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Abstract

We study the interpolation procedure of Gomory and Johnson (1972), which generates
cutting planes for general integer programs from facets of cyclic group polyhedra, and has
recently been re-considered by Gomory, Johnson and Evans (2003). We compare inequalities
generated by this procedure with MIR inequalities and also with the two-step MIR inequal-
ities discussed in Dash and Gunluk (2003). Our results generalize a result of Cornuéjols,
Li and Vandenbussche (2003) on comparing the strength of the Gomory mixed-integer cut
with related inequalities. We also show that in some cases, given an inequality generated by
the interpolation procedure, one can generate stronger inequalities via the MIR principle,
and a similar two-step MIR principle.
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1 Introduction

In a sequence of papers, Gomory [9], and later Gomory and Johnson [10, 11], studied the
polyhedral structure of the master cyclic group polyhedron

P (n, r) = conv
{

w ∈ Zn−1 :
n−1∑
i=1

(i/n)wi ≡ r/n (mod 1), w ≥ 0
}

(1)

where n, r ∈ Z and n > r > 0, and a ≡ b (mod 1) means that a − b is an integer. For a set
S ⊆ Rn, we use conv(S) to denote the convex hull of vectors in S. As discussed in [9, 10],
facets of P (n, r) can easily be translated into sub-additive functions using an interpolation
procedure. These functions yield cutting planes for general integer programs. In particular,
let

Y =
{
x ∈ Z |J|, y ∈ Z :

∑
j∈J

aj xj + y = b, x ≥ 0
}

(2)

(
∑

j∈J ajxj + y = b could be derived from a row of the simplex tableau) and let h(v) be a
sub-additive function derived via interpolation from some P (n, r). Let ĉ = c−�c� for c ∈ R.
Then it is possible to show that

|J|∑
i=1

h(âj)xj ≥ h(b̂) (3)

is a valid inequality for Y . Recently, there has been renewed interest in P (n, r), see [13],
[2], [12] and [7]. In particular, Evans [8] and Gomory, Johnson and Evans [13] present an
empirical approach to identify “important” facets of P (n, r) for small n and propose using
sub-additive functions based on these important facets as cutting planes for general integer
programs. The most important classes of facets identified in these empirical studies are the
facets based on the Gomory mixed-integer cut (GMIC), and the so-called “2slope facets”.

In a recent paper [7], we discussed how valid inequalities for Y can be derived from the mixed-
integer rounding (MIR) principle, and a related two-step MIR principle. In this paper, we are
primarily interested in comparing such inequalities with cuts derived via the interpolation
procedure mentioned above. Our analysis of this procedure yields a generalization of a
result of Cornuéjols, Li and Vandenbussche [5] on comparing the strength of the GMIC
with related inequalities. Our main result is that in a number of important cases, given
an inequality based on the interpolation procedure, one can generate a stronger inequality
using the MIR principle or the two-step MIR principle.

The structure of the paper is as follows. In the next section we review earlier results
and motivate our study. In Section 4 we study properties of the facet defining inequalities
for P (n, r)and describe the interpolation procedure of Gomory. In Section 5 we compare
the strength of the inequalities generated by the interpolation procedure with MIR based
inequalities.
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2 Valid inequalities based on simple sets

It is well-know that the basic MIR principle, based on a simple mixed-integer set with two
variables, can be used to derive the GMIC. In particular, if

Q1 =
{

x ∈ R, z ∈ Z : x + z ≥ β, x ≥ 0
}

where β �∈ Z, then the MIR inequality x ≥ (β − �β�)(�β	 − z) is valid and facet defining
for Q1 (see [14, 15]). The above inequality can be combined with an appropriate relaxation
of Y to obtain the GMIC for Y . In [7], we discuss this idea in some detail and also define
t-scaled MIR inequalities, which we need here. As before, let ĉ denote c − �c� for c ∈ R.

Definition 1 For b ∈ R, the MIR function with parameter b is defined as:

f b(v) =
{

v̂/b̂ if v̂ < b̂,
(1 − v̂)/(1 − b̂) if v̂ ≥ b̂,

For any integer t such that tb �∈ Z, the t-scaled MIR inequality∑
j∈J

f tb(taj)xj ≥ 1 (4)

is valid for Y . These inequalities are called k-cuts in [5], and can be viewed as the GMIC
applied to

∑
j∈J ajxj + y = b after scaling it by an integer t.

