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Abstract

Organizations often conduct surveys to gather information. This information al-

lows the organization to serve its customers more efficiently and to aid in long-term

decision-making. We have developed an instrument for using survey responses to an-

alyze current population behavior and to predict future behavior. This instrument is

coded using Base SAS, SAS STAT, SAS GRAPH, as well as SAS Macros. Our SAS code

uses the new SAS survey statistics procedures (e.g., PROC SURVEYMEANS). More

specifically, we have developed the following tools: We generate point and interval esti-

mates of population parameters based upon sample responses. We address methods for

improving the robustness of these estimates: we define procedures to identify statistical

outliers and we have developed heuristics to modify the weights used in the (weighted)

analysis to improve robustness of the survey results. We develop several methods for

measuring the impact of different data points on the estimated parameters to help the

user verify the analysis results. Finally, we develop methodology that facilitates the use

of survey responses to predict future responses.
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1 Introduction and Summary

Surveys are often conducted to gather information. The information gathered can be used

to understand behaviors or beliefs under a set of conditions or to predict future behaviors

or responses. For example, the role of many individuals and organizations is to provide a

service to customers. These individuals and organizations may conduct surveys to learn

about the underlying conditions that make their services valuable and desirable to others.

Better information will allow them to serve their customers more efficiently and effectively

and aid in long-term high-level decision making. Further, surveys can be used to capture

the public’s response to promotional messages sent out by businesses, agencies, governments

and institutions. Surveys may also be conducted to test hypotheses and validate or advance

theoretical knowledge.

Generally, it is difficult and costly to survey every member of a given population (i.e.,

to conduct a census). Therefore, those conducting surveys will usually select a subset of

the population, a representative sample, from which inferences about the entire population

are drawn.

Sample design includes two fundamental elements: (i) a selection process or sampling

methodology, which dictates the rules by which members of the population are included in

the sample and (ii) an estimation process for computing the statistics of the selected sample

that are sample estimates of population values.

A selection process should yield a sample that represents the elements of the popula-

tion. There are two major categories of sampling methodologies. Model based sampling is

sampling based upon broad assumptions about the distribution of the survey variables in

the population. Probability sampling assumes that every element of the population has a

known non-zero probability of being selected. In general, probability sampling is preferred

over model sampling. First, model sampling requires assumptions regarding randomiza-

tion of the population, while probability sampling bypasses this assumption by introducing

randomization into the selection procedures. Second, whereas the results of probability
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sampling allow for inferences about the population to be made entirely by statistical meth-

ods, model sampling depends heavily upon the validity of broad assumptions about the

distributions of the survey variables in the population.

The estimation process involves computing statistics from the sample responses that are

valid for the entire population. Different statistics are computed depending on whether one

is attempting to make a statement about the entire population or about some subset of the

population. Further, one must correct for bias and non-sampling errors in the sample data.

Our work, to date, focuses on the second element of sample design, assuming that

probability sampling has been used to select the sample elements. More specifically, we

assume that the selection process and sample size have been determined. We focus on the

elements of analysis that are required once data has been collected and any coding and

preprocessing has been completed. We have developed SAS programs that use the survey

responses data files as input and perform statistical analysis on any variables of interest.

We have developed an instrument for analyzing the survey responses, which includes the

following features:

We generate point estimates of population parameters, and confidence bounds for those

estimates. We compute an estimate of the population mean, and the variance of this esti-

mate, based upon the sample responses. Some factors that we consider in these calculations

include what stratification scheme used when the sample was created. We also consider any

weights associated with each respondent, and the impact of those weights on the population

parameter estimates. The formulas are adjusted depending upon whether an estimate for

the entire population is desired, or just a subpopulation. Finally, we consider the sampling

scheme that was used to select the respondents.

Next, we address methods for improving the robustness of the parameter estimates.

Here, we consider two different factors that may impact the robustness of these estimates.

First, we address the problem of outlier detection and elimination, where an outlier is any

observation that falls beyond three standard deviations of the mean for its stratum. Such

a definition implicitly assumes that strata were accurately determined to group together
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respondents with similar characteristics. Second, we consider the impact of weights on

the population parameter estimates. More specifically, we address the fact that weights

assigned to each respondent are typically estimated and thus not exact. Consequently, we

do not want the weights to unduly influence the values of the parameter estimates. We

developed a heuristic that analyzes the sample data and weights associated with each data

point, and identifies responses that have a significant impact upon the weighted estimate of

the population mean. We then adjust these weights, within a user specified range, to limit

the sensitivity of the estimate of the mean to the weights assigned to each response.

Finally, we conduct trend analysis on the survey responses and estimates computed

from the sample data. Here, our objective is to use survey responses not only as a tool for

identifying current population behaviors, but to detect trends in population behaviors so

that one can forecast future behaviors. We have considered two different methodologies for

trend detection. One approach is appropriate for situations where very few data points are

available for trend estimation, and looks for differences in parameter estimates over time.

A second approach, in cases where a larger number of data points is available, is to conduct

a regression against time. In most cases, parameter estimates are constrained to lie within

a given range of values. We have developed a very effective methodology for incorporating

these constraints into our trend analysis.

The remainder of this paper is organized as follows. In section 2 we provide a general

discussion of various sampling techniques used to collect a representative sample for analysis.

Section 3 briefly discusses methods for storing response data. In section 4 we provide

detailed analysis of how one uses sample data to estimate population parameters. Section

5 discusses why one may introduce weights into the analysis and how the analysis changes

when weights are introduced. In section 6 we introduce the concept of domains and discuss

how estimation formulas are revised when one is only analyzing a domain of the population.

Section 7 looks at different factors that may influence the accuracy of estimated values. We

discuss methods for detecting and eliminating statistical outliers from the sample data

collected. We also suggest a heuristic to improve the robustness of weighted estimates.
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In section 8 we discuss methods of using survey responses to detect trends in population

behaviors and to predict future population behaviors. Finally, we conclude with section 9

where we briefly describe the application of our methodology to a survey administered by

IBM’s Server Group.

