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October 2003

Abstract. Given a graph with n nodes each of them having labels equal either to 1 or 2 (a
node with label 2 is called a terminal), we consider the (1,2)-survivable network design problem
and more precisely, the separation problem for the partition inequalities. We show that this
separation problem reduces to a sequence of submodular flow problems. Based on an algorithm
developed by Fujishige and Zhang the problem is reduced to a sequence of O(n4) minimum
cut problems.

1. Introduction

In telecommunication networks some nodes may be more important than others
because of their specific functions. This fact leads to specify certain survivability
conditions. Thus, it is usual to consider two kinds of nodes, the specific nodes, also
called terminals, for which a “high” degree of survivability has to be guaranteed
and the ordinary nodes which simply have to be connected to the network. The
network topology problem then consists of selecting links so that the sum of
their cost is minimized and the failure of any single link may not disconnect any
two terminal nodes.

More precisely, based on a model first introduced by Grötschel and Monma
[13] (see also Stoer [29]), this problem can be stated as follows. Consider an
undirected graph G = (V,E) where V represents the node set, and E represents
the set of edges or potential links. The set V is partitioned into two subsets T and
O corresponding respectively to the terminal and ordinary nodes. By associating
to each node u ∈ V , a label r(u), called its connectivity type, which is equal to 1 if
u is an ordinary node, and to 2 if u is a terminal, we get O = {u ∈ V : r(u) = 1},
T = {u ∈ V : r(u) = 2} and V = O ∪ T . The survivability conditions require
the existence of at least min{r(s), r(t)} edge-disjoint paths in the subgraph of
G for any pair of nodes s, t ∈ V . Such a subgraph is called survivable. Suppose
that each edge e ∈ E has a certain cost c(e) ∈ R+, then our network topology
problem, called survivable network design problem and denoted SNDP, consists
of finding a survivable subgraph of G with minimum total cost.
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The optimization problem SNDP is NP-hard, and it has been extensively
studied in the past. Some heuristics have been devised (see [24] for instance)
and the SNDP has been proved to be polynomially solvable in some particular
cases (see [13,23] for instance). Particularly, we point out that if T = ∅ (i.e.,
r(u) = 1 for all u ∈ V ) then the SNDP is nothing but the minimum cost
spanning tree problem which is well-known to be polynomially solvable [21]. For
a complete survey over the existing approaches to survivability problems related
to the SNDP, see Grötschel, Monma and Stoer [16] and Stoer [29]. Grötschel,
Monma and Stoer [14] studied the general model related to the SNDP (i.e.,
r(u) ∈ Z+ for all u ∈ V ) from a polyhedral point-of-view. They considered valid
inequalities for the polytope associated with this problem, and they derived
some necessary and/or sufficient conditions under which these inequalities are
facet-defining.

Among all the inequalities considered in [14], the so-called partition inequal-
ities have appeared to be useful for solving the general model related to the
SNDP. Grötschel, Monma and Stoer [14] gave sufficient conditions and neces-
sary conditions for the partition inequalities to be facet-defining. In [15], they
showed that the separation problem for the partition inequalities is NP-hard for
general connectivity types r ∈ ZV

+. Because of their computational intractabil-
ity, Grötschel, Monma and Stoer [15] devised some separation heuristics for the
partition inequalities which were successful in speeding up their branch-and-cut
algorithm.

For the SNDP we are interested in in this paper, the partition inequali-
ties have recently been studied more deeply. Didi Biha, Kerivin and Mahjoub
[6] showed that the partition inequalities together with the trivial lower-bound
and upper-bound inequalities completely describe the polytope associated to the
SNDP when the graph G is series-parallel. Furthermore, Kerivin and Mahjoub
[19] showed that the partition inequalities can be separated in polynomial time.
However their algorithm leads to a time complexity which does not permit to
implement it. Therefore, they have developed a heuristic for separation and some
computational results pointing out the usefulness of the partition inequalities in
a branch-and-cut algorithm for the SNDP are reported in [20].

In this paper, we study the separation problem again and improve the time
complexity led by the algorithm devised by Kerivin and Mahjoub [19]. Here, we
show that the separation problem reduces to a sequence of n submodular flow
problems, where the complexity of solving each of them is dominated by the
complexity of solving O(n3) minimum cut problems.

This paper is organized as follows. In Section 2 we review several type of
partition inequalities. Section 3 is devoted to the reduction of the separation
problem for partition inequalities to a sequence of submodular flow problems.
Then, we show in Section 4 how Fujishige-Zhang algorithm for the submodular
intersection problem applies to our problem. In Section 5 we describe how to
change terminals. In Section 6 we study a related question for the case with
three terminals. Finally, some concluding remarks are given in Section 7.

