
RC22999 (W0311-129) November 17, 2003
Computer Science

IBM Research Report

A Survey of Public Web Services

Su Myeon Kim
KAIST EECS Department

Yusung-Gu Gusung-dong 373-1, Taejon
Korea

Marcel-Catalin Rosu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Survey of Public Web Services
Su Myeon Kim*

KAIST. EECS Dept.

Yusung-Gu Gusung-dong 373-1, Taejon
 KOREA

+82-42-869-3586

smkim@nclab.kaist.ac.kr

Marcel-Catalin Rosu
IBM T.J. Watson Research Center

19 Skyline Drive, NY

USA
+1-914-784-7242

rosu@us.ibm.com

ABSTRACT
Enterprise IT infrastructures and their interfaces to private partners
and to the general public are migrating toward a service-oriented
architecture, using Web Services (WS) as a de-facto implementation
protocol. As a result, WS-generated traffic is expected to increase
and have a considerable impact on the Internet. Despite the high
amount of interest in WS, there have been relatively few studies
regarding their characteristics.

In this survey, we analyze publicly-accessible WS using the
information that we collected over a 3 month period. We study the
evolution of WS and their geographic distribution, and message
characteristics and response times of each WS. We closely analyze
two popular WS sites: Amazon and Google. Some of our initial
results contradict common intuition. The number of public WS has
not increased dramatically, although there are signs which indicate
intensive ongoing activities in the WS domain. The geographic
distribution of public WS is largely skewed: about three fifths of
public WS are located in USA. In contrast to existing Web content,
WS response messages are just a little bigger than request messages,
and the sizes of WS responses and their variation are smaller than
those of the existing Web objects.

Categories and Subject Descriptors
A.1 [Introductory and survey]: - Web Services, SOAP Traffic,
Geographical distribution

General Terms
Survey, Documentation, Measurement, Experimentation

Keywords
Web Services, SOAP, WSDL, UDDI Business Registry,
Measurement, Web Services Traffic Characteristics.

1. Introduction
Enterprise IT infrastructures are currently migrating toward a
service-oriented architecture, using Web Services (WS) as a de-
facto implementation protocol. As the need to meet the increasing
expectations of customers and business partners for real-time
information exchange continues to rise, companies are motivated to
integrate disparate systems within their organizations and also to
interface with other organizations. A service-oriented architecture
provides a framework for seamlessly interconnecting applications

and software components, supporting loosely coupled software
resources, such as distributed applications and objects. Ideally,
remote business services can be invoked and/or installed as local
components in a different application, all without writing a single
line of low-level code �[1]. Thus, WS help companies to greatly
improve the flexibility and interoperability of their infrastructures.

WS consist of a protocol stack of emerging standards characterized
by a high degree of flexibility, connectivity, accessibility, and
interoperability. By supporting service-oriented and component-
based application architectures, WS provide a distributed computing
technology for revealing the business services of applications on the
Intranet as well as on the Internet using open and standard-based
XML protocols and formats. The use of standard XML-based
protocols makes WS platform-, language-, and vendor-independent,
and so an ideal protocol for a service-oriented architecture.

WS are classified into three main categories according to their
usage. First, there are WS designed only for use in an organization's
Intranet, such as services for Enterprise Application Integration.
Second, there are inter-organizational WS, which are operated by an
organization but shared with other selected organizations. Third,
there are public WS, which are intended for public use and therefore
open to any other organizations. In this survey, we focus on the third
category – publicly-accessible WS.

In spite of the wide acceptance of WS in computing infrastructures,
there have been few studies on WS characteristics. Due to their
inherent flexibility and interoperability, WS are expected to be
adopted in every kind of IT infrastructure. In addition, since WS are
supposed to be a new dominant communication protocol on the
Internet, their impact on the Internet traffic may be significant. For
instance, it is commonly accepted that message sizes on the Internet
will grow significantly by the adoption of XML, the most basic
element in the WS stack. These kinds of WS characteristics are of
interest to researchers, developers, and network service providers.

In this paper, we analyze public WS in various ways, using publicly
available information that we collected weekly, between August 8th
and November 7th 2003 from an UDDI Business Registry (UBR).
First, we study the evolution of the WS population and its
geographic distribution. Second, we determine several
characteristics of public WS such as preferred message styles, and
distributions of complex and elementary types. Third, we develop a
methodology for estimating WS message sizes. Fourth, we examine
the liveness and response times of public WS, by probing their
service ports. Lastly, using our methodology, we analyze the WS of
two popular sites - Amazon and Google – and compare the message
sizes predicted by our methodology with the message sizes observed
during interactions with the two sites.

*This research was done during a six-month visit at
IBM T.J.Watson supported by a BK21 fellowship
from the government of Korea.

1

Our initial results contradict common intuition. First, the number of
public WS has not increased dramatically, although there are certain
signs which indicate that many intensive activities are ongoing in the
WS domain. Second, the geographic distribution of public WS is
largely skewed with about three fifths of public WS located in USA.
Lastly, in contrast to existing Web content, response messages are
just a little bigger than request messages and both the sizes of WS
response messages and their variation are small. We expect our
results to benefit WS applications and tools developers, and to
improve our understanding of this emerging research area. This
survey is part of an ongoing research and upcoming analysis results
will be published on our web site �[2].

The remainder of this paper is organized as follows. Section 2
provides a brief overview of WS usage in the service-oriented
architecture and of the three most important elements in the WS
stack: SOAP, WSDL, and UDDI. Section 3 describes our
methodology for data collection and for estimation of WS message
sizes, and the results of our analysis and experiments. Section 4
applies the techniques previously developed to the Amazon and
Google WS. Section 5 is a brief overview of the related work.
Section 6 is dedicated to conclusions and future work.

2. Web Services
WS specifications are relatively new and still evolving. Although
WS are composed of many standards, four technologies are
considered as the core ones: Extensible Markup Language (XML),
Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL), Universal Description, Discovery, and
Integration (UDDI). XML is a structured self-describing, data-
neutral format that can be used to represent complex data as a
simple text document. It has already been accepted as the universal
language for information exchange. In this section, after describing
the WS call process, we briefly describe three WS core standards:
SOAP, WSDL and UDDI.

