P, ti) of calling relationships
between P ’s methods, which form a call graph1 Gti

. Like-
1In this paper, static call graphs are used. Dynamic call graphs could

be used as well, but this would limit the validity of the results to a (set of)
specific executions.

wise, Nodes(P ′, ti) and Edges(P ′, ti) form the call graph
G′

ti
on the edited program P ′. Here, a calling relationship is

represented as A.m() →C B.n(), indicating possible con-
trol flow from method A.m() to method B.n() due to a
virtual call to method n() on an object of type C.

As mentioned, a key aspect of our analysis is the step of
uniquely decomposing a source code edit into a set of inter-
dependent atomic changes. In the original formulation [17],
several kinds of changes, (e.g., changes to access rights of
classes, methods, and fields and addition/deletion of com-
ments) were not modeled. Section 2.1 discusses how these
changes are handled inChianti. Table 1 lists the set of atomic
changes in Chianti, which includes the original 8 categories
of [17] plus 4 new atomic changes (the bottom 4 rows of
the table). Most of the atomic changes are self-explanatory
except for CM and LC. CM represents any change to a
method. Some extensions to the original definition of CM
are discussed in detail in Section 2.1. LC represents any
source code change that affects dynamic dispatch behavior.
For example, the addition/deletion of methods, changes to
the access control of methods, or addition/deletion of inher-
itance relations may have this effect. LC is defined as a set
of pairs 〈C, A.m()〉, indicating that the dynamic dispatch
behavior for a call toA.m() on an object with run-time type
C has changed.

AC Add an empty class
DC Delete an empty class
AM Add an empty method
DM Delete an empty method
CM Change body of a method
LC Change virtual method lookup
AF Add a field
DF Delete a field
AI Add an empty initializer
DI Delete an empty initializer
CI Change definition of initializer
CF Change definition of a field initializer

Table 1. Categories of atomic changes.

Once atomic changes have been computed, the analy-
sis proceeds in two steps. First, it determines the affected
tests ti whose call graph Gti

contains nodes that have been
changed or deleted, or edges that correspond to changed dis-
patch relationships. Then, for a given affected test ti, further
analysis can determine a safe approximation of the affecting
changes that may have influenced ti’s behavior. Figure 1
provides definitions of these notions of AffectedTests and
AffectingChanges [17].
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AffectedTests(T ,A) = { ti | ti ∈ T , Nodes(P, ti) ∩ (CM ∪ DM)) �= ∅ } ∪
{ ti | ti ∈ T , n ∈ Nodes(P, ti), n→BA.m ∈ Edges(P, ti), 〈B, X.m〉 ∈ LC, B<∗A≤∗X }

AffectingChanges(t, A) = { a′ | a ∈ Nodes(P ′, t) ∩ (CM ∪AM), a′ 
∗ a } ∪
{ a′ | a ≡ 〈B, X.m〉 ∈ LC, B<∗A≤∗X, n→BA.m ∈ Edges(P ′, t),

for some n, A.m ∈ Nodes(P ′, t), a′ 
∗ a }

Figure 1. Affected Tests and Affecting Changes.

2.1 New and Modified Atomic Changes

Chianti handles the full Java programming language,
which necessitated the modeling of several constructs not
considered in the original framework [17]. Some of these
constructs required the definition of new sorts of atomic
changes; others were handled by augmenting the interpreta-
tion of atomic changes already defined.
Initializers, Constructors, and Fields. Three of the

newly added changes in Table 1 correspond to initializers.
AI and DI denote the set of added and deleted initializers
respectively, which can be instance or static initializers. CI
captures any change to an initializer. The fourth new atomic
change, CF, captures any change to a field, including (i)
adding an initialization to a field, (ii) deleting an initializa-
tion of a field, (iii) making changes to the initialized value
of a field, and (iv) making changes to a field modifier (e.g.,
changing a static field into a non-static field).
However, changes to initializer blocks and field initializ-