The rest of this section is devoted to more definitions and notations. The
graphs we consider are finite, loopless and connected. We deal with an undirected
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graph G = (V, E), if e ∈ E is the unique edge between two nodes u and v, then
we write uv to denote the edge e. If F ⊂ E then G′ = (V, F ) is called a spanning
subgraph. If W ⊂ V , and E(W ) is the set of edges with both endnodes in W ,
then G′′ = (W,E(W )) is called the subgraph induced by W . We denote by n the
number of nodes of G, n = |V |. For W ⊆ V , the set of edges having exactly one
endnode in W is called a cut and is denoted by δ(W ). Moreover, if s ∈ W and
t 6∈W , then δ(W ) is called an st-cut. If W = {u}, then we write δ(u) for δ({u}).
Given a partition {V1, . . . , Vp} of the node set V , we denote by δG(V1, . . . , Vp)
the set of edges with endnodes in two different sets {Vi}. We use δ(V1, . . . , Vp)
whenever the graph G can be deduced from the context. If D = (V,A) is a
directed graph and a ∈ A is the unique arc from the node u to the node v, then
we write (u, v) to denote the arc a. The tail u of the arc a is denoted by ∂+a,
and its head v by ∂−a.

Given a ground set S, a set-function f : 2S −→ R ∪ {∞} is called fully
submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) (1)

for all A,B ⊆ S. A pair of subsets A and B of S is said to be intersecting if
none of A\B, B \A, A∩B is empty. Then a set-function f is called submodular
on intersecting pairs if inequality (1) is required only for intersecting pairs. For
a vector x ∈ RS and a subset A ⊆ S, we denote

∑
a∈A x(a) by x(A). For any

u ∈ S, χu is an element in RS such that χu(u) = 1 and χu(v) = 0 for v ∈ S\{u}.
For F ⊆ S the incidence vector of F , xF ∈ RS , is defined by xF (e) = 1 if e ∈ F ,
xF (e) = 0 if e ∈ S \ F .

A system Ax ≤ b in n dimensions is called totally dual integral (or just TDI)
if A and b are rational and for each c ∈ Zn, the dual of maximizing cT x over
Ax ≤ b has an integer optimum solution y, if it is finite.

2. Partition inequalities

In this section we define several types of partition inequalities and comment on
their separation algorithms.

2.1. Preliminaries

Let G = (V, E) be a graph and a vector x : E → R. A first type of partition
inequalities is

x
(
δ(S1, . . . , Sp)

) ≥ (p− 1), for all partitions {S1, . . . , Sp} of V. (2)

It follows from [30] and [25] that these inequalities together with x ≥ 0, define
a polyhedron whose extreme points are the incidence vectors of spanning trees
of G.

For a class of inequalities, the separation problem is: given a vector x̄ find a
violated inequality in the class or prove that none exists. An algorithm for the
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separation problem is a key ingredient for being able to use a class of inequalities
within a branch-and-cut algorithm.

The separation problem for inequalities (2) has been studied by Cunningham
[3] who reduced it to a sequence of |E| minimum cut problems. Later Barahona
[2] reduced it to n minimum cut problems. In both cases they solve

minimize x̄(δ(V1, . . . , Vp))− p, (3)

where the minimization is among all partitions of V .
A more general type of partition inequalities is

x
(
δ(S1, . . . , Sp)

) ≥ ap + b, for all partitions {S1, . . . , Sp} of V, (4)

for fixed constants a and b. The separation problem in this case was studied by
Baiou, Barahona & Mahjoub [1]. This also reduces to problem (3) but depending
on the values of a and b, in some cases one has to exclude the trivial partition
(p = 1) and impose p ≥ 2. This reduces to O(n3) minimum cut problems.

2.2. The present study

Let G = (V, E) be a graph and r ∈ {1, 2}V be a connectivity type vector. Let
SNDP(G, r) be the convex hull of incidence vectors of survivable subgraphs.
The set of ordinary nodes is denoted by O = {u ∈ V : r(u) = 1} and the set of
terminals by T = {u ∈ V : r(u) = 2}. For a nonempty node subset W ⊂ V , let
r(W ) = max{r(u) : u ∈W} and con(W ) = min{r(W ), r(V \W )}. If (V, F ) is a
survivable subgraph of G, then its incidence vector xF satisfies

0 ≤ x(e) ≤ 1 for all e ∈ E, (5)
x(δ(W )) ≥ con(W ) for all ∅ 6= W ⊂ V. (6)

The inequalities (5) and (6) are called respectively trivial inequalities and cut
inequalities. The separation problem for the cut inequalities (6) is polynomi-
ally solvable using a minimum st-cut algorithm (e.g., preflow-push algorithm of
Goldberg and Tarjan [10] running in O(n3) time).