In [7] we also consider the set

Q2 =
{
x ∈ R, y, z ∈ Z : x + αy + z ≥ β, x, y ≥ 0

}
,

where 1 > α > 0 and β �∈ Z. We show there that the two-step MIR inequality, defined as
x ≥ (β − α �β/α�)(�β/α	 − �β/α	 z − y), is valid and facet defining for Q2 provided that
1/α ≥ �β/α	. We then use the two-step MIR inequalities to derive valid inequalities for Y .

Definition 2 For b, α ∈ R satisfying b̂ > α > 0, and 1/α ≥ �b̂/α	 > b̂/α, the two-step
MIR function with parameters b and α is defined as:

gb,α(v) =




v̂(1 − ρτ) − k(v)(α − ρ)
ρτ(1 − b̂)

if v̂ − k(v)α < ρ

k(v) + 1 − τ v̂

τ(1 − b̂)
if v̂ − k(v)α ≥ ρ,

where ρ = b̂ − α�b̂/α�, τ = �b̂/α	 and k(v) = min{�v̂/α	, τ} − 1.

For any t ∈ Z and α ∈ R such that tb and α are valid parameters for the two-step MIR
function, the t-scaled two-step MIR inequality∑

j∈J

gtb,α(taj)xj ≥ 1 (5)

- 3 -
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is valid for Y .

When applied to P (n, r) (which has the same form as Y ) these inequalities take the form
n∑

i=1

f tr/n(ti/n)wi ≥ 1 (6)

and
n∑

i=1

gtr/n,∆/n(ti/n)wi ≥ 1 (7)

for integers t and ∆. They are valid and facet defining under mild conditions (see [7]). In
particular, the inequality in (6) defines a facet of P (n, r) if tr is not a multiple of n; we call
such a facet a t-scaled MIR facet.

3 Valid inequalities based on interpolation

We first present a result of Gomory [9] that gives a complete characterization of the nontrivial
facets (i.e., excluding the non-negativity inequalities) of P (n, r).

Theorem 3 (Gomory [9]) If r �= 0, then
∑

ηjwj ≥ 1 is a non-trivial facet of P (n, r) if and
only if η = (ηj) is an extreme point of the inequality system

ηi + ηj ≥ η(i+j) modn ∀i, j ∈ {1, . . . , n − 1}, (8)

ηi + ηj = ηr ∀i, j such that r = (i + j)modn, (9)
ηj ≥ 0 ∀j ∈ {1, . . . , n − 1}, (10)
ηr = 1. (11)

The property (8) is called sub-additivity; we call the property (9) r-additivity. We will only
be interested in non-trivial facets of P (n, r).

Let
∑n−1

i=1 ηiwi ≥ 1 be a facet of P (n, r). Let h : R → [0, 1] be an associated piecewise-linear
function defined by:

h(v) =




0, if v = �v� ,
ηi if v − �v� = i

n for i = 1, . . . , n − 1,
δh( i

n ) + (1 − δ)h( i+1
n ) if v − �v� = i+δ

n , for 0 < δ < 1.

Note that 0 ≤ h(v) ≤ 1 as 0 ≤ ηi ≤ ηr = 1, and h(v) = h(v̂) for all v ∈ R. We will call h(v)
a facet interpolated template function, abbreviated as a template function. In Figure 1 we
present a template function based on the 6-scaled MIR facet for P (13, 12).

Gomory and Johnson [10] derived the following sub-additivity property of template functions
from the sub-additivity property of facet coefficients ηi:

h is a template function of P (n, r) ⇒ h(x) + h(y) ≥ h(x + y), ∀x, y ∈ R. (12)

- 4 -
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Figure 1: 6-scaled MIR for P (13, 12) and template function

In this paper we will say a function h(v) is sub-additive over [0, 1] if h(v) = h(v̂) for all
v ∈ R, and h : [0, 1] → [0, 1] and h is sub-additive. The functions f b and gb,α defined earlier
are both sub-additive over [0, 1]. The next result implies that template functions can be
used to derive cutting planes for Y .

Proposition 4 (Gomory, Johnson [10]) If h : R → [0, 1] is sub-additive function over [0, 1],
then

∑
i∈J h(aj)xj ≥ h(b) is a valid inequality for Y .

An important question is: which template function based cutting planes are useful for Y ?