ers also have repercussions for constructors or static initial-
izer methods of a class. Specifically, if changes are made to
non-static field initializations or instance initializer blocks of
a class C, then there are two cases: (i) if constructors have
been explicitly defined for class C, then Chianti will report
a CM for each such constructor, (ii) otherwise, Chianti will
report a change to the implicitly declared method C.〈init〉
that is generated by the Java compiler to invoke the super-
class’s constructor without any arguments. Similarly, the
class initializer C.〈clinit〉 is used to represent the method
being changed when there are changes (i.e., CF, CI) to a
static field or static initializer.
Overloading. Overloading poses interesting issues for

change impact analysis. Consider the introduction of an
overloaded method as shown in Figure 2. Note that there
are no textual edits in Test.main(), and further, that
there are no LC changes because all the methods are
static. However, adding method R.foo(Y) changes the
behavior of the program because the call of R.foo(y)
in Test.main() now resolves to R.foo(Y) instead of
R.foo(X). Therefore, Chianti must report a CM change
for method Test.main() despite the fact that no textual

changes occur within this method2.

class R {
static void foo(X x){ }
static void foo(Y y){ }//added by the edit

}
class X { }
class Y extends X { }
class Test{

static void main(String[] args){
Y y = new Y();
R.foo(y);

}
}

Figure 2. Addition of an overloaded method.

Changes to CM and LC. Accommodating method ac-
cessmodifier changes from non-abstract to abstract, or vice-
versa and non-public to public or vice-versa, required exten-
sion of the original definition of CM. CM now corresponds
to: (i) adding a body to a previously abstract method, (ii)
removing the body of a non-abstract method and making
it abstract, or (iii) making any number of statement-level
changes inside a method body (including modifier changes
on the method header).
In addition, in some cases, changing a method’s access

modifier results in changes to the dynamic dispatch in the
program (i.e., LC changes). For example, there is no entry
for private or static methods in the dynamic dispatch map
(because they are not dynamically dispatched), but if a pri-
vate method is changed into a public method, then an entry
will be added, generating an LC change that is dependent
on the access control change. Additions and deletions of
import statements and changes to the class hierarchy may
also affect dynamic dispatch and are handled by Chianti.

2.2. Dependences

Atomic changes have interdependences which induce a
partial ordering ≺ on a set of them, with transitive closure

∗. This determines a safe order in which atomic changes
can be applied to P to obtain an edited version P ′′ which,

2However, the abstract syntax tree for Test.main()will be different
after applying the edit, as overloading is resolved at compile-time.

3



AC

DMDF

DC

CM

AMAF

LCCF

AI

DI

CI

Figure 3. Atomic change dependences.

if we apply all the changes is P ′. Consider that one cannot
extend a classX that does not yet exist by addingmethods or
fields to it (thereforeAC(X) ≺ AM(X.m()) andAC(X) ≺
AF(X.f). These dependences are intuitive as they involve
how new code is added or deleted in the program. Other
dependences are more subtle. For example, if we add a new
methodC.m() and then adda call toC.m() inmethodD.n(),
there will be a dependence AM(C.m()) ≺ CM(D.n()).
The full set of dependence relations possible between atomic
changes is shown in Figure 3.
Dependences involving LC changes can be caused by

edits that alter inheritance relations. LC changes can be
classified as (i) newly added dynamic dispatch tuples (caused
by declaring a new class/interface or method), (ii) deleted
dynamic dispatch tuples (caused by deleting a class/interface
or method), and (iii) dynamic dispatch tuples with changed
targets (caused by adding/deleting a method or changing the
access control of a class or method). For example, making
an abstract class C non-abstract will results in LC changes.
In the original dynamic dispatch map, there is no entry with
C as the run-time receiver type, but the new dispatch map
will contain such an entry. Similar dependences result when
other access modifiers are changed.

2.3 Engineering issues

One engineering problem encountered in building
Chianti resulted from the absence of unique names for
anonymous and local classes. In a JVM, anonymous classes
are represented as EnclosingClassName$〈num〉, where
the number assigned represents the lexical order of the inner
class within its enclosing class. This naming strategy guar-
antees that all the class names in a Java program are unique.
However, Chianti compares and analyzes two related Java

programs, and needs to establish a correspondence between
classes and methods in each version. The approach used is a
match-by-name strategy in which two components in differ-
ent programs match if they have the same name; however,
when there are changes to local or anonymous classes, this
strategy requires further consideration.

import java.io.*;
class Lister
{//code added by edit********

static void listClassFiles(String dir){
File f = new File(dir);
String[] list = f.list(

new FilenameFilter() {//anonymous class
boolean accept(File f, String s){

return s.endsWith(".class"); }
});

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

}//end of code added by edit*********
static void listJavaFiles(String dir){

File f = new File(dir);
String[] list = f.list(

new FilenameFilter() {//anonymous class
boolean accept(File f,String s){

return s.endsWith(".java"); }
});

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

}
}

Figure 4. Addition of an anonymous class.