In [14], Grötschel, Monma and Stoer introduced a class of valid inequalities
for the polytope SNDP(G, r) called partition inequalities, and which can be
stated as follows. Let {V1, . . . , Vp}, p ≥ 2, be a partition of V . Let I2 = {i :
con(Vi) = 2, i = 1, ..., p} be the set of indices whose corresponding sets of the
partition contain at least one terminal. The partition inequalities induced by
{V1, . . . , Vp} is

x(δ(V1, . . . , Vp)) ≥
{

p− 1 if I2 = ∅,
p otherwise. (7)

The inequalities (7) are a generalization of the cut inequalities (6). (This is the
case where p = 2.) Grötschel, Monma and Stoer [14] gave sufficient conditions
and necessary conditions for the inequalities (7) to define facets for SNDP(G, r).
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In [19], Kerivin and Mahjoub showed that the separation problem for the par-
tition inequalities (7) reduces to minimizing a particular submodular function,
and then is polynomially solvable. Their approach can be described as follows.
First of all, they consider the case where all the terminals belong to the same
set of the partition, that is I2 = ∅. This can be handled by shrinking the set T
to a single node and solving the separation problem for the inequalities (2).

The second case considered in [19] is when I2 6= ∅. We remark that at least
two sets Vj and Vk, j 6= k, should contain a terminal, that is r(Vj) = r(Vk) = 2,
and thus |I2| ≥ 2. In consequence, in this case, the partition inequalities (7) can
be written as

x(δ(V1, . . . , Vp)) ≥ p. (8)

Kerivin and Mahjoub showed that the separation problem for the inequalities
(8) is equivalent to minimizing, for every pair of terminals a and b, a particular
submodular function. Because of the complexity of the submodular function
minimization algorithms [17,28], this approach leads to an O(n11) algorithm
which cannot be considered practical.

In this paper we focus on the case I2 6= ∅ and reduce it to a sequence of
submodular flow problems as it is shown in the next section

3. A submodular flow formulation

Here we deal with partitions separating two fixed terminals. Suppose each edge
e ∈ E has a weight x̄(e) ≥ 0. Let us consider two terminals t1 and t2 of T ,
t1 6= t2. We are going to solve

minimize x̄(δ(V1, . . . , Vp))− p (9)

with the constraint that t1 ∈ V1 and t2 ∈ V2 say. This can be reduced to a
submodular flow problem as described below.

For a node subset W ⊆ V , W 6= ∅, let

f1(W ) =
{

x̄(δ(W ))− 2 + M if t1 ∈W,
x̄(δ(W ))− 2 if t1 6∈W,

and

f2(W ) =
{

x̄(δ(W ))− 2 + M if t2 ∈W,
x̄(δ(W ))− 2 if t2 6∈W.

where M is a big value. And f1(∅) = f2(∅) = 0.

Lemma 1. Both functions f1 and f2 are submodular on intersecting pairs.

Proof. We only prove the result for the function f1, the proof being similar for
f2. We must show that

f1(A) + f1(B) ≥ f1(A ∩B) + f1(A ∪B) (10)
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for all intersecting pairs A,B ⊆ V . Let A,B ⊆ V such that A∩B 6= ∅, A\B 6= ∅
and B \A 6= ∅. We first notice that, since the vector x̄ is nonnegative, we have

x̄(δ(A)) + x̄(δ(B)) ≥ x̄(δ(A ∩B)) + x̄(δ(A ∪B)). (11)

Moreover, the node t1 belongs as many times to A and B as to A∩B and A∪B.
Thus, from (11), we can deduce the inequality (10). ut

Let us associate a variable y(u) to every node u ∈ V . From Lemma 1 and
[8], it follows that the system

y(W ) ≤ f1(W ) for all W ⊆ V,
y(W ) ≤ f2(W ) for all W ⊆ V,

is totally dual integral. Therefore, the dual of the following linear program

maximize y(V ) (12)
subject to
y(W ) ≤ f1(W ) for all W ⊆ V, (13)
y(W ) ≤ f2(W ) for all W ⊆ V, (14)

has an optimal solution that is integer valued. The dual program of (12)-(14) is
as below

minimize
∑

W⊆V

f1(W )α1
W +

∑

W⊆V

f2(W )α2
W (15)

subject to
∑

W⊆V :u∈W

α1
W +

∑

W⊆V :u∈W

α2
W = 1 for all u ∈ V, (16)

α1 ≥ 0, (17)

α2 ≥ 0. (18)

Lemma 2. An integer optimal solution to the linear program (15)-(18) defines
a partition of V which minimizes

x̄(δ(V1, . . . , Vp))− p (19)

with the property that the nodes t1 and t2 appear in different sets of the partition.

Proof. First of all, we know that the system (13)-(14) is totally dual integral,
and then the linear program (15)-(18) has an integer optimal solution. Let us
denote by (ᾱ1, ᾱ2) such a solution. Since the right-hand sides of the equations
(16) are 1, and the dual variables are nonnegative, (ᾱ1, ᾱ2) is clearly 0-1 valued.