Some template functions for Y can be viewed as being special in the following sense. Let n be
the smallest positive integer such that all coefficients of

∑
j∈J ajxj + y = b become integral

when multiplied by n. Define r = nb̂, and consider P (n, r) for this choice of n and r; we
will call this the canonical master polyhedron for Y . Let h be a template function associated
with a facet ηT w ≥ 1 of P (n, r). As the values âj are multiples of 1/n, h(aj) is equal to
the facet coefficient ηnâj . It follows from this, and a result of Gomory [9], that the set of
all template functions derived from P (n, r) give the convex hull of Y . That is, every facet
of conv(Y ) is of the form

∑
j∈J h(âj)xj ≥ h(b̂) where h is some template function derived

from P (n, r).

In most cases, the multiplier n required to make the coefficients of
∑

j∈J ajxj +y = b integral
is too large. In this situation it is impractical to work directly with the canonical P (n, r)
and the associated inequality system (8)-(11). However, we do know some classes of facets
and template functions for any P (n, r) and thus for the canonical master polyhedron for
Y . These are the t-scaled MIR inequalities and the two-step MIR inequalities discussed in
Section 2, which can be used to get valid inequalities for Y . We next discuss an alternative
approach to using template functions to get valid inequalities for Y .

- 5 -
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3.1 Gomory’s shooting experiments

In a recent study Gomory, Johnson and Evans [13] describe a computational approach to
identify the “important” facets of the small master cyclic group polyhedra, i.e, P (n, r) with
n ≤ 20. They perform a shooting experiment, which is a randomized procedure in which they
choose a random direction d and identify the facet first encountered along the ray λd, λ > 0.
This facet can be computed by minimizing dT η over the inequalities (8)-(11). By repeating
this experiment a number of times (e.g., for 10,000 random directions) they conclude that
a relatively small number of facets are important, and that the t-scaled MIR facets (6)
are the most important facets for small master polyhedra. Their results are based on a
more extensive study by Evans [8] where she also shows that the so-called “2slope facets”
constitute the second most important class for small n. These facets form a sub-class of the
facets given by inequality (7).

Gomory, Johnson and Evans[13] propose generating cutting planes for Y based on template
functions of the important facets of small P (n, r). This approach would then favor using
template functions of scaled MIR facets and 2slope facets over template functions of other
facets.

4 Comparing cutting planes

In this section we will analyze the relative strengths of different cutting planes for Y . If
ηT x ≥ 1 and βT x ≥ 1 are valid inequalities for Y in (2), and η ≤ β, then the first inequality
is obviously preferable to the second. How does one compare cutting planes when such
obvious criteria do not apply ? As we discussed earlier, one approach to this question
was proposed in [13], where facets of low-dimensional master polyhedra are compared via
a shooting experiment. Another approach, which we use, is presented in Cornuéjols, Li
and Vandenbussche [5], where the authors compare t-scaled MIR cuts, for different scaling
factors t, by comparing their coefficients component-wise.

Proposition 4 implies that if h(v) is a sub-additive function over [0, 1], then the inequality
hY , defined as ∑

j∈J

h(aj)
h(b)

xj ≥ 1, (13)

is valid for Y provided that h(b) �= 0 (we will assume this condition to be true throughout).
If h(v) is a template function , we call hY a template inequality; if h(v) is a template
function arising from the canonical master polyhedron for Y , we call hY a canonical template
inequality. The functions f b and gb,α, and template functions for different master polyhedra
are piece-wise linear sub-additive functions, and therefore provide recipes for generating valid
inequalities for varying Y . To compare the relative strength of the resulting inequalities, we
use the following definition.

Definition 5 Let h1(x) and h2(x) be two sub-additive functions over [0, 1]. Then h1 domi-
nates h2 if h1(v) ≤ h2(v) for all v ∈ [0, 1]. If, in addition, there is some interval [a, b] ⊂ [0, 1]
such that h1(v) < h2(v) for all v ∈ [a, b], then h1 strictly dominates h2. Finally, let X

- 6 -
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be a random variable which is uniformly distributed over [0, 1]. If P(h1(X ) < h2(X )) >
P(h1(X ) > h2(X )), then h1 is said to dominate h2 in a probabilistic sense.