2 Sampling Techniques

Polling organizations will generally survey a subset (i.e., a representative sampling) of the

entire population. Inferences about the beliefs or behaviors of the population are then

drawn based upon responses from the subset. Sampling may be conducted using either

non-probability sampling or probability sampling.

In non-probability sampling, not all members of the population necessarily have a pos-

itive probability of being included in the sample. In contrast, probability sampling is char-

acterized by all members of the population having a known positive probability of being

included in the sample.

Non-probability sampling techniques include convenience sampling (select a sample

based upon availability for the study), most similar/dissimilar cases sampling (select cases

that are judged to be similar or dissimilar, depending upon researcher’s objective), typical

cases (select cases that are know a priori to be useful and representative), critical cases (se-

lect cases that are essential for inclusion in and acceptance of the study), snowball sampling

(existing members of the sample identify additional cases), and quota (interviewer selects

sample that yields same proportions as population proportions on some specific variables).

While in the case of probability sampling all members of the population have a known

positive probability of being included in the sample, these probabilities may not be the

same for all members of the population. If all members of the population have the same

probability of being selected, this sample design is called an “equal probability sampling.”

The five most common techniques for probability sampling include:
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• Simple Random Sampling: All members of the population have equal probability of

being selected. (In this case, if the population size is N and the sample size is n, then

a member of the population has probability n/N of being selected as an element of

the sample.)

• Systematic Sampling: Each member of the population is listed, a random start is

designated, and then members of the population are selected at equal intervals.

• Stratified Sampling: Each member of the population is assigned to a stratum. Simple

random sampling is used to select within each stratum. This method of sampling

is often used as a means for reducing the variance of the population parameter esti-

mates. One stratifies, for example, so that respondents with similar characteristics

are classified into the same stratum.

• Cluster Sampling: Each member of the population is assigned to a cluster. Clusters

are selected at random and then all members of the cluster are included in the sample.

• Multi-Stage Sampling: Clusters are selected as in the cluster sampling. Then, sample

members are selected from within each cluster, using simple random sampling.

These different methods for probability sampling are used in different situations. For

example, cluster sampling is often used if the population is segmented into natural clusters

(e.g., schools or households), and stratification may be used to decrease the variances of

the sample estimates. Probability sampling is preferred over non-probability sampling in

that its results are more valid and credible. On the other hand, it often takes longer and

requires more effort to gather a probability sample.

By using probability sampling, one can compute the probability that a given member

of the population is included in the sample. We refer to this probability as the “inclusion

probability” for that member of the population.
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3 Collecting and Storing Sample Responses

Once a sample is identified, survey responses from this subset of the population must be

collected. Survey responses may be collected in various ways, including interview studies

such as telephone or personal interviews, self administered surveys such as mail surveys or

handed/picked-up/dropped off questionnaires, and electronic surveys such as direct entry

into a computer, modem, e-mail, fax, disk, or Internet. Another approach may involve

collecting “responses” from some records on file (e.g., sample of size of homes in given

region, by looking at county records, to make general statements about size of homes in

that region).

Once collected, the responses, or data, is preferably stored in a database. The database

can either be a fixed-field type (data for each variable in same field location for each re-

spondent) or a free-field type (data for each variable in the same order for each respondent;

delimiters, e.g., comma or blank, separate one variable from the next). Preferably, one field

or group of fields is used that uniquely identifies each respondent.

4 Estimation

Survey responses are used to make estimates about the beliefs or behaviors of the entire

population. By collecting responses from a subset of the population, we want to make

statements about beliefs or behaviors of the entire population. We generate point estimates

of one or more population parameters. Point estimates estimate a specific value of the

population parameter. The methodology used to extrapolate from the sample responses to

the entire population differ, depending upon the sampling technique used.

Because simple random sampling can be viewed as a special case of stratified sampling

with only a single stratum, we will only discuss results for stratified sampling. Suppose a

company is using a survey to estimate the average spending budget for its customers. Let:

πk =inclusion probability for respondent k, k = 1, . . . , n
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yk =respondent k’s spending budget, k = 1, . . . , n

Also, suppose that respondents were stratified into H strata. Let Nh be the size of stratum

h, h = 1, . . . ,H and nh be the size of the sample in stratum h, h = 1, . . . ,H. Then a point

estimate of the average spending budget for all N = N1 + N2 + · · · + NH customers, ỹST ,

can be derived using the results in Section 5.6 of Sarndal et al. [8] as:

ỹST =

∑H
h=1

∑
k∈h

yk
πk∑H

h=1

∑
k∈h

1
πk

(1)

(We use the notation k ∈ h to denote summing over all the members of the sample that lie in

stratum h.) In the special case of simple random sampling in each stratum, the population

mean estimator simplifies to:

ỹSTSI =
H∑

h=1

Nh

N
(
∑

k∈h yk

nh
). (2)

Intuitively, the population mean is equal to a weighted sum of the H strata means (the

term inside parenthesis in (2)). More specifically, the sample mean is obtained separately

and independently for each stratum and is then multiplied by the weight of the stratum.

These products are summed over the H strata to obtain the weighted sample mean. The

weight of the stratum is generally the proportion of the population contained in that stra-

tum; in equation (2) this weight is given by Nh
N .

Often, the true size of the population is unknown. In this case, we replace N and Nh in

equation (2) with their estimators N̂ =
∑n

k=1
1
πk

and N̂h =
∑

i∈h
1
πi

, respectively.

However, this point estimate for the population mean is based upon the respondents

in sample s only. If a different sample is selected, say s1, a different point estimate of

the population mean will most likely result. Further, most certainly neither of these point

estimates is actually the true value of the population mean. Thus, to obtain a more accurate

measure of the population mean, a confidence interval is constructed as follows.