Figure 4 shows a simple program using anony-
mous classes with the code added by the edit in-
dicated by comments. In this program, method
listJavaFiles(String) lists all Java files
in a directory that is specified by its parameter.
Anonymous class Lister$1 implements interface
java.io.FilenameFilter and is defined as part of
a method call expression. Now, assume that the program
is edited and a method listClassFiles(String)
is added that lists all class files in a directory. This new
method declares another, similar anonymous class. Now,
in the edited version of the program, the Java compiler
will name this new anonymous class Lister$1 and the
previous anonymous class, formerly named Lister$1,
will become Lister$2. Clearly, the match-by-name
strategy cannot be based on compiler-generated names
because the original anonymous class has different names
before and after the edit.
To solve this problem, Chianti uses a naming strategy

for classes that assigns each a unique internal name.
For top-level classes or member classes, the internal
name is the same as the class name. For anonymous
classes and local inner classes, the unique name consists
of four parts: enclosingClassName, enclosingElement-
Name, selfSuperclassInterfacesName, sequenceNumber.
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For the example in Figure 4, the unique internal name
of the anonymous class in the original program is
Lister$listJavaF iles(String)$java.io.F ilenameF ilter$1,
while the unique internal name of the newly
added anonymous class in the edited program is
Lister$listClassF iles(String)$java.io.F ilenameF ilter$1.
Similarly, the internal name of the origi-
nal anonymous class in the edited program is
Lister$listJavaF iles(String)$java.io.F ilenameF ilter$1.
Notice that this original anonymous class whose compiler-
generated names are Lister$1 in the original program
and Lister$2 in the edited program, has the same unique
internal name in both versions. With this new naming
strategy, match-by-name can identify local classes and
report atomic changes involving them3.

3. Implementation

Chianti has been implemented in the context of the Java
editor of Eclipse, a widely used extensible open-source de-
velopment environment for Java. Our tool is designed as
a combination of Eclipse plugins, views, and a launch con-
figuration that together constitute a change impact analysis
perspective4. One plugin is responsible for deriving a set
of atomic changes from two versions of a project, which is
achieved via a pairwise comparison of the abstract syntax
trees of the classes5 in the two versions of project. Another
plugin communicates with an external static analysis engine
that computes call graphs, and computes affected tests and
affecting changes. This plugin also manages the various
views that visualize change impact information. Chianti’s
GUI also includes a launch configuration that allows users
to select the projects versions to be analyzed, the set of tests
associated with the project, and the call graph construction
algorithm to be used. Figure 5 depictsChianti’s architecture.
A typical scenario of a Chianti session begins with the

programmer extracting two versions of a project from aCVS
version control repository into theworkspace. The program-
mer then starts the change impact analysis launch configu-
ration, and selects the two projects of interest as well as the
test suite associated with these projects (currently, we allow
tests that have a separate main() routine and JUnit tests6).
Some information relevant to the static analysis engine must

3This naming scheme can only fail when two anonymous classes oc-
cur within the same scope and extend the same superclass. If this occurs
due to an edit, however, Chianti generates a safe set of atomic changes
corresponding to the edit.

4A perspective is Eclipse terminology for a collection of views that
support a specific task, (e.g., the Java perspective is used for creating Java
applications).

5While Eclipse provides functionality for comparing source files at a
textual level, we found the amount of information provided inadequate for
our purposes. In particular, the class hierarchy information provided by
Eclipse does not currently include anonymous and local classes.