Figure 1 shows the WS call process. First, the service provider
defines, designs, and implements a WS. In this process, the service
provider generates a ‘description file’ which describes the new WS
using WSDL. Second, the service provider publishes the new WS in
a public UDDI registry using the UDDI WS-based API. Third, the
client queries the UDDI registry and finds the WS. Once found, the
client retrieves the WS description in WSDL. Lastly, the client
invokes the WS one or more times using SOAP.

Web Services Directory
 (UDDI Registry)Internet

HTTP(S)

SOAP

XML

Business/Client Application

HTTP(S)

XML

SOAP

(3) find WS (query UDDI)(4) invoke WS

(1) develop/install WS

Web Services Client

Web Services Provider

(2) deploy (publish WSDL location)

Service Logic/Code

Figure 1. Web services call process

2.1 Simple Object Access Protocol
Simple Object Access Protocol (SOAP)�[6],�[7],�[8] represents a
standard for lightweight XML-based messaging protocol for Web
Services. It enables the exchange of information between two or
more peers in a decentralized, distributed application environment.

A SOAP message consists of an HTTP header and a SOAP
envelope (see Figure 2). The envelope surrounds the SOAP header
and body. The SOAP body is a regular payload or a SOAP fault.
Only a WS response message may carry a SOAP fault instead of a
return value.

SOAP Fault

SOAP Envelope

SOAP Header

SOAP Body

HTTP Header

Payload

Figure 2. SOAP message structure

Table 1 shows a typical SOAP request message. The SOAP header
is an optional part. The underlined are namespace declarations; most
of them (SOAP-ENC, SOAP-ENV, xsd and xsi) are essential and
present in every SOAP message. The SOAP payload part carries an
application message. In Section �3, we use this information to
estimate WS message sizes.

The most commonly used encodings in SOAP messages are the soap
and the literal encoding. Encoding represents the action of
transforming language specific data format to XML format
(serialization) and vice versa (deserialization). When SOAP was
first defined, the XML Schema (XSD) standard was not specified
yet. As a result, SOAP had to define its own encoding rules as part
of its specification.1 Later, after the introduction of XSD, the literal
encoding, based on XSD, became popular. There are significant
differences between the soap and the literal encodings. For instance,
messages following the soap encoding do not conform to a specific
XML schema, so the validation of these messages is not possible.

SOAP messages can be classified into RPC or document style.
There is little difference between these two styles, except in the
SOAP body. Since the RPC style simulates an RPC invocation and
response, an RPC-style request contains a method name to be
invoked and input parameters. The response includes a return value
and output parameters. In contrast, the document style does not
impose any restriction on the message structure. There is no specific
convention for how to specify a method name or a parameter.
Actually, the biggest difference may be that most RPC-style
messages use soap encoding while document-style ones use literal
encoding. In Section �3, we use message style to classify WS.

1 Since the encoding rules were defined in Section 5 of SOAP
specification, the soap encoding rules are commonly known as
Section 5 encoding.

2

2.2 Web Services Description Language
The Web Services Description Language (WSDL) �[9],�[10],�[11] is
used to describe WS in a common XML grammar. The WSDL
document associated with a WS provides enough information to
locate and access the methods of the WS. With WSDL-aware tools,
clients can automate this process, enabling the integration of WS
into existing applications with little effort. In Section �3, we will
discuss WSDL files collection and the analysis process, which is
essential to the investigation of WS characteristics.

<definition> new web services

1) request parameters
2) response parameters

<type>
type definitions for message parameters

<portType>
operations defined in this
web services

<binding>
indication of which transport
protocol is used (SOAP HTTP)

<service>
actual service port
(http://host:8080/soap/servicename)

<message>

Figure 3. WSDL document structure

Figure 3 shows the structure of a WSDL document. The five types
of information in the structure are:

� Types: data type definitions used in the message description,

� Messages: abstract definitions of the data being transmitted,

� PortTypes: collections of abstract operations, where each
operation refers to an input and an output message,

� Binding: concrete protocol and data format specifications for
each portType,

� Service: a set of related ports, where each port specifies a
binding address, thus defining one communication endpoint.

2.3 Universal Discovery, Description, and
Integration
UDDI is a technical specification for describing, discovering, and
integrating WS �[12]. UDDI is therefore a critical part of the
emerging web services protocol stack, enabling companies to both
publish and find WS.

A UDDI registry implementation is a WS-based registry that
provides a mechanism to advertise and discover WS. The registry
contains information about businesses and the services that they
offer, and it associates some of those services with the technical
specifications of the WS. These technical specifications are usually
defined using WSDL and termed as tModels. WS consumers query
the UDDI registry to find WSDL descriptions.

The UDDI Project operates a global public registry called the UDDI
Business Registry (UBR). All the information in this registry is
available to everyone at no charge. All information in any one UBR
node is automatically replicated to all other UBR nodes within 24
hours. Information on all the public WS can be collected by
querying the tModels of any UBR instance.

Table 1. An example SOAP message

HTTP Header

HTTP/1.1 200 OK
Date: Thu, 19 Jun 2003 15:12:30 GMT
Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Unix) mod_throttle/3.1.2
mod_fastcgi/2.2.12
Connection: close
Content-Type: text/xml

SOAP envelope tag

Namespace declaration (underline d
 italic-face)

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance/”

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:amazon="http://soap.amazon.com">

SOAP body tag <SOAP-ENV:Body>

Payload

 <namesp1268:AsinSearchRequestResponse
xmlns:namesp1268="http://soap.amazon.com">
 <return xsi:type="amazon:ProductInfo">
 <Details SOAP-ENC:arrayType="amazon:Details[1]" xsi:type="SOAP-
ENC:Array">
 <Details xsi:type="amazon:Details">
 <Url xsi:type="xsd:string">http://www.amazon.com/exec/obidos/…</Url>
 <Asin xsi:type="xsd:string">0596002246</Asin>
 <ProductName xsi:type="xsd:string">Web Services Essentials (O'Reilly
XML)</ProductName>
 <Catalog xsi:type="xsd:string">Book</Catalog>

</Details>
 </Details>
 </return>
 </namesp1268:AsinSearchRequestResponse>

SOAP body tag </SOAP-ENV:Body>
SOAP envelope tag </SOAP-ENV:Envelope>

3

3. Data Collection and Analysis
The analysis in this section is based on the information we collected
from an UBR every week, from August 8th to November 7th 2003.