To see the motivation for the definition above, observe that if h1 dominates h2 and h1(b) =
h2(b), then the inequality hY

1 implies hY
2 . Further, if the coefficients of Y are chosen ran-

domly from [n1, n2], where n1 and n2 are integers, then the fractional parts of the coefficients
of Y are uniformly distributed over [0, 1]. If h1 dominates h2 in a probabilistic sense and
h1(b) = h2(b), then it is more likely that h1(aj) < h2(aj) than h2(aj) < h1(aj) for an index
j ∈ J .

4.1 Properties of facets and template functions

The following property of facets of P (n, r) follows trivially from r-additivity.

Proposition 6 Let
∑n−1

i=1 ηiwi ≥ 1 and
∑n−1

i=1 βiwi ≥ 1 be non-trivial facets of P (n, r)
with r �= 0. (i) The average value of the facet coefficients ηi is n/(2(n − 1)), and (ii)
|{i : ηi > βi}| = |{i : βi > ηi}|.

Proof. For any non-zero index i between 1 and n − 1, if 2i modn = r then ηi = 1/2. On
the other hand, if 2i modn �= r then ηi + ηr−i = 1. As ηr = 1,

∑n−1
i=1 ηi = n/2 and part (i)

follows. Part (ii) follows from the fact that ηi > βi ⇔ βr−i > ηr−i.

Proposition 6 says that the coefficients of all non-trivial facets of P (n, r) have the same
average value. Also, given two facet-defining inequalities, either inequality has the same
number of coefficients which exceed the corresponding coefficients in the other.

To show an analogous statement for template functions , we derive a property of template
functions similar to the r-additivity of facet coefficients.

Proposition 7 If h(x) is a template function derived from a facet of P (n, r), then h(x) +
h((r/n) − x) = h(r/n), ∀x ∈ [0, 1].

Proof. By the definition of template functions and because of (9), this is true if x = i/n
for any integer i between 0 and n. Let x = (i + δ)/n for some δ ∈ (0, 1) and some integer i
between 0 and n − 1. Now,

h(x) = δh(
i

n
) + (1 − δ)h(

i + 1
n

), and h(
r

n
− x) = δh(

r − i

n
) + (1 − δ)h(

r − i − 1
n

).

Adding up the right-hand sides of the equations above we get δ(r/n) + (1 − δ)(r/n) = r/n
and the lemma follows.

Given a sub-additive function over [0, 1], say h(v), we will call it b-additive if h(v)+h(b−v) =
h(b) for all v ∈ R. The previous lemma states that template functions for P (n, r) are (r/n)-
additive.

- 7 -
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We now show that for any two template functions derived from non-trivial facets of a
common master polyhedron, neither dominates the other in a probabilistic sense.

Lemma 8 Let h1(x) and h2(x) be two template functions associated with P (n, r) for some
fixed n and non-zero r. Let X be a random variable which is uniformly distributed over
[0, 1]. (i) The expected value of h1(X ) is 1/2. (ii) P(h1(X ) > h2(X )) = P(h2(X ) > h1(X )).

Proof. Define b = r/n. Observe that h1 and h2 are piece-wise linear functions, with
hi(x) + hi(b − x) = hi(b) = 1 and hi(0) = hi(1) = 0 for i = 1, 2. Hence

∫ b

0

h1(x)dx =
∫ b/2

0

(h1(x) + h1(b − x))dx = b/2.

Similarly
∫ 1

b h1(x)dx = (1 − b)/2, and part (i) of the proposition follows.

As h1 and h2 are piece-wise linear and have n linear segments, there are fewer than n points
at which they cross. Therefore one can construct a finite ordered set S = (s1, s2, . . . , sm),
containing the fewer than n crossing points, with the following properties:
(a) {0, b

2 , b, 1+b
2 , 1} ⊆ S ⊆ [0, 1];

(b) In the interval (si, si+1), for 1 ≤ i ≤ m − 1, if one of the functions h1 and h2 is strictly
greater than the other at one point, it is strictly greater throughout the interval;
(c) If x ∈ S, then so does b − x.
Now consider an interval (si, si+1) ⊆ (0, b/2). If h1(x) > h2(x) for all x in (si, si+1), then
because of Lemma 7, h2(x) > h1(x) for all x in (b − si+1, b − si) ⊆ (b/2, b). Arguing
similarly for intervals in (b/2, b), (b, 1+b

2 ) and (1+b
2 , 1), it follows that P(h1(X ) > h2(X )) ≤

P(h2(X ) > h1(X )). Reversing the roles of h1 and h2, the result follows.

