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In this paper, we give a short overview of the supply chain management models that have been 

used in the past few years by one of the largest international chemical companies.  These models 

have made significant impacts in improving strategic, tactical, and operational supply chain 

processes.  Then, we describe three supply chain optimization model case studies in detail: dis-

tribution network optimization; capacity requirement planning; and Web-based production plan-

ning/scheduling.  For each case study, we describe motivation for developing the supply chain 

optimization model, requirements, modeling methods, deployment and business impact of the 

model.  Using these case studies we intend to share our lessons learned, and address supply chain 

management issues that are especially relevant to chemical industry.  These models utilize 

mathematical programming, discrete-event simulation, and Web-enabling technologies. 

 

* The corresponding author.  
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1. Introduction 
 

New business models and efficient management of supply chain are becoming critical 

success factors in today’s highly dynamic and competitive business environment, driven by rapid 

advances in the information technologies and operations research methods (Geoffrion and Pow-

ers 1995).  The goal of supply chain management (SCM) is to procure raw materials, manufac-

ture products, and deliver the products to customers at desirable price and service.  SCM requires 

coordination of the flow of products, services, and information among supply-chain entities, such 

as suppliers, manufacturers, distributors and customers (Keskinocak and Tayur 2001).   Many 

companies are using enterprise resource planning (ERP) tools to improve or optimize their sup-

ply chain.  However, ERP systems often produce unrealistic production scenarios that result in 

excess inventories, sub-optimal utilization of resources and ultimately poor customer service 

(Hsiang 2001).  Therefore, it is necessary to model and optimize supply chain even if ERP sys-

tems are in place. 

Modeling and optimizing supply chain management is much more affordable now due to 

relatively inexpensive computer hardware and abundant availability of supply chain modeling 

tools.  The popularity of SCM tools is partly due to the advancement of the Internet, which al-

lows easy access to such tools by supply chain decision makers.  The Internet also facilitates 

supply chain coordination and collaboration with the suppliers and customers (H. L. Lee 2002). 

The study and work described in this paper are based on supply chain management mod-

eling activities of a large, international chemical manufacturing company.  The company has 

been developing and using a wide range of supply chain management tools to better assess, ana-

lyze, and improve their supply chain.  As typical supply chain characteristics of chemical indus-

try, the company mainly produces functional products, which are defined as ones that have long 

product lifecycle and stable demand, with relatively stable manufacturing process.  Most manu-

facturing processes are continuous processes which require high initial capital expenditure to 

setup, and run as built-to-forecast processes.  Production rates have a minimum and maximum 
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range for physical reason as well as economic reason.  Profit margin is relatively low; therefore, 

economies of scale are very important.  The life cycles of chemical products are usually long.   

For customer demand, the company has been using demand forecasting tools to predict 

future customer demand that uses historic patterns and anticipated business changes.  Chemical 

companies mostly produce functional products, which tend to have more predictable demand 

than the innovative products such as high-end computers (Fisher 1997, H.L. Lee 2002).  Never-

theless, the customer orders placed for manufacturing can exhibit significant fluctuations due to 

the “bullwhip effect” (Lee, Padmanabhan & Whang, 1997).  Accurate forecasting, especially for 

individual product and longer time horizon, is very difficult because customer demands depend 

on many dynamic factors, such as economic, social, behavioral factors, and unexpected events.  

However, customer demand is often the main input for many strategic, tactical, and operational 

SCM tools, such as distribution planing, transportation planning, manufacturing planning, and 

capacity planning.  Therefore, it is important to forecast customer demands as accurately as pos-

sible.  Typically, demand forecast is done in aggregated product level and shorter time horizon to 

ensure that the forecast is reasonably accurate and meaningful. These demand forecast models 

are often based on time-series modeling. 

The company has been developing and using many distribution network optimization 

models for finished goods distribution using tools, such as SAILS (Strategic Analysis and Inte-

grated Logistics Systems, Insight, Inc.) and MIMI (Manager for Interactive Modeling Interfaces, 

AspenTech, Inc.).  Some of these models are for packaged goods, which are usually shipped by 

trucks and stored in warehouses.  For packaged goods, since different products can be shipped 

together and stored together, there are opportunities for consolidations of storage and transporta-

tion.  Some other models are for bulk liquid products, which are carried by tank rail cars or tank 

trucks and stored in storage tanks or splitted into smaller volume in transloading (rail to truck) 

facility.  Since bulk liquid products cannot be mixed together for transportation or for storage, 

bulk liquid network models are mainly used to identify optimal facility locations.   Some of the 

distribution network models focus on global level and covers entire business region such as the 

NAFTA (North America Free Trade Agreement) region, and some other models focus on indi-

vidual businesses, describing more detailed distribution process of a business.  The output of the 

network model in one level is often used as input for a model in another level.  These distribution 

network optimization models are supplemented by inventory analysis tools; for example, dis-
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crete-event simulation models that analyze dynamic effects of various replenishment policies and 

outbound (customer) shipment patterns including seasonal effect of sales.  These simulation tools 

generate dynamic inventory profile at distribution facilities, which is critical in deciding the size 

of storage tanks and warehouse space.  Distribution network models were developed using the 

Mixed-Integer Linear Programming (MILP) methods. 