We search the UBR entries for tModels which refer to a WS.2 We
retrieve the WSDL file, and record retrieval delays and HTTP
headers.

The analysis is divided into four main phases, each one described in
a separate section. First, we analyze WS tModels and associated
WSDL files. Second, we determine the WS characteristics from the
WSDL files. Third, we study WS message sizes using realistic
estimates for the variable-size fields in the WS description. Fourth,
we measure the latencies of the WS endpoints, and compare them
with the latencies of the corresponding HTTP endpoints.

3.1 Population and Geographic Distribution
There are more than 5000 tModels in a UBR; among them, about
1,000 tModels refer to WS. We noticed no significant changes in the
number of WS tModels and valid WSDL files during the data
collection period. Figure 4 summarizes the data collected.

�
� � �
� � �
� � �
� � �
� � � �
� � � �

� � �	� � � � � �
 � � � � � � � � � �
 � � �
 � � � � � � � �
� � �
� �
� �
�
� �
� �
�
� �
� �
�
� �
� � � � �
� �

� �
� � � � � � � � � ! � " � � � # $ � % & � ' � (�
� � � � & $ � � �) � � �

Figure 4. Web Services in UBR

The number of ‘ valid’ WS tModels – tModels which have a URL
where a WSDL file is retrievable - is substantially smaller than the
total number of WS tModels: approximately 67% of the WS
tModels are not valid, which is similar to the findings of a previous
UDDI integrity study �[25]. Furthermore, many of the downloaded
WSDL files are invalid. The most common errors are syntax errors
and omission of mandatory elements. During the three month
interval, the number of valid WS decreases a little, which is contrary
to the slight increase in the number of WSDL files published. Note
that there is a small but noticeable decrease in the number of valid
tModels on Oct. 10th due to a server hosting 54 web services
becoming unavailable. 3 Finally, we found that very few
organizations update their WSDL files after publication.

We measure the retrieval latency of WSDL files, as WS are
expected to be discovered, integrated and invoked dynamically.
Figure 5, which is based on measurements taken from IBM Watson,
shows that 90% of WSDL files are retrieved within 400 msec while
it takes almost 2 seconds to retrieve an additional 8%. In addition,
we record the caching characteristics of the retrieved WSDL files.
The bottom two lines in Figure 4, ‘ last-modified’ and ‘private, max-

2 UDDI is a complex specification which is beyond the scope of this

paper. See http://www.uddi.org for more information on tModels.
3 Microsoft’ s .Net WS contest server

(http://www.contest.eraserver.net) hosts Web Services which
receive Microsoft's Best of the .NET Awards.

age=0’ , show the number of WSDL files which have cache control
elements in the associated HTTP headers; the two elements are
mutually exclusive. Together, they show that 92% of the valid
WSDL files are cacheable in private caches.

*

* + ,

* + -

* + .

* + /

0

*1, * * *2- * * *3. * * *3/ * * *
4 5 6 7 8 9 : ; 5 < =

>?
@A B
CD
EF?
GDHI J
KL

Figure 5. WSDL Retrieval Latency
We use the NetGeo service �[13],�[14] to map WS to their geographic
locations. NetGeo and several other services which provide IP-based
host information are using Whois�[15] queries of internet
repositories. NetGeo outperforms the other services by utilizing
other result fields, such as phone number and e-mail, to infer missing
fields in the Whois response, such as country and city.

Figure 6 (a) shows the geographic distribution of public WS on
November 7th. 63% of the WS are hosted in United States. Figure 6
(b) shows the distribution of WS hosting sites on the same day.
From the fact that the portion of sites in US is smaller, we can infer
that a larger number of US-resident WS are hosted by the same site.4

M N O

P Q O
R OTS O S O P M O

U V W W X Y Z [\]] ^ \ _ ` Z a ` [] \ b c
d b e] \ b c f \ b \ c \ g Z a ` [Y

h i O

P S O

j O h O h O
S N O

U V W W X Y Z [\]] ^ \ _ ` Z a ` [] \ b c
d b e] \ b c f \ b \ c \ g Z a ` [Y

(a) (b)
Figure 6. Geographical Distribution (a) WS, (b) Hosting Site

3.2 Styles and Structures
By design, a WSDL file includes a comprehensive description of the
associated WS. WSDL file analysis exposes many of the WS
characteristics, such as encoding type, message style, number of
operations, and number of parameters for each operation. In Section
�3.3, we use this information to estimate the size of WS request and
response messages.

By inspecting the collected WSDL files, we found that there are
many more document-style WS than RPC-style WS; the argument
about which style is better is still an ongoing debate. Among the 294
valid WSDL files collected on November 7th, 70% define
document-style WS and 30% define RPC-style WS. All of the
document-style WS adopt the literal encoding and all of the RPC-
style WS adopt the soap encoding. HTTPS is used by only 4% of
these services, while the others use HTTP. Lastly, more than 74% of
the WSDL files were generated with the Microsoft toolkit.

4 The largest hosting site is Visual Basic .NET XML Web Services

Examples site (http://www.oakleaf.ws/)

4

To simplify the analysis, we translate the WSDL files into Java files
using the WSDL2Java tool of Axis. WSDL2Java generates Java
Bean files for each newly defined compound type, an interface file,
and related implementation files. 5 We analyze these Java files
instead of the original WSDL files.

Information may be lost during the translation. For instance, fixed-
length arrays in WSDL are converted into Java arrays of unspecified
length. Also, both base64Binary and hexBinary types of WS are
mapped into the same type - Java byte array of unspecified size.
Although these may cause inconsistency, this kind of information
loss is rare and we believe that it can be ignored in our analysis. For
instance, we found no WSDL files which use fixed-size arrays or
hexBinary variables.

In the client Java application, WS operations are invoked as local
functions, as the generated Java interface implements an RPC-style
programming model. Note that the programming model is different
from the binding style, as it is possible to provide an RPC-style
programming model for a document-style WS.