6See www.junit.org.
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Figure 5. Chianti architecture.

also be supplied (e.g., the call graph construction algorithm
to be used, and some policy settings for dealing with reflec-
tion). After entering this information, the analysis is started.
When the analysis results are available, the Eclipse work-
bench changes perspective to the change impact analysis
perspective, which provides a number of views:

• The atomic-changes-by-category view shows the differ-
ent atomic changes grouped by category. Each atomic
change is the root of a tree that can be expanded on
demand to show dependent changes. This quickly pro-
vides an idea of the different “threads’’ of changes that
have occurred. Figure 6 shows a snapshot of this view.

• The atomic-changes-by-type view shows the different
atomic changes grouped by the class that contains the
change. This grouping provides an idea of how the
changes are distributed over the program.

• The affected tests view shows the affected tests in a
tree view, with the associated methods and call sites as
children of the affected test.

• The affecting changes view, which is in the process of
being implemented, will consist of a tree view of the
affected tests, with the atomic changes that affected it
as children in the tree.

Each of these user-interface components is seamlessly inte-
grated with the standard Java editor in Eclipse (e.g., clicking
on an atomic change in theatomic-changes-by-category view
opens an editor on the associated program fragment).
We use the Gnosis analysis engine to construct the call

graphs and type information that are required for our anal-
ysis using the 0-CFA algorithm [9, 16]. Gnosis is being
developed at IBM Research as a test-bed for research on
demand-driven and context-sensitive static analysis. One of
the strengths ofGnosis is its extensivemodeling of the native
code in the Java libraries and of the reflective aspects of the
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Figure 6. Snapshot of Chianti’s atomic-changes-by-category view. The arrow shows how clicking on an
atomic change opens an editor on the associated source fragment.

Java language. This is essential for analyzing the Daikon
system, which relies heavily on reflection. We validated the
correctness of the computed call graphs by instrumenting
the Daikon code with assertions that compare the types of
objects that occur at run-time against the static estimates
computed by Gnosis.
In order to enable the reuse of analysis results, and to

decouple the analysis from GUI-related tasks, both atomic
change information and call graphs are stored as XML files.

4 Evaluation

The experiments with Chianti were performed on ver-
sions of the Daikon system by M. Ernst et. al[7], extracted
from the developers’ CVS repository. The Daikon CVS
repository does not use version tags, so we partitioned the
version history arbitrarily at week boundaries. All modifi-
cations checked in between one week boundary and the next
were considered within one editwhose impact was to be de-
termined. However, in cases where no editing activity took
place in a given week, we extended the interval with 1 week,
until it included changes. The data reported in this section
covers the first 6 months (i.e., 26 weeks) of updates, during
which there were 20 intervals with editing activity.
During the 6-month period under consideration, Daikon

was actively being developed, and increased in size from

48K to 82K lines of code. More significant are the program-
based measures of growth, from 357 to 542 classes, 2409 to
4339 methods, and 937 to 1906 fields. The number of unit
tests associated with Daikon grew from 40 to 62 during the
time period under consideration. Figure 7 shows in detail
the growth curves over this time period. Clearly, this is
a moderate-sized application that experienced considerable
growth in size (and complexity) over the 6 month period.
Atomic changes. Figure 8 shows the number of atomic

changes between each pair of versions. The number of
atomic changes per interval varies greatly between 31 and
11,887 during this period, although only 6 edits involved
more than 1,000 atomic changes. Investigation of the largest
edit revealed that during this week a parser was added to the
system, which involved the addition of 100+ classes.
Figure 9 summarizes the relative percentages of kinds of

atomic changes observed during the entire 6-month period.
The height of each cone indicates the frequency of the cor-
responding kind of atomic change; these values vary widely,
by three orders of magnitude. Note that the 0.0% value for
deleteStaticInitializer in the figure is not actually zero, but
represents the 1 atomic change of that type in a total of over
25,000 changes for the entire period!
Figure 10 shows the proportion of atomic changes per in-

terval, grouped by the program construct they affect, namely,
classes, fields, methods and dynamic dispatch (i.e., lookup
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Figure 10. Classification of atomic changes
for each pair of versions.