Suppose we choose Y to be a row of a simplex tableau associated with the linear relaxation
of an integer program. Over many different integer programs, it is reasonable to assume
that the fractional parts of the coefficients in Y will be uniformly distributed over [0, 1].
The above theorem indicates that for any two template functions , neither is likely to yield
stronger inequalities than the other, when relative strength is measured by counting how
many coefficients of one inequality are less than corresponding coefficients in the other
inequality.

We next restrict our attention to template functions arising from t-scaled MIR facets of
P (n, r). We define the t-scaled MIR function, where t is an integer, in terms of the MIR
function described earlier:

f t,b(v) = f tb(tv).

Then the t-scaled MIR inequality can be written as
∑

j∈J f t,b(aj) ≥ 1. In Figure 1 we
notice that the template function of the 6-scaled MIR cut of P (13, 12) does not coincide
with the 6-scaled MIR function. This is because the scaling coefficient t does not satisfy the
following property.

Proposition 9 If t is a divisor of n, then the template function h(v) of the t-scaled MIR
cut coincides with the t-scaled MIR function f t,b(v).

- 8 -
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Proof. It is sufficient to observe that h(x) = f t,b(x) whenever f t,b(x) = 0 or 1.

Cornuéjols, Li, and Vandenbussche [5][Theorem 1(ii),Theorem 3] compare t-scaled MIR
inequalities with the GMIC (1-scaled MIR inequality), for different values of t ∈ Z. They
compute P(f t,b(X ) > f1,b(X )) and P(f1,b(X ) > f t,b(X )). They also show that these
probabilities are equal. We can derive this result from Lemma 8 and Proposition 9 since
for any two positive integers t1,t2 and a rational number b with b̂ = r/n, one can use
P (t1t2n, t1t2r) to compare the t1-scaled MIR function with the t2-scaled MIR function. We
next state this observation formally.

Corollary 10 Let b be a rational number and let t1 and t2 be positive integers. If X is
uniformly distributed over [0, 1], then P(f t1,b(X ) > f t2,b(X )) = P(f t2,b(X ) > f t1,b)(X )).

We know that the expected value of the scaled MIR functions in the interval [0, 1] is 1/2.
We close this section with a comment on their variance.

Lemma 11 Let t ∈ Z and 1 > b > 0 be such that tb �∈ Z. If X is distributed uniformly in
[n1, n2), for n1, n2 ∈ Z, then Y = f t,b(X ) is distributed uniformly in [0, 1).

Proof. We will show that P(Y ≤ δ) = δ for 1 ≥ δ ≥ 0. First note that if X is distributed
uniformly in [n1, n2), then X̂ = tX −�tX� is distributed uniformly in [0, 1). Therefore given
δ ∈ [0, 1), we can write

P(Y ≤ δ) = P(Y ≤ δ, X̂ < b̂t) + P(Y ≤ δ, X̂ ≥ b̂t)

= P(X̂/b̂t ≤ δ) + P((1 − X̂ )/(1 − b̂t) ≤ δ))

= P(X̂ ≤ b̂tδ) + P(X̂ ≥ 1 − (1 − b̂t)δ))

= δ b̂t + δ(1 − b̂t) = δ

It is easy to see that 1-scaled two-step MIR functions, while having an expected value of
1/2 in [0, 1], have a smaller variance than the t-scaled MIR functions. We do not know how
this property translates into effectiveness of the corresponding cuts.

5 Comparing template and MIR inequalities

Given Y , we know that template inequalities yield valid inequalities for Y . As discussed
in Section 3.1, Gomory, Johnson and Evans [13] propose using template inequalities based
on important facets of P (n, r) with small n. Their approach would favour using template
inequalities based on t-scaled MIR facets, and two-step MIR facets (which include the
“2slope facets” in [2]).

The question we will address in this section is the following: how strong are the above classes
of template inequalities when compared to the t-scaled MIR inequalities and two-step MIR

- 9 -
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inequalities for Y ? Recall that the last two classes of inequalities can be viewed as canonical
template inequalities for Y in certain cases. We start with a result on the scaled-MIR
inequalities. For c ∈ R and t ∈ Z, define ĉt = tc − �tc�.