To determine parameter complexity, we count the occurrence of
array and compound types. In order to accurately count array types,
we resolve all compound types into elementary or array types. Thus,
we can count array types according to their dimension. For
compound types, we record the complexity of member types. We
classify compound type complexity according to the number of
iterations needed to resolve them into elementary types.

�

� �

� � �

� � � �

� � � � �

� � � �
� � �
� � � �
� � � � �
� � � �
� � � � �
� �

� � � �
� � � � �
� � � �
� 	 �

� � 	

� 	 �

� � 	 � �
� 	 �

� � 	 �
�

� 	 �

� � 	 � �
� 	 �

� � 	 � �

� 	 �

� � 	 �
� � �
�

� � � � � � �
� � � � � � � �

Figure 7. Frequency of Array and Compound Types

Figure 7 shows the frequency of array and compound types in the
public WSDL files. The number following compound types
represents the complexity of that type. For instance, ClassDecl
means a class of elementary types, ClassDecl-1 means a class of
elementary types or ClassDecl types, etc. The highest complexity
class is ClassDecl-9; we found 4 and 10 ClassDecl-9 parameters in
the request and response messages, respectively. Response messages
utilize compound types (ClassDecl) and array types (ArrayDecl)
more frequently than request message.

To estimate the usage frequency of the elementary types, we convert
every class into the set of its member types and resolve arrays into
elementary types. As most WS definitions do not specify array
lengths, we assume three values for the length of all the arrays: 2,
16, and 32. For instance, length 2 means that each string [] type is
converted into two strings, each Integer [][] type is converted into
four integers, etc.

While examining the usage frequency of elementary types as a
function of the selected array length, we observe that a few WSDL

5 For details on WSDL2Java and its conversion processes, refer to

the Axis User's Guide �[16].

files dominate the results. Only five WSDL files use 3-dimensional
arrays, out of which, one has all of the four-dimensional arrays; no
five or higher -dimensional arrays were found. The frequency of
elementary type usages is highly dominated by the 4-dimensional
arrays. Thus, to screen out these biases, we exclude the WSDL file
which uses 4-dimensional array from this analysis. Also, we run the
analysis on the subsets of WSDL files with and without the
remaining four WSDL files with 3-dimensional arrays.

 ! " #

$! " # %

& ! " # %

' ! " # %

% ! " # %

(! " # %

) * + , - . / 021
3
4 - * 5
. 5 + / 021
3
6 7 8 9 : 5
/ 0 1 3

; 5 < < =
. 5 > : 5 ?
5 - * / 0 1
3
@ = : 5 -
A = + / 0 1
3
B 7 - . / 0 1
3
C 7 7 : 5 = -
/ 021 3

D E F G E H I
D E H J K L H E

 ! " #

$! " # (

& ! " # (

' ! " # (

% ! " # (

) * + , - . / 0 1
3
4 - * 5
. 5 + / 0 1
3
6 7 8 9 : 5
/ 0 1 3

; 5 < < =
. 5 > : 5 ?
5 - * / 0 1
3
@ = : 5 -
A = + / 0 1
3
B 7 - . / 0 1
3
C 7 7 : 5 = -
/ 0 1 3

D E F G E H I
D E H J K L H E

 (a) (b)

Figure 8. Frequency of Elementary Types: (a) excluding (b)
including WSDL files using 3-dimension

Figure 8 (a) and (b) show the results for array lengths of 2 and 16
when 3-dimension arrays are excluded and included, respectively.
The number following each type name denotes an array length. The
figure shows that responses use more arrays than requests do, as the
number of types in the response grows faster with array length than
in the request. It also shows that the string type is the most
frequently used type. Even when array length is 32, the proportion of
string type is similar to when array length is 16 – 53% when WSDL
files which declare 3-dimensional arrays are included and 71% when
those files are excluded.

We also examine how many operations each WS provides. Figure 9
shows that 89% of WS have less than 10 operations. The names of
more than 46% operations start with get. Other frequently used
name prefixes are add, delete, send, etc. Owing to these simple
functionalities, most WS operations use a small number of
parameters.

M

M N O

M N P

M N Q

M N R

S

MTS MUO MWV MXP MXY MXQ M
Z [\ [] ^ _ ` a b [c d

e f
gh i
jk
lmn

Figure 9. Distribution of Operations

Finally, Figure 10 (a) shows how many elementary-type parameters
each operation uses; we assume array lengths of 2, 4, 8, 16, and 32.
Note that all but one line correspond to responses, as response
messages are more sensitive to the selected array length than request
messages (see Figure 8). First, most operations have simple
functionalities, as 80% of them use no more than 10 parameters even
when array length is assumed to be 8. Second, responses always use
more parameters than requests.

5

Figure 10 (b) shows these results separated into RPC-style and
document-style WS when the length of the arrays is 2. In both cases,
response messages have more parameters than request messages.
Document-style responses have fewer parameters than RPC-style
requests. This suggests that document-style messages are simpler
than RPC-style ones.

(a) (b)

Figure 10. Usage of Elementary-type Parameters: (a) Array
Length - 2, 4, 8, 16, and 32, (b) RPC- vs. document-style when

Array Length is 2

3.3 SOAP Message Size
Characterizing the size of SOAP messages is important since WS
traffic is expected to become a prevailing traffic on the Internet. In
this section, we first describe how we estimate SOAP message sizes
using the information in the WSDL files. Then, we explain some
meaningful characteristics of the SOAP message sizes.

As shown in Section �2.1, a SOAP message can be divided into four
parts – HTTP header, SOAP envelope tag, SOAP body tag, and
payload. Below is the equation used to infer the size of a SOAP
message:

SOAP message size = HTTP header + essential tag (SOAP
envelope tag + SOAP body tag) + namespaces + payload
(message tag + number of elementary type field in
parameters * (type tag + value size))

In this equation, ‘essential tag’ represents the SOAP envelope and
body tags and ‘namespaces’ represents the aggregation of all
occurrences of namespace attributes in a message. The namespace
attribute can occur in the SOAP envelope tag, SOAP body tag,
parameter tag, etc. The payload is composed of two parts:
parameters and message tag.