change). Clearly, the two most frequent groups of atomic
changes are changes to dynamic dispatch (i.e., LC) and
changes to methods (i.e., CM); their relative amounts vary
over the period.
Affected tests. Figure 11 shows the percentage of af-

fected tests for each of the Daikon versions. On average,
62.4% of the tests is affected in each edit. Interestingly, no
tests are affected during the period 04/01-04/08, despite the
fact that there were 212 atomic changes during this time.
This means that the changed code was not covered by any
of the unit tests! In principle, a change impact analysis tool
could inform the user that additional unit tests should be
written when an observation of this kind is made.
Affecting changes. Figure 12 shows the average per-

centage of affecting changes per affected test, for each of
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Figure 12. Average percentage of affecting changes, per affected test, for each of the Daikon versions.

the Daikon versions. On average, only 5.9% of the atomic
changes impacts a given affected test. This means that our
techniques have the potential of dramatically reducing the
amount of time required for debugging when a test produces
an erroneous result after an editing session.
Performance of the tool. The performance of Chianti

has thus far not been our primary focus, and currently is
disappointing. Deriving atomic changes from two versions
of Daikon takes approximately 2 minutes7. Constructing a
0-CFA call graph for a test takes 10-45 seconds, depending
on the amount of code it covers8. Generation of XML is
currently a performance bottleneck and requires up to 45
seconds per test. Computing the set of affected tests takes 2-
3minutes, and computing affecting changes takes on average
about 3 minutes per affected test.
We can think of several concrete steps to significantly im-

prove performance. Determining the affected tests, and the
affecting changes for a given test currently involves mul-
tiple traversals of the call graph. In principle this is not

7 The measurements for call graph construction and XML generation
were taken on a Pentium 4 PC at 1.8 Ghz with 1Gb RAM. All other mea-
surements were taken on a Pentium 4 PC at 2.8Ghz with 1Gb RAM.

8This call graph construction involves analysis of (large) parts of the
standard libraries that are used by the test under consideration, and that
must be taken into account in order to compute an accurate call graph.

necessary, and we are working on a redesign that avoids this
overhead. Second, faster call graph construction algorithms
can be used. For example, XTA [21] scales well and is ca-
pable of computing call graphs of 100KLOC programs in a
few seconds. However, XTA is less precise than 0-CFA and
we need to investigate whether its use significantly degrades
precision. Third, the XML generation component was de-
veloped in the context of another project, and traverses the
call graph multiple times, which is in principle not needed.
We expect that reimplementing this component will reduce
its running time to a few seconds per call graph. Fourth, one
could envision a scenario along the lines of [18], in which
call graphs for unit tests are computed “in the background’’,
while the processor load is low (e.g., during editing).

5. RelatedWork

We distinguish four broad categories of related work: (i)
static techniques that use compile-time information to de-
termine change impact, (ii) dynamic techniques that use
run-time information to determine change impact, (iii) re-
gression test selection techniques, and (iv) techniques for
understanding and controlling the impact of changes.
Static impact analysis techniques. Recent research on

dynamic change impact analyses [13, 12] uses reachability
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on a call graph as a static technique for comparison. This
technique9 was presented by Bohner and Arnold [3] as “in-
tuitively appealing’’ and “a starting point’’ for implement-
ing change impact analysis tools. However, applying the
Bohner-Arnold technique is not only imprecise but also un-
sound, because it disregards callers of changed procedures
that can also be affected.
Kung et al. [10] described various sorts of relation-

ships between classes in an object relation diagram (i.e.,
ORD), classified types of changes that can occur in an object-
oriented program, and presented a technique for determining
change impact using the transitive closure of these relation-
ships. Some of our atomic change types have some overlap
with their class and class library changes.
Tonella’s [23] impact analysis determines if the compu-

tation performed on a variable x affects the computation on
another variable y using a number of straightforward queries
on a concept lattice that models the inclusion relationships
between a program’s decomposition slices [8]. Tonella re-
ports some metrics of the computed lattices, but no assess-
ment of the usefulness of his techniques is given.
Anumber of tools in theYear 2000 analysis domain [5, 14]

use type inference to determine the impact of a restricted set
of changes (e.g., expanding the size of a date field) and per-
form them if they can be shown to be semantics-preserving.
Dynamic impact analysis techniques. Orso et. al [13]