Theorem 12 Let h(x) denote the template function of the t-MIR facet of P (n, r), and
f t,b(x) be the t-MIR function. If t is a divisor of n, then (i) f t,b(v) ≤ h(v)/h(b̂) for
v ∈ [0, 1], (ii) furthermore, if h(b̂) �= 1 and X is uniformly distributed over [0, 1], then
P(f t,b(X ) < h(X )/h(b̂)) ≥ min{b̂t, 1 − b̂t}.

Proof. Let ρ stand for r/n, and f for f t,b, and h′ for h/h(b̂). As t is a divisor of n, Lemma 9
implies that h = f t,r/n = f t,ρ. Now, both f and h′ are periodic functions with period 1/t
and f(0) = h′(0) = 0. Part (i) of the theorem will follow if we show that f ≤ h′ in the
interval [0, 1/t]. Also, f and h′ are piece-wise linear functions, with f being linear in the
intervals [0, b̂t/t] and [b̂t/t, 1/t], and h′ being linear in the intervals [0, ρ̂t/t] and [ρ̂t/t, 1/t].
As h(b̂t/t) = h(b̂), we know that f(b̂t/t) = h′(b̂t/t) = 1. Therefore, showing that

f(ρ̂t/t) ≤ h′(ρ̂t/t) (14)

is enough to prove part (i). Now, h(b̂) ≤ 1 and h(ρ̂t/t) = 1. Therefore h′(ρ̂t/t) ≥ 1. As
f(x) is never greater than 1, (14) is true and part (i) of the theorem follows. For part (ii),
assume h(b̂) �= 1. Then b̂t �= ρ̂t.
Case 1: b̂t < ρ̂t. In this case, h(b̂) = b̂t/ρ̂t, and thus h′(ρt/t) = ρ̂t/b̂t > 1. Therefore the
inequality in (14) is strict, and f(x) < h′(x) if x ∈ (b̂t/t, 1/t). Because of the periodicity of
f and h′, it follows that f(X ) < h′(X ) if X̂ t > b̂t, and the probability of this happening is
1 − b̂t.
Case 2: b̂t > ρ̂t. In this case, h(b̂) = (1 − b̂t)/(1 − ρ̂t) < 1. An easy calculation shows that
h′(ρt/t) > 1 and that f(X ) < h′(X ) if X̂ t < b̂t. The probability of the latter being true is
b̂t and the theorem follows.

In Figure 5 we give an application of Theorem 12, where t = 2, b̂ = .75, n = 10 and r = 7.
The solid line stands for f2,.75, and the dashed line for h(x)/h(.75), where h is the template
function of the 2-scaled MIR facet of P (10, 7). Because of Lemma 9, h = f2,.7.

The two most important facets of P (10, 9) presented in [13] are t-MIR facets for t = 5, 2,
both of which are factors of 10. Theorem 12 implies that template functions of these facets
should not be used to obtain cutting planes for Y , as they will be dominated by the 5-MIR
cut and 2-MIR cut, respectively. In fact, 9 of the 13 important facets presented in [13] are
t-MIR facets with have similar divisibility properties, and therefore Theorem 12 implies that
template inequalities based on them will be by dominated by t-scaled MIR inequalities.

When t is not a divisor of n, the strict domination of the template function by the scaled-
MIR inequality does not necessarily hold. However it is still possible to show that (using the
notation of Theorem 12): P(f(X ) > h′(X )) > P(h′(X ) > f(X )), assuming some restriction
on the choice of h′. These would imply that in many situations it is preferable to directly
use scaled MIR cuts rather than the template functions of scaled MIR cuts. As the proofs of
such statements are tedious, we omit them here. However we will show that essentially all
template inequalities are dominated in a probabilistic sense by the GMIC (or 1-MIR cut).
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Figure 2: Domination of a template inequality by a scaled-MIR inequality

Theorem 13 Let h(x) denote the template function of a facet of P (n, r). Consider a point
b such that h(b) �= 1 and |r/n − b| < 1/n. Let f b(x) be the 1-MIR function. Then f b

dominates h(v)/h(b) in a probabilistic sense.