We determine the size of each message component by examining
real SOAP messages. We investigate several messages, including
those of Amazon and Google WS (see Section �4). We observe that
there are small variations in HTTP header and essential tag and that
most messages use 5 ~ 7 namespaces. Four of these namespaces -
SOAP envelope, XML schema, XML instance and encoding style -
are essential for most SOAP messages.

In order to determine the payload size, we use the following
methodology. First, we determine the size of the message and type
tags. The message tag is used to wrap up the payload, which is a list
of parameters (RPC-style) or a XML tree (document-style) and its
size has a small variation. The type tag is used to declare the
parameter names and types, and its size has a small variation, as
well. According to our examination of real SOAP traffic, for RPC-
style messages, the average size of message tag is 47 characters and
that of type tag is 40 characters. For document-style messages, the

average size of message tag is 57 characters and the average size of
a type tag is 24 characters.

Second, we estimate the number of elementary type fields using the
methodology developed in Section �3.2. Lastly, we determine the
average size of the XML representations for the fields of each type.
Table 2 shows average sizes and descriptions. For most numeric
types, we assume their average sizes as small as possible. For
instance, we use 5 characters as the average size of the long type,
although it can be up to 20 characters. Thus, the resulting message
size estimate is a practical lower-bound but not a theoretical lower-
bound: the message size might be smaller than estimated. We
assume that a larger data type (e.g., integer) is used when the
parameter is expected to have a larger value than the maximum
value of a smaller type (e.g., short).

 Table 2. Average Size in XML Representation and Description
of Types

type estimated size description
Boolean 4 true/false
Short 2 -32768 to 32767
UnsignedShort 2 0 to 65535
Integer 3 -1,0,126789675
BigInteger 5 -1,0,12678967543233
UnsignedInt 3 1230 to 4294967296
PositiveInteger 3 1,12678967543233
Byte 2 -127 to 128
UnsignedByte 2 0 to 255

Long 5 -9223372036854775808 to
9223372036854775807

UnsignedLong 5 0 to 18446744073709551615

Double 5 64-bit floating type, -1E,12.78e-
2

Float 5 32-bit floating type

BigDecimal 5 Arbitrary precision decimal
number

Date 10 yyyy-mm-dd
Calendar 16 yyyy-mm-dd-hh-mm
MessageElement 10 xsd:any
Object 10 xsd:any

String variable * randomly distributed from min
and max.

Qname 12 amazon:searchResult
Entity 10 color="yellow"

ClassDecl 40 compound type declaration tag
ArrayDecl 60 Array type declaration tag

String is the most frequently used type as shown in Section �3.2, and
its size is the most dynamic. The string size may vary a lot according
to the context of its message. We select a range for the string size,
between a minimum and a maximum size, and assume that actual
values are distributed uniformly within this range. In the rest of this
section, the minimum size is always 5 characters, and the maximum
size is 50, 100, or 200 characters.

ClassDecl and ArrayDecl in Table 2 have a different meaning than
the other entries: ArrayDecl represents the size of the XML tag used
to describe an array and ClassDecl represents the size of the tag
used to declare a compound type. These two are not parameter
values, but another kind of type tag.

Array length has a significant impact on SOAP message size since
any type could be a base type for an array. In the following, we
assume that all the arrays have the same length. In the beginning, we
assume that arrays have only two elements. Later, we use 16 and 32
for the array length.

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160 180 200

C
D

F
(#

 o
f o

pe
ra

tio
ns

)

of parameters

request(array length: 32)
response(2)
response(4)
response(8)

response(16)
response(32)

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160 180 200

C
D

F
(#

 o
f o

pe
ra

tio
ns

)

of parameters

request (RPC)
response (RPC)

request (DOC)
response (DOC)

6

In the rest of this section, we first examine the differences derived
from changes in string size distribution or array lengths. Second, we
compare our results on SOAP message sizes with existing Web
object sizes. Lastly, we examine the difference between RPC-style
and document-style SOAP messages.

�
� � �
� � �
� � �
� � �
�

������	���
��������� �
� � � � � � � � � � � � � � � � � � �

��
�� �
 !!"
 !#

 �
� � �
� � �

�

� � �

� � �

� � �

� � �

�

�$���%	%�%
��%�%���&� �
� � � � � � � � � � � � � � � � � � �

��
�� �
 !!'"
 !#

 �
� � �
� � �

(a) (b)

Figure 11. SOAP Message Size when Array Length is 2 - (a)
request (b) response

Figure 11 (a) shows the CDFs of WS request messages when the
maximum string size is 50, 100, 200; array length is assumed to be
2. It shows that 93% of request messages are smaller than 2KB even
when maximum string size is 200. In contrast, most HTTP requests
are smaller than 500bytes. The HTTP request sizes usually show
bimodal distribution, with one large peak occurring around 250
bytes and another, smaller, around 1KB �[22]. Figure 11 (a) shows
that the size of WS requests has different characteristics from that of
HTTP requests.

Figure 11 (b) shows the CDFs of WS response messages. Similar to
Figure 11 (a), most messages are small: 88% of response messages
are smaller than 2KB, even when the maximum size of a string is
assumed to be 200 characters. The figure also suggests that string
size has little impact on small messages, as these messages use few
parameters.

(

() *

() +

() ,

() -

.

(/. (0* (21 (0+ (23 (
4 5 6 6 7 8 5 6 9 : 5 ; < = > ? 5 6 @

AB
CD E
FG H
IJJ K
LIJ
M

N O P Q
R S S Q

Figure 12. SOAP vs. HTTP : Array Length is 2 and Maximum
String size is 200

Next, we compare the distributions of SOAP messages to that of
existing Web content (see Figure 12). For Web content, we use the
model presented in �[27]. In contrast to other recently developed
models such as that in �[28], this model screens out the population
factor of unique files; this approach is compatible with our analysis
of WS message sizes.

Contrary to the common expectation that SOAP messages are larger
than current HTTP messages due to XML formatting, most SOAP
messages are smaller than existing Web objects. For instance, while
about 92% of SOAP messages are smaller than 2KB, only 45% of
the existing Web objects are smaller than 2KB.

Next, we investigate the message size distribution when we assume
array length is 16 and 32 (see Figure 13 (a) and (b), respectively);
we assume maximum string length of 50,100, and 200. In both
figures, the variations between lines are small. Note that there is
little difference between the two figures when the message size is
smaller than 500bytes, which suggests that a small number of
operations use a large number of arrays.