Therefore, from the equations (16), any node u of V belongs exactly to
one subset W of V with ᾱ1

W + ᾱ2
W = 1. Thus the family F = {W : W ⊂

V, and either ᾱ1
W = 1 or ᾱ2

W = 1} = {W1, . . . , Wq} defines a partition of V .
Furthermore, because of the objective function (15), the nodes t1 and t2 be-

long to two different sets of the partition. In fact, this is the only manner to avoid
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having big value M in the objective function (15). The partition {W1, . . . , Wq}
gives ∑

W⊆V

f1(W )ᾱ1
W +

∑

W⊆V

f2(W )ᾱ2
w = 2x̄(δ(W1, . . . , Wq))− 2q,

and therefore, minimizes (19) with the constraint that the nodes t1 and t2 should
appear in two different sets of the partition. ut

If the value of (19) is greater or equal to 0, then it shows that all inequalities (8)
induced by partitions of V with t1 and t2 in two different sets are satisfied by x̄.
If the value of this optimum is less than 0, then since the partition is obtained
from an optimal solution of (15)-(18), we get the most violated inequality (8)
induced by a partition of V with t1 and t2 in two different sets. This procedure
has been described for two specific terminals t1 and t2 of T , now we can fix
t1 ∈ T and try all t2 ∈ T \ {t1}.

In the next section, we discuss how to solve these submodular flow problems,
that is, how to solve the linear programs (12)-(14) and (15)-(18).

4. The Fujishige-Zhang algorithm for the submodular intersection
problem

In this section, we describe the algorithm of Fujishige and Zhang [9] for solving
the linear programs (12)-(14) and (15)-(18). We consider throughout this section
two fixed terminals t1 and t2, and their associated submodular functions on
intersecting pairs f1 and f2 respectively.

4.1. Preliminaries

Given a ground set V , for a set-function f : 2V → R ∪ {∞}, the following
polyhedra are associated with f :

P (f) = {y ∈ RV : y(A) ≤ f(A) for all A ⊆ V },
B(f) = {y ∈ RV : y(V ) = f(V ), y(A) ≤ f(A) for all A ⊆ V }.

If f is submodular, then P (f) is called the submodular polyhedron associated
with f , and B(f) is called the base polyhedron associated with f .

Let f be a set-function on V . The function f ′ : 2V −→ R ∪ {∞} given by

f ′(A) = min{
∑

i

f(Ai) : {Ai} is a partition of A, ∅ 6= Ai ∀i}

for A ⊆ V , A 6= ∅, f ′(∅) = 0, is called the Dilworth truncation of f . Notice that
f ′(A) ≤ f(A) for ∅ 6= A ⊆ V . The following holds.

Theorem 1. [22]. The Dilworth truncation f ′ of an intersecting submodular
function f is fully submodular. Moreover, P (f) = P (f ′). ut
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Given the two fully submodular functions f ′1 and f ′2 on V , the submodular
intersection problem is

maximize y(V ) (20)
subject to
y ∈ P (f ′1) ∩ P (f ′2). (21)

It follows from [8] that the maximum in (20)-(21) is equal to

minimize{f ′1(A) + f ′2(V \A) : A ⊆ V }. (22)

Since functions f ′1 and f ′2 are the Dilworth truncations of f1 and f2 respectively,
we have the following.

Lemma 3. The minimum in (22) is exactly the minimum of the linear program
(15)-(18). ut
To solve the problems (20)-(21) and (22), we use an algorithm given by Fujishige
and Zhang [9]. To describe this algorithm, we need to introduce some notations.
First, when we write f ′i , we refer to one of both Dilworth truncations f ′1 and f ′2,
and the subscript i may be either 1 or 2 for all the following notations.

A set A ⊆ V with y(A) = f ′i(A) is called tighti for y. Because of the sub-
modularity of f ′i , the union and the intersection of tighti sets are also tighti.

For any y ∈ P (f ′i), let

sati(y) =
⋃
{A ⊆ V : y(A) = f ′i(A)}, (23)

this the largest node subset of V tighti for y. The function sati : P (f ′i) −→ 2V

is called the saturation function.
For any y ∈ P (f ′i) and u ∈ sati(y), let

depi(y, u) =
⋂
{A ⊆ V : u ∈ A, y(A) = f ′i(A)}, (24)

this the smallest tighti set containing u. For any y ∈ P (f ′i) and u 6∈ sati(y) we
have depi(y, e) = ∅. The function depi : P (f ′i) −→ 2V is called the dependence
function.

For any y ∈ P (f ′i) and u ∈ V , the saturation capacity ĉi(y, u) is defined by

ĉi(y, u) = min{f ′i(A)− y(A) : u ∈ A ⊆ V }. (25)

For any y ∈ P (f ′i) and u, v ∈ V , the exchange capacity c̃i(y, u, v) is defined
by

c̃i(y, u, v) = min{f ′i(A)− y(A) : u ∈ A ⊆ V, v /∈ A}. (26)

Because of the definitions of the functions f ′i and fi, we have the result below.