The company has also been developing and using production planning and scheduling 

optimization models.  Production planning models usually focus on a single manufacturing plant 

or several manufacturing plants that produce common products, compute the optimal production 

amount of certain products in each production line for each time period, usually in weekly or 

monthly buckets.  The models take into consideration demand, production capacity, storage ca-

pacity, and raw material availability.  Finite scheduling models focus on daily or hourly sequenc-

ing of manufacturing equipment and other resources, and try to minimize the Work-In-Process 

(WIP) and inventory level.  Production planning and scheduling models are especially important 

when manufacturing plants are running at full or almost full capacity.  In chemical industry, 

many manufacturing processes are continuous; therefore, well-managed product changeover is 

very important in minimizing the interruption of the manufacturing process, which is time-

consuming and costly.   Production planning models are usually built using MILP methods, and 

the finite scheduling models are built using the combinations of MILP and heuristics. 

Capacity planning is another area in which the company has been actively developing 

and using decision support tools.  For examples, discrete-event simulation models have been 

used to determine the size of the railcar fleet that are used in transporting bulk materials from 

manufacturing plant to storage site and eventually to customers.  We considered factors, such as 

transit time, customer dwell time (the length of time that the railcar stays in customer’s premise), 

loading, unloading, maintenance and other activities, and identified the optimal number of rail-

cars to ship products to customers on time for each business group as well as for the whole cor-

poration.  We also developed simulation models to determine optimal production and storage 

capacities. 

In transportation area, we have been using a shipment consolidation model to optimally 

consolidate less-than-truck-load (LTL) shipments into a truck-load (TL) shipment and to com-

pute optimal routes that minimize the total transportation time. 
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In the following chapters we describe three case studies of supply chain optimization 

models mentioned above, and discuss important issues in developing the models, implementing 

the solutions and the benefits.  The three case studies are a finished good distribution network 

optimization model, a storage capacity requirement planning simulation model, and a Web-based 

production planning/scheduling optimization model. 
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2. Case Study 1: Finished Goods Distribution Network Optimization Model 
 
 

The chemical company has been growing rapidly in the past few years through various 

acquisitions and divestitures.  As seen as a common business practice in this dynamics business 

environment, the company has been constantly looking into adding businesses that improve its  

business portfolio, and divesting businesses that are not part of its core businesses.  When a busi-

ness is acquired, its distribution network is also inherited into the corporate network.  Similarly,  

when a business is sold, a slice of the corporate network is removed.  Over time the corporate 

distribution network became inefficient, and consisted of many independent and fragmented 

networks.  The company wanted to assess the current distribution network, identify opportunity 

for network consolidation and improvement, and to implement the new optimal solution to real-

ize the benefit as soon as possible.   The company also wanted to put in place a network analysis 

tool that can be used periodically to study network as the network evolves with business. 

The assessment study of the company’s current network clearly showed that the network 

had several inefficiencies.  One of them was operating too many distribution centers (DCs); more 

than 100 DCs were being used in the NAFTA region at the time of this study.  When so many 

distribution centers are used, the amount of products stored and shipped from each DC is rela-

tively small.  Moreover, there were many small shipments that originate from each DC.  The 

relatively small storage and transportation volumes make it difficult to obtain volume-discounted 

warehousing and transportation rate from service providers.  Another inefficiency was customer 

assignment; some customers were serviced by DCs that are unreasonably far away.  In certain 

cases, a DC located in the west coast of the U.S. was shipping products to customers in the east 

coast and vise versa.  This was partly because individual business unit within the corporation was 

using only its own distribution network without utilizing other facilities available for the whole 

corporation. When the customer assignment is not efficient, the outbound shipment (customer-

bound) lanes tend to be unreasonably long, thus increasing the transportation time and costs.  

Moreover, each DC needs to have certain level of safety stock to accommodate uncertain de-

mands and unforeseen production problems (Brown et al. 2002).  Long distance transportation to 

customers also requires relatively high amount of safety stocks in warehouses.  Therefore, hav-

ing both too many DCs and long transportation lanes contributeed to the high level of overall 
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safety stock, and caused relatively large inventory holding costs.  Thus, it was evident that the 

distribution network needed to be optimized. 

The primary objectives of the network optimization project were to identify the optimal 

number and locations of strategic DCs, and to optimally assign customers to appropriate DCs to 

lower overall distribution costs and improve customer services.  By consolidating DCs, the 

economy of scale can also be realized.  With larger amount of products stored and shipped from 

each DC, we can have leverage for negotiating better storage and handling costs with warehouse 

service providers.  With smaller number of transportation lanes and larger volume in each lane, 

we can also have leverage for negotiating better transportation costs with transportation service 

providers.  The shorter distance between DCs and customer will also improve the customer ser-

vices.  The overall safety stock requirement will go down, therefore, lowering inventory carrying 

costs.  Also, working with a smaller number of service providers simplifies the whole distribu-

tion process.  Operating smaller number of DCs also allows more opportunities to consolidate 

cross business LTL shipments into TL shipments, which is much less expensive; therefore reduc-

ing the overall transportation costs.   

Distribution network usually degrades over time, similar to entropy in thermodynamics, 

which naturally moves toward a higher degree of disorder.  Especially in today’s dynamics busi-

ness world, it is very likely that a business will change in many unexpected ways altering the 

supply chain substantially.  Distribution networks have to be re-evaluated every few years and be 

re-optimized.  Another objective of the project was to make available a strategic distribution 

network optimization model that can be re-used periodically with simple changes of data and 

constraints, and to identify opportunities for network improvement. 