(a) (b)
Figure 13. SOAP Message Size when Array Length is (a) 16, (b)

32

The same analysis is performed separately for RPC-style and
document-style WS. Figure 14 (a) shows the message sizes when the
array length is 16, maximum string size is 50. Figure 14 (b) shows
the same where array length is 32. Both figures show that the
response size of RPC-style message grows much faster than the
response size of document-style messages. This suggests that
existing RPC-style WS use more complex response messages than
document-style WS.

(a) (b)
Figure 14. RPC vs. document SOAP Message Size when Array

Length is (a) 16, (b) 32

The results presented in this section show that SOAP message
characteristics are different from those of existing Web traffic. The
WS request and response sizes follow a similar distribution.
Contrary to common expectation, current SOAP messages are not
necessarily larger than existing Web objects.

While this methodology provides an estimated rather than exact
SOAP message size, we believe that this is a useful way to get an
understanding of the size and complexity of SOAP messages. WS
researches may use this early result as a starting point for a more
detailed model. Network service providers may use this methodology
for traffic estimation.

3.4 Liveness and Invocation Delay
The server providing the WSDL file is typically unrelated to the
server hosting the WS. Therefore, it is required to verify the liveness
of the WS directly.

To validate the liveness of public WS, we wrote a small program
called Web Services Ping (WSPing). The current version of WSPing
only supports http/https. WSPing accesses the endpoints specified in
the WSDL files. It sends a SOAP message to the WS endpoint and

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F
(#

 o
f o

pe
ra

tio
ns

)

message sizes (bytes)

request(RPC)
response(RPC)

request(document)
response(document)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F
(#

 o
f o

pe
ra

tio
ns

)
message sizes (bytes)

request(RPC)
response(RPC)

request(document)
response(document)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F
(#

 o
f o

pe
ra

tio
ns

)

message sizes (bytes)

request(max string size: 50)
request(100)
request(200)
response(50)

response(100)
response(200)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F
(#

 o
f o

pe
ra

tio
ns

)

message sizes (bytes)

request(max string size: 50)
request(100)
request(200)
response(50)

response(100)
response(200)

7

waits for a response. Note that ICMP ping utility or Web robots
cannot examine the presence of WS engines.

WSPing sends a simple SOAP message which has a valid HTTP
header and SOAP envelope. The message is shown in Figure 15. It
has only one field which is a message to indicate that it is not a
malicious attack along with our e-mail address. Since the message
does not conform to the required message format, the response is a
SOAP fault: the server cannot understand our request message. If the
response conforms to a valid SOAP fault message format, the WS is
considered alive.

Our weekly experiments show that: approximately 16% of the valid
WS are down and that 96% of the live WS respond in two seconds
or less. Figure 16 shows the CDF of response times for WS as well
as Web servers, as measured on November 13th; measurements
performed on other dates show similar results. When probed from
two locations, IBM Watson and KAIST, about 85% of WS servers
are alive, and about 2~3% more Web servers are alive. Our attempts
to measure ping delays do not show any meaningful results, as most
sites block ICMP ping messages.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <Request
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <dummy xsi:type="xsd:string"> These requests are sent for an
academic research purpose. Please send an e-mail to
smkim@nclab.kaist.ac.kr if any problem. Thanks </dummy>
 <Request>
 </soapenv:Body>
</soapenv:Envelope>

Figure 15. WS probing message

�

� � �

� � �

� � �

� � �

�

�	� � � ��
 � � ��� � � �� � � �� � � � � � � � � � �

��
�� �
��
� !

" # # $ � % & ')(� * � + , �
" # # $ � - . % / # �
(/0� % & ')(� * � + , �
(/ � - . % / # �

Figure 16. WS and HTTP response delay

4. Case Studies
In this section, we analyze the Amazon and Google WS. We analyze
both WS according to our methodology: start by analyzing WSDL
files and continue with estimating SOAP message sizes and access
delays. We then compare the estimated message sizes with the actual
message sizes.

Amazon and Google provide a WS API for their original services;
Amazon provides item browsing and purchasing, and Google
provides Web searching functionalities. Both WS are open to the
public and require only a simple pre-registration. They both provide
WS development toolkits. The toolkit helps clients integrate the
functionality into their programs and web sites. Figure 17 shows the
relative position of the toolkit in the client-side protocol stack.

For both sites, we analyze real messages by recording incoming and
outgoing traffic for each operation, including the HTTP header. On
the client side, we use Apache Axis. To capture messages, we use
tcpmon, a message capture utility that comes with Axis. We
determine the average size of each SOAP message segment based on
the captured messages. Table 3 shows the results.

Business/Client Application

HTTP(S)

SOAP

XML

Web Services Client

WS toolkit from service provider

Figure 17. Client-side WS protocol stack

Table 3. Average Size of SOAP Message Components

 Amazon Google

 Request Response Request Response

HTTP header 281 189 164 189

Namespace

(x frequency)
47 (x 6) 48 (x6) 46 (x5) 48 (x6)

essential tags

XML & Envelope
104 106 108 108

message tags 77 77 41 57

type tag 40 45 36 52

4.1 Amazon
Amazon provides their WS for associates, suppliers, or developers.
The ‘associates’ program is a business model enabling 3rd party
web site operators to link their web sites to Amazon and earn
referral fees for the sales made through their links. Amazon actively
supports their WS: version 1.0 was released in July 2002 with basic
shopping capabilities; version 2.0 was released in October 2002;
lastly, version 3.0 was released in April 2003 with an expanded API
for 3rd party suppliers and shopping cart handling. In addition to the
main US Amazon site, the WS API is supported for the Amazon
sites in UK, Japan, and Germany. The WS Toolkit, including
examples, can be downloaded from the Amazon WS home �[23].

The main Amazon WS site is located in US and it is operated by
Amazon itself, i.e., not outsourced. Their WS operations use only
string types: 279 elementary strings, 778 one-dimensional, 702 two-
dimensional, and 40 three-dimensional string arrays. Most of these
strings and string arrays are used in response messages, as only 179
elementary strings and 9 string arrays are used in request messages.
For the complexity of messages, they use 7 ClassDecl, 39
ClassDecl-1, 32 ClassDecl-2, and 2 ClassDecl-3 compound
parameters. Among these 80 compound parameters, only 2
ClassDecl are used in request messages.