First, the variance of the estimator is measured. Let Θ denote the population mean,

and Θ̂ denote the estimate of the population mean. We use the statistic of a sample s to
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approximate Θ̂. Let ỹ be the sample s estimate of Θ̂. The variance of the estimator is

defined as E(ỹs − E(Θ̂))2, where E is the expected value function. Thus, the variance is a

measure of how the point estimate for each sample differs from the expected point estimate

based upon all samples. More specifically, let S denote the set of all possible samples. Then,

E(Θ̂) =
∑
s∈S

p(s)ỹs,

where p(s) is the probability that sample s is selected from the set of all possible samples

in S, and

v(Θ̂) =
∑
s∈S

p(s){ỹs − E(Θ̂)}2. (3)

Of course, we cannot compute v(Θ̂) based upon a single sample, as (3) assumes knowledge

ỹs for all samples s ∈ S. Instead we must estimate v(Θ̂) similar to the way that we estimate

Θ̂ by ỹs.

Let:

N̂ =
∑

k∈s(
1
πk

), where N̂ is an estimate of the size of the population,

∆kl =πkl − πkπl. (where πkl is the probability that both k and l are included in the

sample),

∆̂kl =∆kl
πkl

,

and denote the estimate of v(Θ̂) by v̂(ỹSTSI , π), in the case of stratified sampling with

simple random sampling within each stratum.

Based on results in Sections 2.8 and 5.6 of Sarndal et al. [8], we compute v̂(ỹSTSI , π) as

follows:

v̂(ỹSTSI , π) =
1

N̂2

H∑
h=1

(
∑
k∈h

∑
l∈h

(
πkl − πkπl

πkπl
)(

yk − ỹs

πk
)(

yl − ỹs

πl
)) (4)

= (
1
N̂

)2
H∑

h=1

(
∑
k∈h

∑
l∈h

··
∆kl

··
yk

··
yl), (5)

where
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H =number of strata

yk =y-value for kth observation in sample

··
yk =yk−ỹs

πk

··
∆kl =




1 − πkπl
πkl

=
−1+

nh
Nh

nh−1 if k �= l

1 − πk = 1 − n+h
Nh

if k = l

N̂ =
∑

k∈s
1
πk

Note that for stratum h, πk = nh
Nh

and πkl = nh(nh−1)
Nh(Nh−1) .

Having computed an estimator of the variance of the estimate of the population mean, we

construct a confidence interval on the true population mean, Θ, in the traditional manner:

ỹSTSI − z1−α
2
v̂(ỹSTSI , π)

1
2 ≤ Θ ≤ ỹSTSI + z1−α

2
v̂(ỹSTSI , π)

1
2 (6)

where z1−α
2

is the constant exceeded with probability α/2 by the N(0, 1) distribution and

ỹSTSI and v̂(ỹSTSI , π) are the estimated mean and estimated variance of the stratified

sample estimator of the population mean, respectively.

5 Weighted Analysis

Often, survey responses are weighted. The weights are computed so as to assign greater

“importance” to responses of certain respondents with given characteristics. The weights

are in addition to and separate from the sampling probabilities. Typically, the weights are

values estimated by the individual analyzing the survey, or by an executive who is interested

in the survey results. For example, a company may weight the responses of its customers

according to each customer’s relative size (e.g., the number of employees) or according to

each customer’s prior purchase volume. The company may wish to place greater emphasis,

for example, on customers who traditionally have larger purchase volume. The weights

are then incorporated in the estimation formulas. For the sake of brevity, we shall not
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provide formulas here; the formulas for weighted analysis are a special case of the formulas

for weighted domain analysis (described in the following section), where the domain is the

entire population.

6 Domain Analysis

One may consider whether an estimate of the entire population’s behavior is desired, or just

a sub-population. For example, a company that desires to survey its customers to gain in-

sight into what customer demand will be for different products offered by the company, may

only wish to survey the subset of its customer population that intends to make purchases in

the near future. The customers who intend to make purchases in the near future represent

a subset, or a domain, of the entire population of customers. A domain is a subset of the

population for which separate estimates are planned in the sample design. All estimation

formulas must be revised to reflect the fact that only a domain of the total population is

being analyzed.

For stratified sampling, the weighted point estimate for the domain mean and its variance

can be derived (albeit, after significant algebraic manipulation) using results in Sarndal [8]

Sections 5.7 and 10.3, and are given as follows:

ỹw =

∑H
h=1

Nh
nh

∑
k∈hd

wkyk∑H
h=1

Nh
nh

∑
k∈hd

wk

(7)

where

wk =weight assigned to respondent k, k = 1, . . . , n

Nh =size of population in stratum h, h = 1, . . . ,H

nh =sample size for stratum h, h = 1, . . . ,H

yk =value of response for respondent k, k = 1, . . . , n

hd =subset of stratum h that is in the domain, h = 1, . . . ,H
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Similarly, the formula for the variance of this estimator must be revised as follows:

v̂(ỹw) =

∑H
h=1

N2
h

n2
h

∑
k∈hd

∑
l∈hd

··
∆kl wkwl(yk − ỹw)(yl − ỹw)

[
∑H

h=1
Nh
nh

∑
k∈hd

wk]2
. (8)

7 Improving Robustness of Estimated Parameters

In this section we address methods for improving the robustness of population parameters

estimated using sample responses, with respect to two different factors that may impact

the accuracy of estimates. We refer to the first factor as statistical outliers. By statistical

outliers, we mean observations that fall “statistically outside” of the remaining observations

in the sample. The second factor that we consider is the impact of the weight assigned to

each observation on the overall parameter estimate. More specifically, we address the fact

that assigned weights are typically estimated and thus inexact. Consequently, the weights

should not disproportionately influence the value of the parameter estimates.