 

2.1 Model 
 

A very large scale MILP model was developed to model and optimize the finished goods 

distribution network.  The model consists of roughly 40 manufacturing sites, 100 candidate DCs, 

300 demand regions, 100 aggregated product groups, and million shipment transactions per year.  

In the past twenty years, many studied have been done in modeling and solving complex 

distribution network problems (Geoffrion and Graves 1974, Bradley et al. 1977, Brown and 
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McBride 1984).  However, it is very difficult to develop a comprehensive, global distribution 

network model that would optimize over all aspects of businesses (Camm et al. 1997) in a large 

company because the model size would be too large to manage.  Therefore, we modeled the dis-

tribution network in two levels; global and business level.  In the global level, we modeled the 

entire business, e.g., the NAFTA region, and this model was primarily used for identifying opti-

mal number and locations of strategically important distribution facilities.  In this global level 

model, we used a higher level of product aggregation and simpler transportation rate structure to 

focus on the corporate-wide network rather than details of each business group.  The solution 

from the global level model was passed onto the business level models.  In business group level 

modeling, we focused on individual businesses, modeling many details of a distribution network 

of one business at a time.  The business level models were primarily used for computing cus-

tomer assignments and detailed cost calculations, which are needed for implementing the net-

work solution.  Individual business network models contained various business specific con-

straints, such as service level requirements, and used much less product aggregation and more 

accurate, lane by lane, transportation rate structures.   

 Transportation rates for replenishment flows (plants to DCs) were assumed to be all TL 

shipments, and we used a customized tariff for the company.  Transportation rates for direct ship-

ments (plants to customers) and outbound shipments (DCs to customers) consisted of TL and LTL 

shipments, and were computed as weighted average rate using the historic profiles of shipments and 

TL and LTL tariffs, which are company specific tariffs and are dependent on weight breaks.  The 

historic shipment profile were computed by analyzing one year’s transaction data from corporate 

ERP system. 

 The distribution network optimization model is a strategic tool that helps decide the optimal 

network structure by generating aggregated information, such as annual throughput at each facili-

ties, annual transportation costs, and average service levels.  However, the model is not adequate to 

address the dynamic effects, such as shipment size, frequencies of replenishment, outbound flow on 

the network, and seasonal demand fluctuations (Cheung et al. 2001).  The dynamic effects are criti-

cal in analyzing dynamic profile of inventory and determining the safety stock, DC capacity re-

quirement and inventory policies.  We developed a discrete-event simulation model using eM-Plant 

(Tecnomatix, Inc) to supplement the network optimization model by analyzing dynamic profile of 
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inventory.  The simulation model was used to analyze various replenishment policies and outbound 

shipment patterns to determine the DC capacity requirements. 

 

 

 2.2 Results 
 

The distribution network optimization models were successfully optimized for many 

business scenarios.  A distribution network model is a rough description of a real distribution 

process with many assumptions and approximations.  In business world, obtaining the global op-

timization solution and taking it blindly as the optimal business solution is risky.  The distribu-

tion network model deals with many uncertain data, such as future customer demand, warehous-

ing costs, transportation rates, and efficiency of managing distribution network.  Therefore, find-

ing the mathematically optimal solution is not as significant as finding insights and a set of solu-

tions that can be rationalized and implemented easily.  We experienced, in certain cases, that it 

takes many hours of computation just to improve a good solution by a fraction of 1%, which is 

much smaller than the error of data and is rather insignificant.  We treated the distribution net-

work optimization model as a decision support tool, which provided useful information to busi-

ness decision makers so that a good decision is made and understood.  The network solution we 

presented to the decision makers was a set of optimal network scenarios that clearly explained 

the tradeoffs among important components of distribution network such as distribution costs and 

customer services.   

Our distribution network study indicated that the optimal number of DCs is between 6 

and 10, with more than 95% of products reaching customers within next day delivery service 

(within 450 miles from a DC in our case).  This result was also intuitive because 6 to 10 circles 

with radius of 450 miles should be sufficient to cover all the customers regions of the continental 

U.S. and Canada.  The savings from the optimized network was several million dollars in trans-

portation and warehousing costs, which was about 10% improvement of the network.  The cus-

tomer service improvement was about 35%, with most of customer serviced in next day delivery.  

The optimal distribution network was reviewed with all the business groups in the company, and 

was approved.  Another benefit of the modeling was the fact that during the modeling process 
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the organization has obtained much better understanding of the distribution network as well as its 

business.   

There are many challenges in modeling distribution network, especially for large com-

pany that consists of many business units with their own business goals and needs.  One of the 

challenges is obtaining the data required for the model.  The optimization computation is based 

on data on model parameters, such as shipment transaction data, transportation costs, DC vari-

able costs (handling and storing), and DC fixed cost.  If the data were not accurate, the optimal 

results would be wrong, too.   The company has been in the process of standardizing ERP sys-

tems when the model was being built.  Therefore, there were more than one data sources; some 

businesses had their data in one ERP system, and others had data in another.  Each ERP system 

had somewhat different data elements, format, unit of measure and naming convention, and it 

was time-consuming to unify the data from multiple sources into a consistent form.   