Proof. Define h′(v) = h(v)/h(b). Observe that the sub-additivity of h(v) implies that h′(v)
is sub-additive. Therefore h′(v) + h′(b − v) ≥ h′(b) = 1 = f b(b). If f b(v) > h′(v) for some
v, then f b(b− v) < h′(b− v) as f b is b-additive. Therefore, if f b(v) > h′(v) for all v in some
interval [b1, b2] ⊆ [0, 1], then f b(v) < h′(v) for all v in [b − b2, b − b1]. This implies that

P(f(X ) < h′(X )) ≥ P(h′(X ) < f(X )).

Now assume b > r/n, that is, b ∈ (r/n, (r + 1)/n). For any template function g of P (n, r),
g(1/n) ≥ f r/n(1/n) = 1/r (this is because f r/n defines a facet of P (n, r) and because of 8).
Also, since b − r/n < 1/n, it follows that g(b − r/n) = (b − r/n)g(1/n). From this we can
infer that

h′(b − r/n) > h(b − r/n) > f r/n(b − r/n) > f b(b − r/n).

The first and third inequalities above are true by definition. Also, it is obvious that h′(r/n) >
1 > f b(r/n). As both h′ and f b are piecewise-linear, we see that there are two intervals
[b1, b2] and [b− b2, b− b1] contained in [0, 1] such that f b(v) < h′(v) in both these intervals.
This implies the result for the case b > r/n.

The case b < r/n is handled in a similar fashion. Finally, since h(b) �= 1, b is not equal to
r/n.

The condition |r/n − b| < 1/n in Theorem 13 is motivated by the desire to have h(b) as
large as possible in (4). As h(r/n) = 1 and h is continuous, choosing r/n to be close to b
ensures that h(b) is reasonably close to 1. If |r/n− b| < 1/n, then the value of h(b) is given
by the third case in the definition of template functions and is non-zero.

We will now prove a result analogous to Theorem 12 about template functions arising from
1-scaled two-step MIR facets with τ = 2. Then we will relate it to the template functions
based on the 2slope facets in [2]. Given a number b between 0 and 1, let α ∈ (b/2, 1/2) and
α < b. Define τ = �b/α	, and let ρ stand for b − α. Obviously 1/α > τ = 2. Recall the
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two-step MIR function gb,α in Definition 2, and observe that with the current values of b
and α,

gb,α(v) =




v(1 − 2ρ)
2ρ(1 − b)

if 0 ≤ v ≤ b − α,

1/2 − v

1 − b
if b − α < v ≤ α,

v(1 − 2ρ) − (b − 2ρ)
2ρ(1 − b)

if α < v ≤ b,

1 − v

1 − b
if b < v ≤ 1.

(15)

Thus gb,α is piece-wise linear, and has four linear segments. The next theorem will essen-
tially show that template functions of two-step MIR facets with τ = 2 are dominated by
appropriately chosen two-step MIR inequalities with τ = 2.

Theorem 14 Let b be contained in (0, 1). Let h(x) be the template function of a 1-scaled
two-step MIR facet of P (n, r), with parameter α′ such that τ = 2. Let b′ stand for r/n.
If α′ ≤ b and b/2 < b′, then there exists some α ∈ (b/2, min{b, 1/2}) such that gb,α(v) ≤
h(v)/h(b̂) for all v ∈ [0, 1].

Proof. Notice that h(x) coincides with the 1-scaled two-step MIR function gb′,α′
. Therefore,

we want to show that

gb,α(v) ≤ gb′,α′
(v)/gb′,α′

(b) for all v ∈ [0, 1]. (16)

For convenience, let g stand for gb,α. Also let ρ = b−α, and ρ′ = b′ −α′. Once α is chosen,
(16) will follow if we show that inequality in (16) holds at the points in

S = {b′ − α′, b − α, α′, α, b′, b}.
This is because g and h are piece-wise linear functions in the interval [0, 1], with value 0 at
v = 0 and v = 1. Now, h(b′) = 1 and h(b) ≤ 1. Therefore, h(v)/h(b) equals 1 at v = b, and
is at least 1 at v = b′. At both these points, g(v) ≤ 1 for any choice of α. We will therefore
focus on the first four points in S. If b = b′, we can set α = α′ and satisfy (16) trivially.

Case 1: Assume b′ < b. Define α = max{α′, b/2}. It trivially follows that α ∈ (b/2, 1/2),
and α < b. Therefore 1/α > �b/α	 = 2, and gb,α is well-defined and has the form in (15).
By assumption b/2 < b′ and α′ < b′, and therefore α′ ≤ α < b′. Also, b′ − α′ < b − α; if
α = b/2, then b′ − α′ < b′/2 < b/2 = b − α, and the other case is trivial.