Lemma 4. For any y ∈ P (f ′i) and u, v ∈ V , we have

ĉi(y, u) = min{fi(A)− y(A) : u ∈ A ⊆ V }, (27)
c̃i(y, u, v) = min{fi(A)− y(A) : u ∈ A ⊆ V, v /∈ A}. (28)
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Proof. Given y ∈ P (f ′i) and u ∈ V , let A? be a subset of V such that

ĉi(y, u) = f ′i(A
?)− y(A?).

Since f ′i is the Dilworth truncation of fi, there exists a partition {A?
1, . . . , A

?
k}

of A? such that

ĉi(y, u) =
k∑

j=1

(fi(A?
j )− y(A?

j )).

W.l.o.g., we may suppose u ∈ A?
1. The fact that fi(X)−y(X) ≥ 0 for all X ⊆ V

implies

ĉi(y, u) ≥ fi(A?
1)− y(A?

1)
≥ f ′i(A

?
1)− y(A?

1) ≥ ĉi(y, u).

Therefore, we can deduce ĉi(y, u) = min{fi(A)− y(A) : u ∈ A ⊆ V }. The proof
for the exchange capacity c̃i is similar. ut

Now we show that computing the minimum in (27) and (28) reduces to a
minimum cut problem. Similar constructions appear in [26], [27], [4] and [2]

Lemma 5. The calculation of the minimum in (27) and (28) reduces to finding
a minimum st-cut.

Proof. Consider (28), and i = 1. Build a directed graph D = (N,A), where
N = V ∪{s, t}, and A = {(p, q), (q, p) | for pq ∈ E}∪{(s, p), (p, t) | for p ∈ V }.
Define capacities as follows:

c(s, p) = y(p), c(p, t) = 0, if y(p) > 0, p ∈ V \ {u, v, t1},
c(s, t1) = y(t1), c(t1, t) = M, if y(t1) > 0,

c(p, t) = −y(p), c(s, p) = 0, if y(p) ≤ 0, p ∈ V \ {u, v, t1},
c(t1, t) = −y(t1) + M, c(s, t1) = 0, if y(t1) ≤ 0,

c(s, u) =∞, c(u, t) = max{0,−y(u)}, c(s, v) = max{0, y(v)}, c(v, t) =∞,

c(p, q) = c(q, p) = x̄(pq).

Let {s} ∪ S define a minimum st-cut. We should have u ∈ S and v /∈ S because
of the values of c(s, u) and c(v, t).

For any S ⊆ V with u ∈ S and v /∈ S, let λ be the capacity of the cut defined
by {s} ∪ S. Then

x(δ(S))− y(S) =
{

λ−∑{y(p) : y(p) > 0} if t1 /∈ S,
λ−∑{y(p) : y(p) > 0} −M if t1 ∈ S.

or

λ =
{

x(δ(S))− y(S) +
∑{y(p) : y(p) > 0} if t1 /∈ S,

x(δ(S))− y(S) +
∑{y(p) : y(p) > 0}+ M if t1 ∈ S.

Since
∑{y(p) : y(p) > 0} is a constant, a minimum st-cut gives the minimum

in (28). The other cases are similar ut
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4.2. The Algorithm

Fujishige and Zhang [9] extended the preflow-push algorithm of Goldberg and
Tarjan [10] to the submodular intersection problem (20)-(21) as follows. Start
with a pair β = (y, z) fulfilling the conditions below

y ∈ B(f ′1) and z ∈ P (f ′2), (29)
y ≥ z. (30)

This pair of vectors can be obtained as follows. Set z(u) = −2 for all u. Start
with y(u) = −2 for all u, then increase y(u) to y(u) + ĉ1(y, u) for each node u.
The final vector y is in B(f ′1).

Use an auxiliary directed graph Ĝβ = (V̂ , Âβ) defined as follows

V̂ = {s+, s−} ∪ V,

Âβ = Ŝ+
β ∪ Ŝ−β ∪ Â1

β ∪ Â2
β ,

where

Ŝ+
β = {(u, s+) : u ∈ V },

Ŝ−β = {(u, s−) : u ∈ V \ sat2(z)},
Â1

β =
{
a : ∂+a = u, ∂−a = v, u, v ∈ V, u ∈ dep1(y, v) \ {v}},

Â2
β =

{
a : ∂+a = u, ∂−a = v, u, v ∈ V, v ∈ dep2(z, u) \ {u}}.

Associated with each node u ∈ V , we define an excess e(u) = y(u)− z(u). From
condition (30), we notice that e(u) ≥ 0 for u ∈ V . If e(u) > 0, then the node u
is called active.

A function d from V̂ to nonnegative integers is said to be a valid labeling for
Ĝβ if d(s+) = n + 2, d(s−) = 0 and d(∂+a) ≤ d(∂−a) + 1 for every arc a ∈ Âβ .
For any valid labeling d, if d(u) < n+2, then d(u) is a lower bound of the actual
distance from the node u to s−, where the length of each arc is equal to 1. If
d(u) ≥ n + 2, then d(u) − (n + 2) is a lower bound of the actual distance from
the node u to s+ in Ĝβ and s− is not reachable from u in Ĝβ .