Another difficulty of the modeling was to have all the business groups to participate in 

the modeling activity.  It was extremely important that all the business groups provided the nec-

essary data for the modeling, and validated the network solutions. The primary objective of the 

distribution network optimization was to consolidate distribution activities of all the business 

groups into a corporate-wide strategic network.  The benefit was geared toward the corporate-

wide optimization, not individual business optimization.  Majority of business groups would 

benefit by participating in the optimization; however, a few business groups may not save money 

and even lose money as a consequence of implementation of new network solution.  It was very 

difficult to convince those business groups to sacrifice for the benefit of the whole corporation 

since business leaders are compensated by the performance of their own businesses not by that of 

the overall corporation.  And, there is always resistance to change.  Implementation of the net-

work solution involves changes in the business processes, and it is not a painless task.   More-

over, there is often lack of trust on mathematical solution.  Business leaders often feel that supply 

chain management is too complicated to model mathematically.  

Modeling distribution network is relatively easier than implementing the network solu-

tions.  The implementation includes shutting down some DCs, which involves termination of 

employments.  It also includes opening new DCs, which requires evaluating and selecting DC 

service providers from several candidates or even building private DCs.  Requirements for new 

DC are computed from the network optimization model, and they include annual throughput, ex-
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pected turns of products, special storage requirements such as for flammable and refrigerated 

products, frequencies and sizes of replenishment, and outbound shipments etc.  Implementing the 

network also involves selecting new transportation service providers and canceling existing 

agreements.  The transportation service requirements are transportation lanes, shipment profiles 

(frequencies and sizes), etc.  The requirements for DCs and transportation are communicated to 

service providers with RFP (request for proposal).  Once the proposals are received, they are 

carefully evaluated, and one that promises the least cost and the best service is selected.  The 

network optimization models are critical not only for designing the network but also for generat-

ing the essential information required for the implementation of the optimal network.   
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3. Case Study 2: Web-Based Production Planning/Scheduling Optimization Model 
  

One of the polymer manufacturing plants in the chemical company was facing problems 

of production capacity and production planning flexibility.  Customer demand has been increas-

ing, and due to the dynamics of economics it was more difficult to predict future customer de-

mand.  The manufacturing process is a continuous process, and the process has to be interrupted 

often to switch over from producing one product to another, and each interruption idled the pro-

duction for two weeks.  There was one production planner at the plant who has to continuously 

communicate with a product manager at the business headquarter, and it took a few days for the 

planner to generate a production plan based on the demand input from the product manager.  

Quite often, a production plan has to be modified to accommodate changing customer demand, 

and it also took a few days to change the plan.  The planner has been using a rather old planning 

spreadsheet to display the input data and to generate planning report.  The company called for a 

better tool that can improve the quality of production plan, reduce the planning time and has the 

flexibility of rapidly modifying production on-demand.  It was also important that the tool is 

used both by production planner at the plant and a product manager at the headquarter.  We de-

veloped a MILP-based production planning optimization model that runs on the Web for this 

problem. 

 The plant has multiple production lines and produces hundreds of millions of pounds of 

a polymer per year.  Each production line is a continuous process that operates 24 hours a day, 

365 days a year except during maintenance period when the production is interrupted for a few 

days.  The raw materials are brought into the facility, usually by pipeline, and are fed continu-

ously into the process.  The plant produces multiple product grades with different physical prop-

erties. However, the product changeover cannot be done easily.  When the plant switches from 

one product to another in a production line, the line will produce an off-grade product for a few 

days to weeks until the process reaches a steady state and produced a product with the desired 

specifications.  Off-grade products can be sold but at a much lower price than products that meet 

the specifications, thus minimizing the number of product changeovers is important.  Further-

more, the plant is operated at full capacity; therefore, it must have a well-planned product-

changeover schedule to maintain overall production levels.  Each production line can produce 
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only certain product grades, and is constrained by a minimum and maximum production rate.  

The permanent storage tanks for the finished products have a limited space and temporary stor-

age space is costly to use.  Each production line has a minimum length for production campaigns 

during which product changeovers are not permitted.  The goal of planning production is to 

compute a production plan that minimizes the inventory holding costs and product changeover 

costs while satisfying all the customer demands for finished goods and other process constraints. 

The Internet greatly facilitates the deployment of highly interactive applications. With the 

Internet, it is now possible to deliver computational services that were once available only to 

those employees with specialized computer training and access to special computers and tools.  

The Internet-based computational applications can be accessed from virtually any Web browser 

on any computer anywhere in the world at any time to perform complex computational tasks.  

Optimization is one such computational tool that can provide lots of benefits when it is available 

on the Internet.  Optimization has been used widely in industry for solving complex business 

problems. The company has been using MILP to optimize distribution networks, production 

planning, and scheduling.  However, until recently, the users of such optimization applications 

had to have powerful computers with special optimizing engines and other data interface utilities.  

Many of the optimization models used in the company have been standalone applications and 

have lacked standard interfaces with other enterprise applications, such as data warehouse (DW) 

or ERP systems.  Therefore, it has been difficult to deploy such optimization tools to multiple 

users throughout the company.  Also, communicating optimization results among users have not 

been easy.   

With the optimization tools on the Web, virtually anyone within the allowed community 

on the Internet or Intranet can access the complex optimization tools without any special hard-

ware or software.  It is now easy to make optimization technology available to many people.  