7.1 Eliminating Statistical Outliers

We first address the problem of identifying and eliminating statistical outliers. By “out-

liers” we mean observations that are statistically significantly different from the remaining

observed values. To illustrate, if 100 members of a population are sampled, we will check if,

for example, observed value for member 1 is an outlier by comparing its observed value to

the remaining 99 observed values. In the case that stratified sampling was used to obtain the

sample responses, one would search for outliers separately within each stratum. The reason

for taking this approach is that populations are generally stratified so that observations

within any stratum are similar.

In performing the search for statistical outliers, it is difficult to determine with certainty

whether or not an observation is an outlier. Statisticians have devised several methods for

detecting outliers. We adopt one method as follows (Dixon [3]). First, some assumption is
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made about the distribution of the data from which the sample was collected. Then, one

will quantify how far the suspected outlier is from the other values. This may be computed

in different ways, including computing the difference between the value of the suspected

outlier and the mean of all points, the difference between the value of the suspected outlier

and the mean of the remaining values, or the difference between the value of the suspected

outlier and the next closest value.

Next, this distance value is standardized by dividing by some measure of scatter, such

as the standard deviation of all values, the standard deviation of the remaining values, or

the range of the data (i.e., maximum observed value minus minimum observed value).

Finally, the probability associated with the answer to the following question is computed:

If all the observed values were sampled from the assumed distribution for the population,

what is the probability of randomly obtaining an outlier so far from the other values? If the

probability is small, it is concluded that the deviation of the outlier from the other values

is statistically significant.

If non-stratified sampling is employed, we search for statistical outliers once for the

entire sample. Different methods may be used to detect statistical outliers. The choice of

method depends upon the number of observations in the sample (or stratum). The following

rules may be followed:

(i) If the sample size is smaller than a first predetermined number this sample is deemed

to be too small to conduct a valid search for outliers. We suggest setting this prede-

termined number equal to 4.

(ii) If the sample size is between the first predetermined number and a second prede-

termined number, the so-called Dixon-type test may be used to detect outliers. See

Dixong [3] or Barnett and Lewis [1] We suggest setting this second predetermined

number equal to 10.

(iii) If the sample size is greater than the second predetermined number, a generalized

Extreme Studentized Deviate (g-ESD) procedure may be sued to identify the outliers.
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See Rosner [7].

7.1.1 Eliminating Outliers When Sample Size is Less Than Ten

In applying the Dixon-type test, observations are first ordered in increasing order of value.

Then, a search is performed for (i) a single outlier on the right, (ii) a single outlier on the

left, (iii) two outliers on the right and (iv) two outliers on the left. (The terms “right”

and “left” mean the following: If all observations are ordered in increasing order, then the

observations with lowest value will be on the left side, and the values of the observations

will increase as one goes from left to right. So an outlier on the left means to test if the

observation with the lowest value is an outlier; an outlier on the right means to test if the

observation with the highest value is an outlier.)

In performing the search, the Dixon-type test requires some guess to be made of the

number and location (right or left) of suspected outliers in the data. One option is to first

use a boxplot technique to locate suspected outliers and then use the Dixon-type test to

test these outliers. Several boxplot techniques are known. The standard boxplot (see e.g.,

Newbold [6]) has a higher chance of detecting false outliers than typical tests. (A “false

outlier” means that the test determines that the observation is an outlier when, in fact, it

is not.) A known variation of the standard boxplot slightly modifies the standard test to

ensure that a random normal sample has a prespecified probability of containing no outliers.

(For description of this modified boxplot rule see Hoaglin and Iglewicz [4].) Either type of

boxplot technique may be used to identify the location of potential outliers, and then a

Dixon-type test may be used to test if these observations are, in fact, outliers.

7.1.2 The Boxplot Rule

The boxplot rule works as follows. First, order the observations in increasing order of

magnitude and label these ordered observations x1, x2, . . . , xnh
. Second, define the lower

quartile Q1 as Q1 = x[f ], where the f th observation is defined as f = �n+1
2

�+1

2 where ��
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denotes the “floor,” i.e., the largest integer whose value is less than or equal to n+1
2 , where

n is the number of observations. If f involves a fraction, Q1 is the average of x[f ] and

x[f+1]. Third, define the upper quartile, Q3, in a similar manner. Specifically, count f

observations from the top. Thus, Q3 = x(n+1−f). Fourth, define the inter-quartile range as

Rf = Q3 − Q1. Finally, potential outliers are those observations that either (a) lie above

Q3 + 1.5Rf or (b) lie below Q1 − 1.5Rf . Once the locations of the potential outliers have

been identified, the Dixon-type test may be applied to determine if these observations are,

in fact, outliers.

7.1.3 The Dixon-Type Test

The Dixon-type test works as follows.

• Order all observations in increasing order and them x1, x2, . . . , xnh
.

• Specify a significance level αi.

• x(n) is an outlier on the right if

r11 =
x(n) − x(n−1)

x(n) − x(2)
> λ11, (9)

where values for λ11 are computed using, e.g., the table in Dixon [3] for the specified

value of αi and value of n. For an outlier on the left, the negative is taken of all

observations and the Dixon-type test is performed as above.

• For two outliers on the right, x(n) and x(n−1) are outliers if

r21 =
x(n) − x(n−2)

x(n) − x(2)
> λ21, (10)

where values for λ21 are computed using, e.g., the table in Dixon [3] for the specified

value of αi and value of n. For two outliers on the left, the negative is taken of all

observations and the Dixon-type test is performed as above.
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7.1.4 Eliminating Outliers When Sample Size is Greater than Ten

When the sample size is greater than ten, a generalized ESD (“g-ESD”) procedure may be

used to identify the outliers. g-ESD includes the following steps. (See Rosner [7].)

• Specify m, the maximum potential number of outliers.

• Specify αi, the significance level.

• Compute

R1 = max
i≤n

(
|xi − x|

s
), (11)

where s2 = (
∑

(xi − x)2)/(n − 1). Find and remove the observation that maximizes

this term.