Amazon WS v3.0 API has 20 operations, shown in Figure 18. We
classify the operations according to their functionalities into -
Product Browse operations and Shopping Cart operations. Then,
first-level operations are classified according to their response
message type. These types are shown as ovals. Lastly, the second-
level operations are classified according to request message type. As
a result, operations in the same leaf node have the same request and
response message types. HTTP and WS response delays are 327 and
502msec when measured from IBM Watson, and 501 and 510msec
from KAIST.

8

keywordSearch
actorSearch
artistSearch
authorSearch
powerSearch
manufacturerSearch
browsenodeSearch
directorSearch

similaritySearch
upcSearch

listManiaSearch
wishlistSearch

add
(create)

clear
get

ProductLine[]

ListingProductDetails

MarketplaceSearch SellerSearch

SellerProfile

blendedSearch

ProductInfo

exchangeSearch

marketplaceSearch

sellerProfileSearch
sellerSearch asinSearch

remove

modify

Product Browse
Shopping Cart

Shopping Cart

Amazon

Figure 18. Operation Tree of Amazon Web Services

Figure 19 (a) and (b) show the message sizes, both real and
estimated, for requests and responses, respectively. We assume
maximum string size of 50 characters and array length of 2 or 16.
Note that the browse operations have two kinds of responses – lite
and heavy. A lite response delivers the summary of the selected
items, while a heavy response delivers all the available information.
The fixed size components of both lite and heavy are identical but
the payload varies widely.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� 	
 �
� � � ��
	

� �� �
	 �
�� 	 � � � �� � 	 � �
	 � � � � � � � � �
 � � � �
� � � �
�

�
�
�
� � � �
� � 	

� � 	
� �
�

� � �
� �
�
�
�
�

� � �
� � � �
�

	 � �
�
�
�
� 	

�
� � 	
� � �
� � 	

� 	
� � 	
� �
� � � 	
� 	
� � 	

�
� � � �
� � �

� 	 � �
� �

� � 	
� �
� �
� � � �
� �

� ��
� �
 �
� �

� � ! � " # $ � � $ % & ' $ � � $ % & ()
* + , - . .
* + , - . *
* + , - . /
* + , - . 0
* + , - . 1
* + , - . 2
* + , - . 3
* + , - . 4
* + , - . 5

� 	
 �
� � � ��
	

� �� �
	 �
�� 	 � � � � � � 	 � �
	 � � � � � � � � �
 � � � �
� � � �
�

�
�
�
� � � �
� � 	

� � 	
� �
�

� � �
� �
�
�
�
�

� � �
� � � �
�

	 � �
�
�
�
� 	

�
� � 	
� � �
� � 	

� 	
� � 	
 �
�� � � 	
� 	
� � 	

�
� � � �
� � �

� 	 � �
� �

6 7 # � & � � " 8 9 : " � ; � $ < % & � � " 8 9 : " �
$ � � $ % & ' $ � � $ % & ()

(a) request (b) response

Figure 19. Amazon WS Message Size

Figure 19 (a) shows that our estimation of request sizes are accurate.
When the array length is 2, there is little difference between real
message sizes and estimated ones. The only large gaps, when array
size is assumed to be 16, are due to the fact that the addcart and
modifycart operations use string arrays.

Figure 19 (b) shows the response message sizes. It shows that our
estimations are inaccurate. However, it should be noted that the
pattern of lines are almost identical and the line for heavy-response
is between estimated lines. To improve accuracy, application
specific information is needed.

4.2 Google
Google provides a WS API to their Web search engine in order for
developers to embed Google search functions into their programs.
The Google WS API was launched in April 2002 and is still at the
beta version �[24].

The Google API has only three operations: doGetCachedPage,
doSpellingSuggestion, and doGoogleSearch. These operations use
14 elementary strings, 11 one-dimensional string arrays, 5 Booleans,
and 5 Integers. Both a ClassDecl and a ClassDecl-1 are used in
response messages of the doGoogleSerch operation. Figure 20
shows the three operations. HTTP and WS response delays are 292
and 329msec when measured from IBM Watson, and 841 and
1046msec from KAIST.

Figure 21 shows the message sizes of Google WS. We assume
maximum string size of 50 characters and array length of 2 or 16.
The figure shows that our estimation of message sizes is accurate
except for the response message size of doGetCachedPage. In this
case, as Google returns a cached Web page as a single parameter of
byte[] type, array length should be much larger than 16.

doGetCachedPage doSpellingSuggestion doGoogleSearch

Google

Figure 20. Google Web Services

= > ? @ A =

= > ? @ A B

= > ? @ A C

= > ? @ A D

= > ? @ A E

F G H I J I K G L M J F GON G J P I KQN M G R R S T F N U F F G N H S V T

W X Y Z X [\ W X [] ^ _ [X
W X Y Z X [\ ` a b W W b c d e W X [] ^ _ [X a b W W b c d e
W X Y Z X [\ ` a b W W b c f g e W X [] ^ _ [X a b W W b c f g e

Figure 21. Google WS message size

5. Related Work
To the best of our knowledge, this is the first survey of public WS.
Our work is related to Web evolution studies �[35], �[36] and to
existing activities in Internet geography drawing, WSDL file
analysis, and WS portals.

Mapping and analysis of the Internet geography are studied by many
researchers �[29],�[30]. They studied the geographic location of
Internet components such as end nodes and routers. Our
investigation considers a geographic distribution of WS endpoints,
not just IP-level internet nodes.

There are many WSDL analysis tools: xmethod.net’s WSDL
analyzer �[17], WSDL Explorer of IBM alphaworks�[18], Mindreef’s
SOAPscope �[19], IBM’s Web Services quick tester �[20], and
Bindingpoint QuickTry �[21]. However, all these tools except
SOAPscope analyze WSDL files to invoke Web Services
automatically. SOAPscope checks if the WSDL file is well-formed,
as defined in core WS specifications. Our WSDL file analysis
provides more sophisticated results: the structure, style, location, and
expected SOAP message sizes.