The optimization engine can reside on only one powerful server with enough computing re-

sources (or in rare cases, a few servers).  Moreover, a network of computers can serve as a paral-

lel and distributed processing server environment for solving computationally intensive prob-

lems.  Communicating the optimization results among the users, especially among business man-

agers, engineers, and production planners, is easy with the Web-based tool, because the optimi-

zation results are stored in a centralized server and can be accessed by and presented to the users 

through a flexible and powerful medium, such as Hyper Text Markup Language (HTML).  Fur-
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thermore, maintaining a Web-based optimization tool is much easier than maintaining traditional 

optimization tools installed individually on each user’s computer.  One can modify or enhance a 

Web-based optimization tool on one server, and all the users can access the change immediately.   

Supply Chain Optimization tools are particularly well suited to Internet innovations.   

Therefore, we designed, implemented, and deployed an interactive Web-based optimiza-

tion tool for this production planning optimization problem.  The framework we developed is 

general and modular, and it can be used for developing similar tools for other businesses with the 

corporation.  This tool permits users to change the objective functions and constraints of optimi-

zation models using a Web-browser and to run optimization and view the results in HTML 

pages.  The users do not need to use FTP or TELNET protocols.  In our framework, the input and 

output presentations are dynamically generated from a JSP (Java Server Page) that resides on a 

Web server.  The Web is a client-server application; the client is a local computer and the server 

is a remote host (computer).  The input data are taken from the clients and passed to the applica-

tion (optimization) server, where an optimization model is executed remotely.  Typically, the 

server is a powerful, high-end computer.  After the optimization is complete, the results are 

passed from the server back to the client computers in the form of a standard HTML document, 

which users can view on the browser.  The client computer could be any computer with a Web 

browser and an Internet access.  

 

3.1 Model 

We formulated the production planning problem as a MILP model, and used XPRESS-

MP to model the problem and to optimize the model.   Lee and Chen (2002) describe the details 

of the mathematical formulation for this model. 

Java technology has revolutionized computer use, and many Web-based applications are 

being developed in Java.  However, most optimization modeling and optimization packages, 

such as ILOG OPL (Optimization Programming Language) and XPRESS-MP (by Dash Associ-

ates), are based on C and other traditional programming languages.  Thus, it was impossible to 

call those optimization subroutines from Java directly until recently.  Fortunately, Java provides 
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the Java Native Interface (JNI), which allows Java to interface with other popular programming 

languages, such as C or C++, Visual Basic, and Fortran, which can be interfaced with most op-

timization packages.  We developed a framework for calling optimization subroutines from Java 

via JNI with Web browsers.  

   Figure 1 shows a three-tiered architecture for web-enabled optimization tools. The first 

tier on the client side processes the input data and presents the output data. The second tier is the 

Web-server, which manages the server-side processing and communicates with third tier servers 

such as the database server and the application server.  The JSP and Java programs, the database 

system, and the optimization engine can all run on one server.  However, because of the security 

and performance reasons, it is better to run them in separate servers, for example, on a Web 

server, a database server and an application (optimization) server.  Users can use a Web browser 

in the client computer to edit input data, invoke execution of the optimization, and receives re-

sults via Web pages.  The main implementations and processing tasks are carried out on the 

server side. This framework provides the flexibility of a programming language in a production 

environment, and developers can customize connections among models, data sources, and user 

interfaces.   
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Figure 1: Architecture of the Web-based optimization. 

 

Some optimization-service Web sites deliver Web-based optimization by providing FTP 

utilities; users upload their local model and data files to the host computers and remotely invoke 

the execution of the optimization model.  Some other optimization-service Web sites provide text 

boxes that allow users to edit their model and data files in the server.  These implementations are 

fairly easy and straightforward.  However, they require users to know quite a bit about the opti-

mization model and the optimization engine to use the tools.   

In chemical industry, however, users of optimization tools typically are not people trained 

in mathematics or optimization.  Therefore, to be useful, optimization tools must be easy to use.  

In our implementation, we provided a user-friendly interface to allow people with little knowl-

edge of mathematical modeling to easily operate the optimization model.  Users of the models 

control their optimization goals, such as minimizing cost or maximizing profits, and constraints 

by changing the parameters in the user interface screen; however, they often don’t need to under-

stand the mathematical models and solver to use the model.  
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 17

  The optimization process starts when the users make an HTTP request for a JSP from a 

client computer.  The JSP technology enables rapid development of dynamic Web applications 

that are platform independent.  JSP separates the user interface from content generation, making 

it possible to change the overall layout of the Web page without altering the underlying dynamic 

contents.  Pekowsky (2000) describes how JSP works with HTML in detail.  The JSP program 

makes a connection to optimization input files via a Java Servlet (JavaBean) and dynamically 

displays the names of the optimization input data tables associated with the model. 

Using the input-file-selection page, the user selects one or more tables from the files, for 

example, demand forecast; then a JSP generates and displays an HTML page with those data.  

The data are displayed in a tabulated format; values that can be updated are displayed in text 

cells. Users can change the data by typing over the displayed data in the text cell on the browser.  

The modified data updates the files through the JSP and a servlet.  Most solvers provide the op-

tion to decouple the model and data files.  The high-level algebraic formulations describe opti-

mization models in concise, symbolic formats, and an accompanying data file specifies the 

model instance to be solved.  However, different solvers may require different formats for the 

model and data files.  A servlet will translate data from the browser into solver-specific formats.   