study impact analysis techniques in order to select and prior-
itize changes after deployment has taken place. Prior to de-
ployment, applications are instrumented to gather profiling
and coverage data at the method/block level. Change impact
is determined by correlating a forward static slice [22] w.r.t.
a changed program entity with execution data obtained from
instrumented applications. The execution data is also used
for selecting affected regression tests. There are a number
of important differences between our work and that by Orso
et al. First, our techniques are intended for use during the
earlier stages of software development, to give developers
immediate feedback on changes they make. Second, Orso
et al. represent changes as sets of methods or blocks that
have changed. In contrast, we operate in richer domain of
atomic changes with interdependences, which allows us to
determine a safe approximation of the changes thatmay have
impacted a given test, a problem not considered by Orso et
al. Third, our techniques are based on conservative static
analysis, and produce results that hold for any program ex-
ecution. Techniques based on dynamic execution data may
fail to correctly determine change impact if the executions
under consideration do not provide sufficient coverage.
Law and Rothermel [12] present a notion of dynamic im-

pact analysis that is based on whole-path profiling [11]. In
this approach, if a procedure p is changed, any procedure that
is called after p, as well as any procedure that is on the call

9This is only one of the static change impact analyses discussed.

stack after p returns is included in the set of potentially im-
pacted procedures. Since the technique is based on dynamic
information, the results of this analysis are only safe w.r.t.
the executions under consideration. Thus, their technique
might provide a refinement of a safe static analysis such as
ours, to show specific impact with respect to a particular
program execution of interest.
Zeller [24] introduced the delta debugging approach for

localizing failure-inducing changes among large sets of tex-
tual changes. Efficient binary-search-like techniques are
used to partition changes into subsets, executing the pro-
grams resulting from applying these subsets, and determin-
ing whether the result is correct, incorrect, or inconclusive.
An important difference with our work is that our atomic
changes and interdependences take into account program
structure and dependences between changes, whereas Zeller
assumes all changes to be completely independent.
Selective regression testing. Selective regression testing

aims at reducing the number of regression tests that must be
executed after a software change [15]. These techniques typ-
ically determine the units of application code that are covered
by a given test, and correlate these against those that have
undergone modification to determine tests that are affected.
Several notions of coverage have been used. For example,
TestTube [4] uses a notion of module-level coverage, and
DejaVu [15] uses a notion of statement-level coverage. The
emphasis in this work is mostly on cost reduction, whereas
our interest is primarily in assisting maintenance program-
mers with understanding the impact of program edits.
Bates and Horwitz [1] and Binkley [2] proposed fine-

grained notions of coverage based on program dependence
graphs and program slices, with the goal of providing assis-
tance with understanding the effects of program changes. In
comparison to our work, this work uses more costly static
analysesbasedon (interprocedural) programslicing andcon-
siders program changes at a lower-level of granularity, for
example changes in individual program statements.
In thework byElbaumet al. [6], a large suite of regression

tests is assumed to be available, and the objective is to select
a subset of tests that meets certain (e.g., coverage) criteria,
as well an order in which to run these tests that maximizes
the rate of fault detection. The work is similar to ours in
the sense that the difference between two versions is used
to determine the selection of tests, but unlike our work, the
techniques are to a large extent heuristics-based, and may
result in the non-selection of tests that expose faults.
Other. Palantir [19] is a tool that informs users of a

configuration management system when other users access
the same modules and potentially create direct conflicts.
Lucas et al [20] describes reuse contracts, a formalism

to encapsulate design decisions made when constructing an
extensible class hierarchy. Problems in reuse are avoided by
checking proposed changes for consistency with a specified
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set of possible operations on reuse contracts.

6 Conclusions and Future Work

Wehave presented our experienceswithChianti, a change
impact analysis tool that has been validated on 6 months of
data from Daikon. Our empirical results show that after a
program edit, on average the set of affected tests is a bit
more than half of all the possible tests (62.4%) and for each
affected test, the number of affecting changes is very small
(5.9%of all atomic changes in that edit). Thesefindings sug-
gest that our change impact analysis is a promising technique
for both program understanding and debugging.
Our immediate goal is to address the performance issues

discussed in Section 4. Plans for future research include ex-
perimentation with lower-cost static call graph construction
algorithms and with dynamic call graphs, and an in-depth
evaluation of the cost/precision tradeoffs involved. Other
plans for future work include experimentation with smaller
units of change (e.g., basic blocks).
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