The initial valid labeling d is d(s+) = n + 2, d(s−) = 0 and d(u) = 1 for
all u ∈ V . The algorithm then repetitively performs, in an order that will be
mentioned later, the two basic operations “push” and “relabel” which are defined
as follows.

Push(a): a ∈ Âβ ;
Applicability: ∂+a is active and n + 2 ≥ d(∂+a) = d(∂−a) + 1;
Action:

Case 1. If a ∈ Â1
β then put y ← y + α(χv − χu), where u = ∂+a, v = ∂−a and

α = min{c̃1(y, v, u), e(u)}.
Case 2. If a ∈ Â2

β then put z ← z + α(χu − χv), where u = ∂+a, v = ∂−a and
α = min{c̃2(y, u, v), e(u)}.
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Case 3. If a ∈ S−β , then put z ← z +αχu, where u = ∂+a and α = min{c̃2(z, u),
e(u)}.
Lemma 6. [9]. Actions in all cases maintain the initial conditions (29) and (30)
required for (y, z). ut
Relabel (u): u ∈ V ;
Applicability: u is active and for any a ∈ Âβ with ∂+a = u we have d(∂+a) ≤
d(∂−a);
Action: Put d(u)← min{d(v) + 1 : (u, v) ∈ Âβ}.
Lemma 7. [9]. If e(u) > 0 and d(u) ≤ n+2, then either a push for some a ∈ Âβ

with ∂+a = u or a relabel of u is applicable. ut
Lemma 8. [9]. The basic operations keep d a valid labeling. ut
Lemma 9. [9]. For any u ∈ U , the distance label d(u) never decreases by basic
operations, and we have d(u) ≤ n + 3. ut
Lemma 10. [9]. Relabeling operations are carried out at most n(n + 2) times.

ut
We give a detailed poof of the lemma below because it is needed to identify

the optimal partition.

Lemma 11. [9]. For a pair β = (y, z) satisfying conditions (29) and (30), if
there is no active node u in Ĝβ with d(u) ≤ n + 2, then z is a solution of
(20)-(21).

Proof. If there is no active node, then we have y = z and z is a solution of (20)-
(21). If there is an active node, let U ⊆ V be the set of nodes in Ĝβ which are
reachable by directed paths from the active nodes. If U = V and V \sat2(z) 6= ∅,
then there is an active node u such that s− is reachable from u. This contradicts
the fact that d(u) = n + 3. Therefore, if U = V , we have sat2(z) = V , which
implies that z is a solution of (20)-(21).

Consider now the case when U 6= V . For u ∈ V \U we have dep1(y, u) ⊆ V \U ,
otherwise there is an arc in Ĝβ from a node in U to a node in V \ U . Thus

V \ U =
⋃

u∈V \U
dep1(y, u).

Thus V \ U is a union of tight1 sets that by submodularity is also a tight1 set.
So y(V \ U) = f ′1(V \ U).

Every node in U is in a tight2 set, otherwise s− would be reachable from an
active node u which is impossible because d(u) = n + 3. Also for u ∈ U we have
dep2(z, u) ⊆ U , otherwise there is an arc in Ĝβ from a node in U to a node in
V \ U . Thus

U =
⋃

u∈U

dep2(z, u).
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Therefore U is a union of tight2 sets and is also tight2 by submodularity. Thus
z(U) = f ′2(U).

We have z(V ) = z(U) + z(V \ U) = z(U) + y(V \ U) because every node in
V \U is not active. Hence z(V ) = f ′2(U)+ f ′1(V \U), thus U gives the minimum
of (22) and z is a solution of (20)-(21). ut

In what follows we discuss the order in which the basic operations are per-
formed. Let π : V̂ → {1, 2, . . . , n + 2} be a numbering of the nodes of V̂ .
For any u ∈ V , there is an arc list Lβ(u) formed by the outgoing arc set
{a : a ∈ Âβ , ∂+a = u} arranged in the order of the increasing magnitude
of the values of π(∂−a). Each node has a current arc a in the list. Initially, the
current arc of u is the first element of Lβ(u).

An active node v is selected such that

d(v) = max{d(w) : w ∈ V, d(w) ≤ n + 2, e(w) > 0}.
Then, we have to check whether a push operation is applicable for the current
arc a of Lβ(v). If the push operation is not applicable, then the next arc in
Lβ(v), if any, becomes the current arc of v. If a push operation is applicable,
then it is performed, and its result is either e(v) = 0, or e(v) > 0 and a /∈ Âβ .
In the first case, a new active node with the largest label is selected and the
process is repeated. In the second case, the next arc in Lβ(v), if any, becomes
the current arc of v. If the end of Lβ(v) is reached with e(v) > 0, then the first
arc in the list becomes the current arc and a relabeling operation is carried out.