Moreover, some solvers provide the option to read in data from spreadsheets and databases based 

on the SQL queries in the optimization model.   If solvers do not have the option to interface 

with spreadsheets and databases directly, one can write a Java servlet to retrieve data from data-

bases, translate data into solver-specific formats, and write them to data files.  It is also possible 

to retrieve or update data from multiple databases using different access methods and protocols 

as long as they are available on the network. 

Once the users update the input data, the JSP program calls a servlet that runs a JNI  with 

a C-based program, which in turn runs the optimization engine with an optimization model.  The 

C-based program will initiate a command instructing the optimization model to read in data from 

data files specified in the model and to bind the data with predefined variables before it initiates 

the optimization command.   Thus, the model and data are completely independent.   When the 

optimization is completed, the results are updated to the output files.  A JSP program then 

dynamically displays the selected output report tables to the user’s browser as HTML pages.  

The user can select any tables and view the optimization results.  When the user selects the out-

put file of interest from the drop-down menu; a JSP generates and displays an HTML page with 

those data. A downstream application uses the optimization results to generate daily production 
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data. A downstream application uses the optimization results to generate daily production sched-

ules, hourly raw material feed rates, and production reports, such as Gantt charts. 

 The framework will work with any optimization packages as long as they have C-based 

optimization library.   Lee and Chen (2002) detail the implementation of this architecture. 

3.2 Results 
The production-planning model we implemented has 1,452 variables (308 binary vari-

ables) and 1,113 equations.  The optimization usually takes a few seconds on a Sun/Solaris 

workstation, running Netscape Enterprise Server.  The response time depends on other factors as 

well, such as the state of the application server and the load of network traffic.  Before we im-

plemented the model, the production planner took several days to plan a production schedule.  

The short response time of the integrated model has allowed the production plant to adjust its 

production schedule quickly to accommodate any sudden market changes.  The quality of pro-

duction planning has also improved.  The planning model has helped the production planners to 

reduce inventory and to improve the utilization of production and storage capacity.  In addition, 

business managers in different locations are now able to view the results and make intelligent 

business decisions quickly.   The maintenance and technical support of the model have become 

much easier too.  We modify and enhance the tool in only one server, and all the users can access 

the change immediately.   

One of the benefits of integrating the optimization engine with the Web is that we can 

easily implement a parallel and distributed processing capability into the infrastructure.  So far, 

application of parallel processing has been limited.  Until recently, parallel computers could be 

found only in research laboratories or large universities.  Furthermore, system software to sup-

port large-scale distributed processing remains scarce (Luo et al. 2000).  On the other hand, an 

inherent characteristic of the Web is its distributed processing nature.  The Internet can emulate 

the parallel processing architecture of expensive parallel hardware, while the Internet protocol 

unifies diverse networking technologies and administrative domains.  A network of several com-

puters within the Intranet or Internet can collaborate to solve complex optimization problems, 

effectively utilizing computers that may be unused otherwise.  In solving an MILP problem, for 

example, a main server can generate sub-optimization problems through the branch-and-bound 

method, and several computers within the network can optimize the sub problems in parallel 
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while the main server orchestrates the overall optimization strategy.  Commercial optimization 

software, such as XPRESS-MP, can support such parallel-processing architecture.  Therefore, 

the marriage between Web-based optimization and parallel and distributed processing seems 

natural.   

 The Web-based optimization infrastructure we developed is a generic framework that can 

be applied to a variety of optimization applications.  The JNI interface between the Java class 

and the C-Interface program is generic and can be customized easily for other Web-based com-

putational applications.   

 Once an Operations Research tool becomes available through the Intranet or Internet, it 

can be further integrated with other enterprise applications.  For example, the input parameters of 

an optimization model can be updated in databases regularly through some other enterprise ap-

plications.  End users of the optimization tool do not need to modify the input data themselves. 

Moreover, the optimization results can be stored in databases for other applications.    
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4. Case Study 3: Storage Capacity Requirement Planning Simulation Model 
 

The company was planning a major production capacity expansion of one of its major 

product plants.  The upstream of the process, i.e. manufacturing, was already scaled up by a 

group of engineers, and the company wanted to make decisions on the downstream processes, 

i.e. storage, mixing, packaging and transportation.  There were a number of existing silos for 

mixing and storage, and a packaging equipment for the plant.  Adding new equipments, espe-

cially silos, is very expensive.  However, sufficient silo space is very important.  A shortfall of 

the silo space will interrupt the manufacturing process because the process is continuous and the 

product coming out from the manufacturing end would not have any place to go.  The shortfall 

also affects the transportation process thus affecting customer service level as well.  The com-

pany called for an accurate analysis to decide whether, how many and what size of silo and 

packaging equipment are needed for the plant.  We developed and used a discrete-event simula-

tion model to analyze the problem.  The simulation model helped us in determining capital 

equipment requirements and assessing alternative strategies for the logistics operations. 

 The plant produces three different grades of a dry chemical (denoted as A, B and C) at a 

specific production rate. These three different grades are produced in a continuous cycle with a 

fixed quantity for each grade. The product is transferred to a storage tank, from which it is dis-

tributed to another facility of further processing and packaging.  A larger portion of products is 

sent to railcar for shipment, and the rest is sent to truck for shipment. Furthermore, the sequence 

of railcar and truck shipment is random and mixed.  The capital outlay of such facilities is tre-

mendous, and the designer needed a credible, valid, detailed model of operation. 