WS portals �[31],�[32],�[33],�[34] provide information about their WS,
including category, rate, price, and service explanation. Most of this
information targets WS consumers. We investigate the evolution,
internal structures, and message characteristics to improve the
understanding of WS technology.

6. Conclusion
Enterprise IT infrastructures and their interfaces to private partners
and general public are currently migrating toward a service-oriented
architecture, using WS as a de-facto implementation protocol. In this
survey, we analyze publicly-accessible WS using the information
that we collected over the past 3 months. Public WS are services
made available over the Internet to any other organization. Our

9

analysis uses information collected weekly from an UDDI Business
Registry.

We study several aspects of public WS. First, we determine the
population and geographic distribution of WS. Second, we determine
the characteristics and preferred message styles. Third, we develop a
methodology for estimating WS message sizes. Fourth, we examine
the liveness and response time of each WS, by probing their service
ports. Lastly, using our methodology, we analyze the WS of two
popular sites - Amazon and Google – and compare the message sizes
predicted by our methodology with the message sizes observed
during interactions with the two sites.

Our initial results show that the number of public WS does not
increase dramatically and that about three fifths of the current WS
population is based in USA. In addition, our results indicate that
there are substantial differences between WS traffic and the existing
Web traffic.

We plan to extend our survey by collecting more WSDL information
from other sources. We also plan to refine our methodology for
WSDL analysis as well as message size estimation. For instance, we
plan to use WS operations semantics to estimate string and arrays
lengths. This survey on public WS is part of an ongoing project and
upcoming analysis results will be published on our web site �[2].

7. REFERENCES
[1] Peter Fletcher and Mark Waterhouse, Web Services Business

Strategies and Architectures, Expert press, Birmingham, UK.,
2002

[2] http://nclab.kaist.ac.kr/~smkim/ws_survey/index.html

[3] Ethan Cerami, Web Services Essentials, O'reilly, CA, USA,
2002

[4] Eric Rescorla, SSL and TLS - Designing and Building Secure
Systems, Addison-Wesley, IN, USA, 2001

[5] Ramesh Nagappan, Robert Skoczylas, Rima Patel Sriganesh,
Developing Java Web Services - Architecting and developing
Secure Web Services Using Java, Wiley Publishing, Inc., IN,
USA., 2003

[6] http://www.w3.org/TR/soap12-part0/, SOAP Version 1.2 Part
0: Primer, W3C Recommendation

[7] http://www.w3.org/TR/soap12-part1/, SOAP Version 1.2 Part
1: Messaging Framework, W3C Recommendation

[8] http://www.w3.org/TR/soap12-part2/, SOAP Version 1.2 Part
2: Adjuncts, W3C Recommendation

[9] http://www.w3.org/TR/wsdl12-bindings, Web Services
Description Language (WSDL) Version 1.2 Part 1: Core
Language, W3C Working Draft

[10] http://www.w3.org/TR/wsdl12-bindings, Web Services
Description Language (WSDL) Version 1.2 Part 2: Message
Patterns, W3C Working Draft

[11] http://www.w3.org/TR/wsdl12-bindings, Web Services
Description Language (WSDL) Version 1.2 Part 3: Binding,
W3C Working Draft

[12] http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3, UDDI Specification

[13] http://www.caida.org/tools/utilities/netgeo/, NetGeo web site

[14] http://www.netgeo.com, Internet Geography Guide, NetGeo
Infoscope White Paper

[15] Whois database, http://www-whois.internic.net/cgi/whois

[16] http://ws.apache.org/axis, Apache Axis home page

[17] http://www.xmethods.net, WSDL Analyzer

[18] http://www.alphaworks.ibm.com/tech/wsdlexplorer, WSDL
Explorer

[19] http://www.mindreef.com, SOAPscope

[20] http://www-106.ibm.com/developerworks/webservice
s/demos/quicktest/index.html, IBM VisualAge Smalltalk
Web services Quick Tester

[21] http://www.bindingpoint.com/QuickTryv2.aspx,
Bindingpoint QuickTry

[22] Bruce A. Mah, An Empirical Model of HTTP Network Traffic,
INFOCOM '97. Sixteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings
IEEE , Volume: 2 , 7-11 April 1997, Page(s): 592 -600 vol.2

[23] http://www.amazon.com/webservices, Amazon web services
home

[24] http://www.google.com/apis/, Google web APIs home

[25] Mike Clark, UDDI – The Weather Report (The outlook is
missed),http://www.webservicesarchitect.com/content/ar
ticles/clark04.asp

[26] http://www.contest.eraserver.net, the Contest site for
Microsoft's Best of the .NET Awards Academic competition

[27] Paul Barford and Azer Bestavros and Adam Bradley and Mark
Crovella", Changes in Web Client Access Patterns:
Characteristics and Caching Implications, special Issue on
Characterization and Performance Evaluation, 1999

[28] Maurizio Molina, Paolo Castelli, and Gianluca Foddis, “ Web
Traffic Modeling Exploiting TCP Connections’ Temporal
Clustering through HTML-REDUCE” , IEEE Network
Magazine, vol. 14, no. 3, pp. 46-55,2000

[29] http://www.cybergeography.org/atlas/geographic.html,
An atlas of cyberspaces

[30] A. Lakhina and J. Byers and M. Crovella and I. Matta,
On the Geographic Location of Internet Resource,
Technical Report BUCS-TR-2002-015, Boston
University, 2002.

[31] http://www.xmethods.net, Xmethods

[32] http://www.salcentral.com/salnet/webserviceswsdl.asp,
salcentral – web services brokerage

[33] http://www.remotemethods.com/, remotemethods

[34] http://www.bindingpoint.com/, BindingPoint

[35] Junghoo Cho and Hector Garcia-Molina, “ The evolution of the
web and implications for an incremental crawler” , Porc. Of the
Twenty-sixth Intl. Conf. on VLDB, Cairo, Egypt, 2000

[36] Dennis Fetterly, Mark Manasse, Mark Najork, and Janet
Wiener, “ A Large-Scale Study of the Evolution of Web Pages” ,
WWW2003, May 20-24, 2003, Budapest, Hungary

10