• Compute R2 in the same way, except that for R2 the sample size n − 1 is used by

removing the observation identified by R1.

• Compute R3, . . . , Rm in a similar manner (with sample sizes n−2, n−3, . . . , n−m+1).

• Assume λi is known (below we discuss how values for λi are determined), outlier

identification works as follows. If for all i Ri ≤ λi, then no outliers exist. If for some

i Ri > λi then let l = max{i : Ri > λi} and declare x(0), x(1), . . . , x(l−1) as outliers.

(Here, x(0), x(1), . . . , x(l−1) are the observations selected in iterations 1 through l of

this algorithm.)

The parameter λi may be determined as follows.

(i) The table in Rosner [7] lists values for λi for different values of αi and n.

(ii) For combinations of αi and n not in the table, the following formula can be used:

λi =
tn−i−1,p(n − i)√

(n − i − 1 + t2n−i−1,p)(n − i + 1)
, (12)

where i ∈ [i,m], tν,p is 100p percentage points from the t distribution with ν degrees

of freedom, and p = 1 − [ α
α(n−i+1) ] and parameters m and α.
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In summary, the steps of generalized ESD are:

(1) Specify m, the maximum number of possible outliers.

(2) Compute R − 1, R2, . . . , Rm where Ri = maxs∈S{ (xi−x)
si

}, where si is the standard

deviation of observations considered when computing Ri.

(3) Compute λ1, λ2, . . . , λm.

(4) Determine the maximum i = 1, . . . ,m for which Ri > λi. Let k = max{i : Ri > λi}.
Observations X1, . . . , xi are outliers.

7.2 Improving Robustness of Weighted Estimates

As discussed in section 5 sample responses are often weighted so that some responses have

a greater influence on the value of the final estimator than others. These weights often

represent some estimated value rather than an exact known quantity. In our case, the

weights in some cases represented an estimate of the buying power of the customer. It was

not clear in all cases that the value of the assumed weight was exact or that it was accurately

computed. In many cases, the weights represent educated guesses by an analyst and should

only be taken as approximations to the relative orders of magnitude. When such uncertainty

exists surrounding the accuracy or appropriateness of the weights themselves, the weights

can negatively impact the accuracy of the overall population parameter estimates. We

describe here a heuristic for reducing or eliminating the potential inaccuracies introduced

by these estimated weights on the population parameter estimates. In this heuristic we

analyze the sample response data and the weights associated with each response. We then

identify responses that have a significant impact on the weighted estimate of the population

parameter. The corresponding weights are then adjusted, within a user prespecified range,

to ensure that the response no longer has such a significant impact on the overall estimate.

The goal is to have the population parameter estimates reflect the weights, but the exact

combined value of any single response and its associated weight should not overly influence

the final parameter estimate.
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To perform the heuristic, we first define some concepts.

First, we define mathematically what we mean by “overly influence the final parameter

estimate” by developing a measure of the impact of any weighted observation on the overall

parameter estimate as follows. Suppose that we are computing an estimate of the population

mean. We define the impact of observation k, Dk, as:

Dk = |y − y−k

y
|, (13)

where y is the estimated domain mean (or population mean, a special case of domain mean

where the domain is the entire population) based upon the current set of weights and

observed values, and y−k is the corresponding mean estimate based upon the current set of

weights and observed values excluding observation k. In other words, we consider the case

if we were to choose one fewer respondent (observation k) from that stratum.

Second, specify a tolerance level for the impact of any observation on the final parameter

estimate. We denote this tolerance level by T .

We say that weight wk, the weight for observation k, satisfies the Tolerance Condition

if Dk < T . Note that because any single weight affects the value of the mean, changing

the weight assigned to observation k will change Dj for j �= k and therefore may cause

some other observation to violate its tolerance limit. It is possible that no set of positive

weights exists that simultaneously satisfies the Tolerance Conditions for all observations.

Similarly, it is possible that there are multiple sets of positive weights that simultaneously

satisfy all Tolerance Conditions. In the latter case, we select for each observation a weight

that is as close to the original weight (assigned by the analyst) as possible (not precluding

the possibility of using the original weight itself).

The heuristic works as follows:

Step 0: The Tolerance Condition is given. Define a maximum number of iterations, m, after

which point the algorithm terminates. Let i denote the counter which counts the

current iteration. Set i = 1.
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Step 1: Mark all observations as feasible.

Step 2: For each feasible observation, check whether the Tolerance Condition is satisfied. If

the Tolerance Condition is satisfied for all observations goto Step 6. Else, goto Step

3.

Step 3: Find the observation that violates the Tolerance Condition and for which D is largest.

Denote this observation by k0. Compute a revised weight w′k0 such that

Dk0 = T.

Thus, we are revising the weight for observation k0 such that the Tolerance Condition

is exactly satisfied.

Step 4: Step 3 may yield more than one revised weight. (Below we provide an example where

this is the case.) If all revised weights are nonpositive, retain the current weight for

observation k0 and mark observation k0 as infeasible. Otherwise, select the revised

positive weight whose value is closest to the value of the original weight, wk0 , and

mark all observations as feasible.

Step 5: Increment counter i by 1. If i = m or if all observations are marked infeasible, goto

Step 6. Else, goto Step 2.

Step 6: Exit heuristic.