 There are several large volume silos available for the plant.  However, only one silo can 

be used to receive the production outflow from the plant at any given time.  The outflow from 

the silos cannot take place until the silo has completely filled.  This is necessary because a batch 

number will be assigned to a particular silo load so that the source and quality of the product can 

be traced. Only one outflow from the silos can take place at any given time.  Grade A of the 

product requires special blending and needs to be kept in the silos for at least twenty-four hours.  

There is one RailSilo used to load railcars, which has a loading capacity that is a multiplication 
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of railcar load to avoid less-than-full-load railcars.  The RailSilo cannot have flow-in and flow-

out at the same time. There is one BagSilo used for the bagging process. The BagSilo has a 

smaller capacity than other silos, however, it can have flow-in and flow-out at the same time.  

The flow-out rates from all the silos are all fixed. 

While bulk railcar shipments do not require special packaging, truck shipments need to 

be bagged first.  The bagging-process will produce a certain volume of bagged products every 

few minutes.  The bagging machine requires a few minutes of maintenance after processing a 

certain volume of the product.  It takes a few minutes to change over between different grades of 

products.  The bagging machine breaks down occasionally and needs to be stopped for repair.

 When trucks arrive at the plant, they are weighed at the weigh station, and the process 

take a few minutes.  A fixed fraction of the arriving trucks are here to pick up our bagged prod-

uct.  The remaining fractions are here for other purposes.  There is a fixed number of loading 

docks, and it takes a few minutes to load the truck, which also has a fixed capacity.  Once the 

truck is loaded, it needs to be weighed again before it can leave the premises. Both the inbound 

and outbound trucks use the same weigh station.   If there are more than one truck waiting for the 

weigh station, the order of trucks go to weigh station will be based on first come first served ba-

sis. 

The main objective of the simulation study is to ensure the process configuration and ca-

pacity can support continuous outflow of the manufacturing plant, and to optimize the number 

and size of storage silos. There are several standard size silos under consideration.  The decision 

is not only to select more silos with smaller size or fewer silos with larger size but also to opti-

mize the combination of the number and size of silos.  Moreover, the activities of bagging proc-

ess, the activities of railcars and trucks, such as the inter-arrival time of railcars and trucks, are 

analyzed to ensure continuous material flows are maintained without interruption.  Once the av-

erage inter-arrival time is determined, the size of railcar fleet can be calculated indirectly. The 

simulation model can help us not only to verify the feasibility of our configurations but also to 

search for the optimal configuration among several alternatives.   
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4.1  Model 
  

Many production activities in chemical industry involve continuous material flows, such 

as liquid, gas or solid, and it is very costly to interrupt and restart the production process.  Simu-

lation is a useful tool to study dynamics in such processes in a simulated environment.  Simula-

tion models do not only provide quantitative information that can be used for decision-making 

but also increase the level of understanding of how the process works.  Most models are used to 

simulate discrete events.  Discrete-event simulation concerns the modeling of a system as it 

evolves over time by a representation in which the state variables change instantaneously at sepa-

rate points in time (Law and Kelton 2000) and has a commendably long and successful track re-

cord in the improvement of manufacturing process (Law and McComas 1997). 

      Although in the chemical manufacturing plant, materials are mixed and transferred as 

continuous flow through a maze of tanks and pipes, we did not have to model the continuous 

components to effectively study throughput issues.  We defined the product in a batch that uses 

various resources for a period of time simply by the amount of fluid being transferred and the 

rate of transfer.  We used discrete-event simulation to model the continuous material flow in this 

plant.   In many real world applications the behaviors of discrete event and continuous process 

are often interdependent.  Note that several simulation packages have the capability to build hy-

brid discrete/continuous models.  Some researchers have developed simulation models to analyze 

the hybrid nature of chemical manufacturing plant (Watson 1997, Saraph 2001).  Some simula-

tion issues in this area are conceptualizing production operations for simulation, discretization of 

continuous processes and building adequate level of detail in the models (Chen et al. 2002). 

 The output of the manufacturing plant is continuous at certain metric tons per minute. 

The transfer of a continuous flow from Silo X to Silo Y via Pipe S was simulated as a delay 

based on the amount being transferred and a fixed transfer rate.  We discretized the continuous 

material flow to a fixed weight moving unit.  The output was then converted as one unit every 

period.  The weight per unit was initialized from a data table in the model.  For example, if the 

output rate is 6 metric tons per hour, and the weight per discretized unit is 2 metric tons, then the 

output rate becomes 3 units per hour or one unit every 20 minutes.  In general, with a smaller 

discretized unit weight, the simulation model can simulate the continuous material flow more 

accurately.  The model can be regarded as continuous if the discretized unit weight is the weight 
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of a grain of the product.  However, it also complicates the simulation model because most dis-

crete-event simulation software uses the next-event time advance mechanism for the simulation 

clock (Law and Kelton 2000).   