Lemma 12. [9]. Throughout the algorithm the following property is maintained:
For each u ∈ V , any arc a before the current arc in Lβ(u) satisfies d(∂+a) ≤
d(∂−a). ut

A push on (u, v) ∈ Âβ is called a saturating push if one of the following three
conditions holds:
(a) The push is of Case 1 and e(u) ≥ c̃1(y, v, u),
(b) The push is of Case 2 and e(u) ≥ c̃2(z, u, v),
(c) The push is of Case 3 and e(u) ≥ c̃2(z, u).

A push that is not saturating is called a non-saturating push.

Lemma 13. [9]. The number of saturating push operations is at most 2n2(n+2).
ut

Lemma 14. [9]. The number of nonsaturating pushes is at most n2(n + 2). ut
Theorem 2. [9]. The algorithm terminates after carrying out O(n2) relabeling
operations and O(n3) push operations. ut

For our fully submodular functions f ′1 and f ′2 on V , we should keep for every
node u ∈ V an arc list Lβ(u) consisting of all arcs (u, v) with v ∈ V \ {u} ∪
{s+, s−}. Then, when an arc becomes a candidate for a push operation, one
should compute the exchange capacity or the saturation capacity associated
with the current arc. Therefore, by Lemma 4 and Theorem 2, we deduce the
complexity of the algorithm in our case.
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Theorem 3. Given the two fully submodular functions f ′1 and f ′2 on V , the
Fujishige-Zhang algorithm requires O(n3) minimum st-cut computations. ut

4.3. Finding the partition

In order describe how to find an optimal partition we revisit the proof of Lemma
11. Let (ȳ, z̄) be the pair of vectors produced by the algorithm. Let U be the set
of nodes which are reachable by directed paths from the active nodes. First of all,
we give the following lemma which goes through the different cases considered
in the proof of Lemma 11, and then show that for our functions f ′1 and f ′2, only
one of those cases can happen.

Lemma 15. When the algorithm terminates, we have ∅ 6= U ⊂ V .

Proof. Suppose there is no active node. Then, we have ȳ = z̄ and since ȳ ∈ B(f ′1),
we also have ȳ(V ) = f ′1(V ). This implies that there exists a partition {V1, . . . , Vp}
of V with ȳ(Vi) = f1(Vi) for all i = 1, . . . , p.

Consider the vector (ᾱ1, ᾱ2) defined as ᾱ1
W = 1 if W = Vi for some i,

ᾱ1
W = 0 otherwise, ᾱ2 = 0. This is an optimal solution of (15)-(18). From

Lemmas 2 and 3, we know that t1 and t2 do not belong to the same set of the
partition {V1, . . . , Vp}. W.l.o.g., we may assume that t1 ∈ V1 and t2 ∈ V2. By
the definitions of f1 and f2, we obtain

z̄(V1) = ȳ(V1) = x̄(δ(V1))− 1 + M > f2(V1) ≥ f ′2(V1),

a contradiction with z̄ ∈ P (f ′2). Hence there exists at least one active node and
then, U 6= ∅.

If U = V , then sat2(z̄) = V as it was shown in the proof of Lemma 11.
Thus, we have z̄(V ) = f ′2(V ) and there exists a partition {U1, . . . , Uq} of V with
z̄(Uj) = f2(Uj) for all j = 1, . . . , q. As before, w.l.o.g. we assume U1 ∩ {t1, t2} =
{t2}. Since (ȳ, z̄) fulfills conditions (29) and (30), by the definitions of f1 and f2,
we obtain

x̄(δ(U1))− 1 + M = z̄(U1) ≤ ȳ(U1) ≤ f ′1(U1) ≤ f1(U1) < x̄(δ(V1))− 1 + M,

a contradiction. Therefore, we deduce U ⊂ V . ut

To obtain U one has to build the graph Ĝβ . For that one has to compute
the saturation capacity of every node, and the exchange capacity for every arc.
This requires O(n2) minimum st-cut computations. Then the set U is obtained
by searching in Ĝβ starting from the active nodes. This requires O(n2) time.

In what follows we show that the final partition is obtained from the sets
dep2(z̄, u) for u ∈ U and dep1(ȳ, u) for u ∈ V \ U .

Lemma 16. For u ∈ U let W = dep2(z̄, u), then z̄(W ) = f2(W ).
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Proof. Because of the definition of f ′2, there is a partition {Wi} of W such that

0 = f ′2(W )− z̄(W ) = f2(W1)− z̄(W1) + · · ·+ f2(Wk)− z̄(Wk).

Since f2(Wi) − z̄(Wi) ≥ 0 for all i, we have f2(Wi) − z̄(Wi) = 0 for all i. We
can assume that u ∈W1, but since W is the smallest tight2 set containing u, we
have W1 = W . ut

For each u ∈ U we obtain dep2(z̄, u) as

dep2(z̄, u) = {v : c̃2(z̄, u, v) > 0} ∪ {u}.