We now compute the revised weight w′k0 for the case where the sample was selected

using stratified sampling and an estimate of the domain mean is being computed. First,

we assume that each stratum contains more than one member and that observation k0 is

in the domain of interest. We are interested in adjusting the weights of the observations in

the domain. In this case,

y =

∑H
h=1

Nh
nh

∑
k∈h wkyk∑H

h=1
Nh
nh

∑
k∈h wk

,

where

H = number of strata
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Nh = population size of population in stratum h

nh = size of sample in stratum h

yk = value of variable for observation k

wk = weight assigned to yk

and

y−k0
=

∑H
h=1,h �=h0

[Nh
nh

∑
k∈hd

wkyk] + Nh0
(nh0

−1)

∑
k∈h0d,k �=k0

wkyk

∑H
h=1,h �=h0

[Nh
nh

∑
k∈hd

wk] + Nh0
(nh0

−1)

∑
k∈h0d,k �=k0

wk

where h0 denotes the stratum containing observation k0. The revised weight for observation

k0, w′k0 , is computed to satisfy the Tolerance Condition, i.e.,

y − y−k0

y
= T,

resulting in the following:

w′k0 =
C · (∑h �=h0

(Nh
nh

∑
k∈hd

wk) + C · Nh0
nh0

∑
k∈hd,k �=k0

wk − ∑
h �=h0

(Nh
nh

∑
k∈hd

wkyk) − Nh0
nh0

∑
k∈hd,k �=k0

wkyk

Nh0
nh0

(yk0 − C)

where C = (1±T )y−k0
1−T 2 . Thus, two values arise for w′k0 , one by selecting the “+” in the

formula for C and one by selecting the “−” in the formula for C. Denote the former by

w+
k0

and the latter by w−
k0

. Next, we must determine which of these values, if any, will be

used to replace the existing weight wk0 . Three situations may arise: (i) Both w+
k0

and w−
k0

are positive. In this case select the revised weight whose value is closest to wk0 ; (ii) Only

one revised weight, w+
k0

or w−
k0

is positive. In this case select the revised weight with the

positive value to replace wk0; (iii) Both revised weights are negative. In this case retain the

current weight wk0 .

If stratum h0 contains only one chosen sample, we can develop a similar set of formulae

to replace those described. (This situation is, however, unlikely in practice.) As well, an

analogous set of formulae can be developed for the case where observation k0 is not in the

domain in question. The latter case is generally less interesting in practice.
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When observation k0 is not in the domain of interest, removing k0 from the sample still

affects the value of y−k0
through the value of nh0. An analogous formula for w′k0 can be

derived.

We note that the user may wish to consider different values for T (e.g., increase T from

T to T in some specified increments) and then chart (i) impact of the value of T on the

revised estimate of the population parameter and (ii) the number of weights that are revised

by the heuristic. The user can then select a value for T ≤ T ≤ T with which he feels most

comfortable.

8 Trend Analysis

Often, one is interested in studying the estimated population means over time, to detect

the presence of some trend in these values. In this case, it is the objective to use the survey

responses not only as a tool for identifying current beliefs and behaviors of the population,

but also to detect trends in population behaviors so that future beliefs, behaviors, actions,

and/or attitudes of the population may be predicted.

The steps used to perform this trend analysis are as follows. Here, we use computed

estimates of the population parameter (e.g., mean) to compute the trends. We perform

trend analysis by looking at responses to a single question over time. Thus, if a survey

is administered multiple times, and the same question is repeated each time the survey

is administered, one can perform trend analysis on the response to this question. The

general methodology involves first computing the estimated mean each time the survey was

administered (as discussed in Section 4) and then testing for trends in these means using

the methodology outlined below. This trend analysis may be performed where there are at

least three data points available (i.e., the same questioned was repeated in three different

survey instruments). This trend analysis involves conducting a (weighted) regression over

time. This regression analysis may then be used to forecast future estimated parameter

values, thus forming the basis of predicting population behavior. We propose using weighted
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regression with the reciprocal of the standard deviation of the mean estimator as weights

to take in account the relative precision of the different survey repetitions.

Sometimes, parameter estimates are constrained to lie within a given range of values. For

example, if the question of interest was “What percentage of your overall spending budget

will be allocated to hardware purchases?” the response is clearly constrained to lie within the

range of [0, 100]. Thus, one must ensure that the forecasted value lies within the allowable

range as well. In more complex situations, we may have multiple questions for which we

wish to forecast population parameters, and the sum of these population parameters are

constrained to lie within some given range. For example, a company may ask a customer

to specify the percentage of its overall spending budget that will be allocated to each of

a list of expenditure classes. Clearly, the sum of these responses (for each respondent)

is constrained to equal 100. Again, we have developed methodology to allow for such

constrained forecasting. The methodology is described in the steps below.

Step 1: For each repetition of the survey, compute (as above) the estimated domain mean,

weighted or unweighted, and the variance of this estimator. Eliminate outliers and

execute the robustness improvement algorithm as described above. The following

variables are applicable:

t= the index of repetition of survey (e.g., the survey was conducted T times, where

t = 1, . . . , T and T is the total number of times the survey was repeated)

y= the response variable of interest

ỹt= the estimated domain mean for survey repetition t (ỹt is computed as described

in section 4.)

Step 2: Perform a regression to forecast ỹT+j, (j ≥ 1) as follows. Two situations may apply:

(I) ỹT+j, (j ≥ 1) is unconstrained, i.e., its value is not constrained to lie within a

given range or (II) ỹT+j, (j ≥ 1) is constrained.

For the case where ỹT + j, (j ≥ 1) is unconstrained, regression of the estimated

population mean against time is given by ỹt = a + bt. Thus, if we have T rep-
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etitions of the survey, we can estimate the T means and variances ỹ1, . . . , ỹT and

v(ỹ1), . . . , v(ỹT ). Using the data set 91, ỹ1), . . . , (T, ỹT ) and the corresponding set

of weights 1/
√

v(ỹ1), . . . , 1/
√

v(ỹT ), standard weighted regression techniques may be

used to solve for the least squares estimates of a and b, denoted by â and b̂, respec-

tively. Thus, the following regression formula is produced:

yt = â + b̂t (14)