As b′ < b, h(b) = (1 − b)/(1 − b′). Therefore in the interval [b′ − α′, α′], h(v)/h(b) becomes
(1/2−v)/(1−v), which is precisely the form of g(v) in the interval [b−α, α]. Also, h(v)/h(b)
increases linearly as v increases from α′ to b′, and g(v) decreases linearly as v decreases from
b−α to 0. As b′ −α′ < b− α, and α′ ≤ α < b′, we can conclude that (16) holds at the first
four points in S, which proves the theorem.

Case 2: Let b < b′. Define δ′ by

δ′ =
b′ − 2ρ′

1 − 2ρ′
.
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Dash and Günlük Valid inequalities based on master polyhedra November 11, 2003

Because α′ < 1/2, and from the definition of δ′ it follows that

0 < δ′ < 1/2 and
b′ − δ′

2(1 − δ′)
= ρ′ = b′ − α′.

We now define α by

ρ = b − α =
b − δ′

2(1 − δ′)
.

We need to verify that α chosen in this manner is valid. From the definitions of α′ and α
above, it follows that

α′ − α = (b′ − b) − b′ − b

2(1 − δ′)
.

As b′ − b > 0 and δ′ < 1/2 ⇒ 2(1 − δ′) > 1, the right-hand side of the above equation is
positive. Therefore α < α′ < 1/2. By assumption, α′ ≤ b, and therefore b − α is positive.
As (b − δ′)/(1 − δ′) < b, we see from the above that

b − α < b/2 ⇒ α > b/2 ⇒ τ = �b/α	 = 2.

Therefore gb,α is well-defined and has the form in (15). Because b ∈ [α′, b′], therefore

h(b) =
b(1 − 2ρ′) − (b′ − 2ρ′)

2ρ′(1 − b′)
.

One can verify that the slope of h(v)/h(b) in the intervals [0, b′ − α′] and [α′, b′] is equal
to the slope of g(v) in the interval [0, b − α] and the interval [α, b]. In fact, we chose
α to ensure this condition. Comparing the expressions for ρ and ρ′ above, we see that
b − α < b′ − α′. Observe that g(v) decreases linearly as v increases from b − α to α, and
decreases linearly as v decreases from b to α. The above observations, combined with the
fact that h(b)/h(b) = g(b) = 1, and h(b − α)/h(b) = g(b − α), imply (16).

A simple transformation can be used to show that Theorem 14 is also true for (-1)-scaled
two-step MIR functions. It is shown in [7] that the “2slope facets” in [2] are just (-1)-scaled
two-step MIR facets with τ = 2. We therefore have the following corollary to the previous
theorem.

Corollary 15 Template inequalities associated with the 2slope facets in [2] are dominated
by appropriately chosen (-1)-scaled two-step MIR inequalities.

6 Concluding Remarks

In summary, we studied the interpolation procedure of Gomory of Johnson [10] and the
template functions generated by this procedure. Viewing scaled MIR inequalities as template
functions of master cyclic group polyhedra, we showed that some results of Cornuéjols, Li,
and Vandenbussche [5] on scaled MIR inequalities follow from general properties of template
functions .
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We also examined the strength of template inequalities based on small master cyclic group
polyhedra. If cw ≥ 1 is valid for P (n, r), the canonical master polyhedron for Y , then there
exists a set of facet defining inequalities cjw ≥ 1, j ∈ S of P (n, r), and positive multipliers
λj , j ∈ S such that:

c ≥
∑
j∈S

λjcj and
∑
j∈S

λj = 1. (17)

For an arbitrary valid inequality, it is hard to find a decomposition satisfying (17). It may
also happen that the inequality is not dominated by the known classes of facets for P (n, r).
However, Theorems 12 and 14 imply that if cw ≥ 1 is a template inequality associated
with a scaled MIR or a two-step MIR facet of a master polyhedron, then we do know the
decomposition. This suggests that the scaled MIR facets or the two-step MIR facets of
small cyclic group polyhedra, identified in [13] as their most important facets, should not be
used for template inequalities. It is the current practice to generate at most a few cuts per
inequality of an integer program. As the known facets of the canonical master polyhedron
associated with Y already yield a plethora of cuts, it is not clear that facets from other
master polyhedra should be used.
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