This gives us a family of sets {U ′
i} whose union is U and such that z̄(U ′

i) = f2(U ′
i)

for all i. Finally some uncrossing should be done as follows. If U ′
i ∩ U ′

j 6= ∅ and
U ′

i ⊆ U ′
j then only U ′

j is kept. If U ′
i ∩ U ′

j 6= ∅ and they are intersecting pairs,
then z̄(U ′

i ∪ U ′
j) = f2(U ′

i ∪ U ′
j), because f2 is intersecting submodular. Thus we

replace U ′
i and U ′

j by their union. This is repeated until no two sets intersect.
This gives a partition {Ui} of U such that z̄(Ui) = f2(Ui) for all i.

Analogously for u ∈ V \ U we obtain dep1(ȳ, u) as

dep1(ȳ, u) = {v : c̃1(ȳ, u, v) > 0} ∪ {u}.

This gives us a family of sets {V ′
i } whose union is V \U , and such that ȳ(V ′

i ) =
f1(V ′

i ) for all i. Then we uncross them as above. This gives a partition {Vj} of
V \ U such that z̄(Vj) = ȳ(Vj) = f1(Vj), for all j.

The final partition is {{Ui}, {Vj}}.

5. Changing terminals

So far we have shown how to solve problem (9) for fixed terminals t1 and t2.
Then one should repeat this for all choices of t2 ∈ T \ {t1}.

Suppose that t2 is replaced by t3, let f3 be the function associated with t3.
Clearly the vector ȳ will continue to satisfy ȳ ∈ B(f ′1). However the vector z̄
might violate some constraint z(S) ≤ f ′3(S) with t2 ∈ S. To fix that one should
compute

α = min{f3(S)− z̄(S) | t2 ∈ S},

and replace z̄(t2) by min{z̄(t2)+α, ȳ(t2)}. The value α is computed as in Lemma
5. This new pair (ȳ, z̄) satisfies (29) and (30) and can be used to restart the
algorithm.

Thus O(n4) is an upper bound on the number of minimum cuts that have to
be found when all choices of t2 ∈ T \ {t1} are made.
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6. The 3-terminal case

In this section we show that the 3-terminal case is NP-hard. More precisely given
a connected graph G = (V, E) with positive edge-weights w and three distinct
terminals {t1, t2, t3} ⊂ V , consider

minimize w(δ(V1, . . . , Vp))− p (31)

among all partitions {Vi} of V with the constraint that t1 ∈ V1, t2 ∈ V2, t3 ∈ V3.
It was shown in [5] that the following problem is NP-hard.

minimize w(δ(V1, V2, V3)) (32)

among all 3-partitions {V1, V2, V3} of V with the constraint that t1 ∈ V1, t2 ∈ V2,
t3 ∈ V3.

In order to reduce problem (32) to (31), we assume that every edge has
weight at least 1. Since the weights are positive we achieve this after dividing all
weights by the minimum edge-weight. Then the result follows from the following
lemma.

Lemma 17. If all weights are at least 1, an optimal solution of (31) has p = 3.

Proof. Consider a partition Φ = {V1, · · · , Vp} and a set Vi, i ≥ 4. There is at
least one edge between a node in Vi and a node in a set Vj , j 6= i. Since the
weight of this edge is at least 1, when the sets Vi and Vj are combined into one
we obtain a partition that is not worse than Φ. ut

7. Final remarks

In this paper, we have studied the separation problem for the partition inequal-
ities (7), that is, when we distinguish some terminal nodes. We have given an
O(n7) algorithm which is based on Fujishige-Zhang algorithm for the submodular
intersection problem. Nevertheless, our algorithm may lead to a time complex-
ity that does not make it necessarily efficient in a branch-and-cut framework.
Therefore, in this section, we give some remarks which may be considered in
order to speed up the separation process in practice.

One should first solve the separation problem for inequalities (2) as shown
in the next lemma.

Lemma 18. Separating partition inequalities (8) violated by more than 1 reduces
to separation of inequalities (2).

Proof. Suppose that a violated inequality of type (2) is found. Let {V1, . . . , Vp}
be the associated partition. If all terminals are in one set, V1 say, we have a
violated inequality (7).

Otherwise we have

x̄(δ(V1, . . . , Vp))− (p− 1) < 0.

And we deduce x̄(δ(V1, . . . , Vp)) + 1 < p. So this is an inequality (7) violated by
more than 1. ut
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A second heuristic consists of finding a minimum cut δ(W ) separating two
terminals. Then solve the separation problem for inequalities (2) in the subgraphs
induced by W and by V \W . This is based on the lemma below.

Lemma 19. Let {V1, . . . , Vp} be a solution of (9), let G′ be the subgraph induced
by V \ V1, then

x̄(δG′(V2, . . . , Vp))− (p− 2) ≤ 0.

Proof. If x̄(δG′(V2, . . . , Vp)) − (p − 2) > 0 then V2, . . . , Vp should be combined
into one set to produce a better solution of (9). ut
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