For the case where yT+j (i ≥ 1) is constrained, regression of the estimated population

mean against time may be performed according to the following example. Suppose

that a company is trying to forecast the percentages of its customer’s IT spending

budget that will be used to purchase hardware (“H”) and the percentage of the budget

that will be used to purchase software (“S”) at time T + 1. (Assume that hardware

and software form a collectively exhaustive set of all possible ways in which a customer

can allocate its IT spending budget.) Let:

yH
T+1 =estimated percentage of hardware capacity used for business intelligence in

period T + 1

yS
T+1 =estimated percentage of hardware capacity used for network computing in pe-

riod T + 1

Clearly, yH
1 + yS

1 = 100%. In view of this constraint, regression equations may be

formed as follows:

yi
1 = ai + bi, i = H,S

yi
2 = ai + 2bi, i = HI, S

·
·
·

yi
T = ai + Tbi, i = H,S
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where yH
t , t = 1, . . . , T estimated percentage of IT spending budget used for hardware

purchases in period t and yS
t , t = 1, . . . , T estimated percentage of IT spending

budget used for software purchases in period t. Further, we define the following set

of constraints:

yH
1 + yS

1 = 100

yH
2 + yS

2 = 100

·
·
·

yH
T + yS

T = 100

Now, the task is to determine values for aH , bH , aS, and bS that satisfy the constraints

yH
t + yS

t = 100 ∀t. More generally, suppose that there are p variables of interest (i.e.,

not only variables H and S) for which we have:

yi
t = ai + bit, where i = 1, . . . , p (15)

p∑
i=1

yi
t = k, where t = 1, . . . , T. (16)

One must find the estimates for parameters ai and bi in equation (15), subject to the

constraints in equation (16). Suppose for t = 1 we have

yi
1 = ai + bi, ∀i = 1, . . . , p (17)

p∑
i=1

yi
1 = k →

p∑
i=1

(ai + bi) = k (18)

For t = 2:

yi
2 = ai + 2bi, ∀i = 1, . . . , p (19)

p∑
i=1

yi
2 = k →

p∑
i=1

(ai + bi + bi) = k (20)
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Incorporating (18) into (20), we have:

k +
p∑

i=1

bi = k (21)

Here, equation (21) implies that
∑p

i=1 bi = 0.

For t = 3:

yi
3 = ai + 3bi, ∀i = 1, . . . , p (22)

p∑
i=1

yi
3 = k →

p∑
i=1

(ai + bi + bi + bi) = k (23)

Incorporating (20) into (23), produces:

k +
p∑

i=1

bi = k, (24)

again implying that
p∑

i=1

bi = 0. (25)

Equation (25) is equivalent to

bp = −
p−1∑
i=1

bi (26)

If we define Ii as an indicator variable, with Ii = 1 if the data point is variable i, then

the yi
t expressions can be replaced with the following single expression:

yt =
p∑

i=1

Ii(ai + bit)

=
p∑

i=1

aiIi +
p∑

i=1

Iibit

=
p∑

i=1

aiIi +
p−1∑
i=1

Iibit + (−
p−1∑
i=1

bi)Ipt

=
p∑

i=1

aiIi +
p−1∑
i=1

bi(Iit − Ipt)

Equation (27) represents the regression equation, with independent variables Ii and

(Iit − Ipt). The dependent variable is yt, which is the estimated population mean at

time t. The regression equation can be rewritten as:

yt = a′0 +
p∑

i=2

ai +
p−1∑
i=1

bi′(Iit − Ipt)Ii,
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with least square estimates for the parameters given by

a1 = a0′

ai = a0′ + ai′, where i = 2, . . . , p

bi = bi′, where i = 1, . . . , p − 1

bp = −
p−1∑
i=1

bi

Thus, the following regression equation is produced:

yit = ai + bit where i = 1, . . . , p (27)

and ai and bi defined as above.

Regression equations (14) and (27) may be used in two ways: to detect trends and to

forecast future values.

First, the trend of yi
t (the estimate of the population mean) is determined over time.

This may be done using standard hypothesis testing in linear regression as follows.

We wish to test H0 : bi = 0. If this null hypothesis is rejected, then it can be said

that the variable t (time) does impact yi
t. In this case, if bi > 0, then yi

t is increasing

over time, i.e., one can say that the population mean is increasing over time. If bi < 0,

then yi
t is decreasing over time. If the null hypothesis is not rejected, then yi

t is not

changing over time.

Second, the regression equations can be used for prediction, to predict future popu-

lation behavior. If the predicted values are unconstrained, regression equation (14)

is used, with the period to be predicted substituted for t in equation (14); if the

predicted values are constrained, regression equation (27) is used.

9 Practical Applicaton

In this section we briefly describe the motivating factor which stimulated our interest in

this area of survey data analysis. This work was initiated as a result of a desire to maximize
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the utilization and therefore the value of surveys conducted by a group in the IBM Server

Group. This group conducts two types of surveys. The first survey, known as the IT Trends

Survey (the “Trends Survey”) is conducted on a quarterly basis. This survey targets all IBM

server customers and asks questions on topics including current and planned IT spending

and current and planned uses for IBM servers. One of the goals of this survey is to help

IBM focus future development efforts by understanding why customers currently value IBM

technology and what future needs customers may have. The second survey, known as the

Win-Loss Survey, is conducted on an annual basis. This survey targets all companies that

have purchased a server in the past year, regardless of whether they purchased from IBM or

from a competitor. The goal of this survey is to understand why IBM wins some business

(i.e., why some companies did buy from IBM) and why IBM loses some business (i.e.,

why some potential customers decide to purchase from a competitor). We only analyzed

responses to the Trends Survey; the Win-Loss Survey had not yet been implemented by the

time we began our analysis.

We applied our methodology to data collected from administration of the Trends Sur-

vey in the second quarter of 1999. In particular, the group was primarily interested in

the responses to two strategic questions included in the survey: (i) “Do you plan to in-

crease your hardware capacity in the upcoming year?” and for those who responded to this

question in the affirmative, (ii) “What percentage of your increased capacity do you in-

tend to use for each of the following application areas?” This second question was followed

by the following list of ten application areas: (a) Enterprise Resource Planning (“ERP”),

(b) Transaction Processing, (c) e-Commerce, (d) Web Serving, (e) Business Intelligence

(“BI”), (f) e-Mail, Groupware, Collaborative Computing, (g) Scientific and Technical, (h)

Infrastructure, (i) Supply Chain Management (“SCM”), and (j) Customer Relationship

Management (“CRM”). The responses to these questions are critical, as they help to shape

IBM’s technology investment strategy for the upcoming years.

When the survey was administered, the customer population was stratified according

to the following characteristics: server brand, size of customer (as measured by number
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of employees), amount of computing power (measured in mips), customer geographical

location, and the cost of the multi-user system or server purchased in the most recent year.

The total possible number of strata is computed as follows: server brand could take on one

of five values, customer size was grouped into three classes, amount of computing power

was grouped into three classes, geographical location were classified into three regions,

and cost of system purchased in the most recent year was classified into four categories.

Thus, the total number of possible strata is 5 · 3 · 3 · 4 = 180 strata. However, given the

actual combinations that could occur in reality, the actual number of strata was 53. (Some

combinations of values for these five variables are not, in practice, feasible.)

A target number of respondents was specified for each stratum. The target sample size

per stratum differed for each stratum. The Server Group was interested in collecting a

larger sample of large customers with historically greater purchase volumes. Within each

stratum, customers were randomly selected and the survey was administered via telephone

interview.

The Trend Survey was conducted via telephone interview and the responses were stored

in a fixed-field type database within the SAS system. A total of 1582 responses were

collected for this survey. Of those responses, 589 respondents answered that they plan to

increase capacity in the upcoming year. Only those 589 were asked the subsequent question

regarding expected use of the increased capacity.

Since this question is only asked of those customers who responded that they intend to

increase computing capacity, domain analysis is the appropriate analysis methodology. The

domain of interest is the subset of respondents who responded that they intend to increase

capacity.

The IBM Server Group assigned weights to each survey response. The responses were

weighted according to the size of each of the responding customers (i.e., the number of

employees). The intent was to place greater emphasis on responses provided by larger

customers. We note that one may assign different weights for responses to different questions

for the same respondent (customer). Thus, weights can be question specific. For example,
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in our analysis responses to some questions were weighted by the size of the customer while

other questions were weighted by factors such as past revenues or past purchase dollars of

the respondents. The weights are then incorporated in the estimation formulas.

First, for each of these application areas we compute the estimated population mean

percentage of capacity that will be allocated to that application area. Notice that each

estimate cannot be made in isolation because this percentage represents a fraction of total

increased capacity. Thus, we constrain the estimates so that the sum of all these estimates

must equal one (or 100%). To estimate population mean percentage of capacity that will

be allocated to each application area we apply formula (7) with the added constraint that

the sum of all of these estimates must equal to 100. The domain is the set of all customers

who responded that they intend to increase computing capacity. We then use formula (8)

to compute the variance of this estimated population mean. Finally, equation (6) is used

to obtain confidence bounds on the estimated population mean.

We continue our analysis of these questions by now considering methods for improving

the robustness of our estimates of capacity allocation to each of the application areas.

Consider the changes in expected capacity allocation to different application areas that

were caused by assigning weights to each respondent. IBM may be making significant

development decisions based upon the responses to this survey. Thus, we want to be

certain that, since the weighting factors are often estimated (and somewhat arbitrary)

values, the calculated survey results are not too sensitive to exact values of the weighting

factors. Toward this end, we will employ the heuristic described in section 7.2 to adjust

the weights assigned to each response. We then compute the adjusted weighted estimate of

mean capacity allocation to each application area.

Finally, we conducted a trend analysis as described in section 8. Trend analysis requires

a collection of survey responses over time. However, the Trends Survey was new at the time

of our analysis, so multiple collections of data did not exist. Instead, we conducted a trend

analysis on data collected from another survey administered by the IBM Server Group -

the Large Systems Panel (“LCIP”) survey. LCIP is a predecessor to the Trends Survey and
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Application Area in LCIP Survey Application Area in Trends Survey

Business Intelligence BI

Network Computing e-Commerce, Web serving, e-Mail, Groupware, etc.

Traditional Transaction Processing or Batch Transaction Processing, Infrastructure

Enterprise Resource Planning ERP, SCM, CRM

Other Scientific and Technical

Table 1: Mapping of application areas between LCIP and Trend Surveys

was conducted to collect information on mainframe computer customers. The LCIP survey

contained questions similar to those that we analyzed in the Trends Survey, namely, what

was the intended use for the increased capacity. The list of possible answers provided by

LCIP included: business intelligence, network computing, traditional transaction processing

or batch applications, enterprise resource planning, and other applications. This list was

not the same as the Trends Survey, but a rough mapping exists, as shown in Table 1. The

five areas provided by LCIP can be seen as aggregates of those provided by the Trends

Survey.

We used the methodology described in section 8 to analyze four waves of the LCIP

survey conducted over a period of 2 years. There was some overlap in the sample sets

across waves so they are not completely independent. As a result the regression analysis is

only approximate. The analysis was performed for illustrative purposes, as four data points

is too small a set to obtain a reliable estimate of a model with two parameters.

10 Conclusion

We have demonstrated how survey information can be used to draw conclusions about

current population behaviors. We have discussed how the conclusions drawn can be made

more robust both by eliminating statistical outliers from the data as well as by tempering

the impact of estimated weights on the prediction of overall population behavior. Finally, we

have shown how survey data can be used to detect trends over time in population behavior
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as well as to predict future population behavior. The methodology was used to analyze

responses to surveys conducted by the IBM Server Group. The analysis indicates that

the value of surveys can be enhanced by applying the techniques described in this report

to obtain more robust estimates of population actions, based upon the sample responses

collected.
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