 We wanted to build a simulation model that allowed us to analyze the logistics system 

adequately without modeling unnecessary details.  We chose two metric tons per unit for our 

model because it is the smallest incremental weight that the product are bagged and processed in 

this logistics system.  This discretized unit weight allowed us to analyze the system adequately 

without complicating the modeling of the bagging process.  If there are two different packaging 

sizes, for example 2 and 5 metric tons, the 2 metric tons per unit discretization will complicate 

the implementation of the simulation model.   In this case, we would use one metric ton, which is 

regarded as the smallest incremental weight per unit.  

   

 One of the purposes of the simulation analysis was to find out the minimum required 

number and size of storage silos; therefore, the outflow control from the plant always searched 

the available silos from left to right as the downstream station.  Thus, excessive silos will not be 

used by the system.  The I/O control between the main silos and RailSilo, BagSilo determined 

which main silos should have outflow and which downstream silos the material should flow to. 

The outflow of main silos was based on the “first available” rule.  The flow-in time was recorded 

when the material in the silo was ready to flow out.   For example, grade A product may be 

stored in silo1 before grade B product is stored in silo2.   But the flow out of grade A product 

cannot take place until the material has been processed in the silo for at least 24 hours.  There-

fore, the I/O control will select silo2 for outflow instead of silo1.  

  The bagged product was stored in the warehouse until a truck made a request.  The 

warehouse was viewed as a sink of upstream stations, i.e., the warehouse had virtually unlimited 

storage capacity.  However, the warehouse acted as a source for downstream stations.  The mate-

rial was stored in the warehouse until a truck was ready to be loaded.  To reduce the warm-up 

period, we assumed that there is a certain volume of initial inventory in the warehouse. 

 One of the difficulties in developing this model was to simulate changes of the statuses of 

the silos.  Once a silo was completely filled, there was no further inflow until the silo was com-

pletely emptied.  The outflow of the silo became available immediately when the silo was filled, 

except grade A which needed to be kept for at least 24 hours.  A complication arises because 
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.  

there is a lag between the outflow from the upstream station to the inflow of the downstream sta-

tion.  It will be too late to switch outflow from the upstream station when the receiving silo is 

completely filled, because the material in the pipeline will be lost. Thus, it was important to syn-

chronize all the processes in this model.  For example, the plant needed to send its outflow to 

other silos when the material in the pipeline filled the receiving silo completely.  We accom-

plished the synchronization by making the material move instantaneously.  As soon as the mate-

rial left a station, it immediately appeared in its destination.  The transfer time between stations 

was simulated after it reached its destination.  The outflow control was embedded in the silo ob-

ject, which can adjust the flow out rate.  For example, if the current material flow is from Silo2 

to RailSilo, then one unit will be removed from Silo2 every few minutes according to the flow 

out rate.  The unit was added to the RailSilo as soon as it has been removed from upstream.  This 

was possible because the capacity of the inflow rate of downstream was always greater than the 

upstream outflow rate. 
 

The arrival of railcars and trucks were modeled as Poisson processes with mean inter-

arrival time of a few hours.  Previous experience indicates that the stochastic arrival process can 

be adequately simulated with the Poisson process, i.e. exponential inter-arrival, and the interval 

between break down and the time required to fix a machine can be simulated with a Weibull 

distribution (Law and Kelton 2000)
 
 The visualization of the simulation model was very useful for users to validate the model. 

Visualization was also critical in communicating the outcome of a simulation study to the man-

agement.  Decision-makers often do not have the technical knowledge to understand the statisti-

cal outcome of a simulation run.  But through the visualization, the managers was able to see the 

status of the silos and the flow of material.  The process of building the simulation model also 

gave an opportunity for the plant personnel and upper management to better understand the lo-

gistic process.   

 

4.2  Results 
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Sargent (2000) described several methods to validate simulation models, such as anima-

tion, historical data validation, face validity, extreme condition tests, internal validity, and traces. 

To reduce uncertainty, we used historical data to build and drive the simulation model whenever 

possible.  Face validity refers to asking people who are familiar with the process whether the 

model and its behavior are reasonable.  We used their feedback to determine whether the logic in 

the conceptual model was correct.  We validated the model through several extreme conditions, 

where the analytic solutions were attainable.  The model output was then compared with the veri-

fied analytical results.  For example, if we set up the simulation model to terminate in one month, 

we can verify whether all the material adds up.  We can trace the material in certain states, such 

as the quantity shipped by railcar and truck, the quantity stored in different silos, the quantity 

processed by the bagging machine etc.  Accurate statistical analysis is central to the validity of 

any simulation project (Law and Kelton 2000).  Since we were simulating stochastic systems, we 

could not conclude our results with one simulation run.  Internal validity refers to make several 

independent runs of the model to determine the stochastic variability.  A high variability may 

indicate the system is sensitive to its input parameters, and the appropriateness of the simulation 

results needs to be investigated more closely. 

The users agreed that our model was an accurate representation of the real system.  To al-

leviate any concerns of the robustness of the results due to the random variations inherent in 

simulation, each scenario was run multiple times with different time horizons, one, two and three 

years.  The modeling approach described above was used to evaluate various alternatives.  Many 

of the alternatives were defined and modified only in the data tables.  This flexibility allowed the 

user to read in data, run a scenario, and get results very quickly.  No scenarios required modifica-

tions to the model itself.  Moreover, when the modifications are necessary, the model can be eas-

ily and quickly changed due to the object-oriented design of the model. The results from the 

simulation provided a clear picture as to a best choice of planning.    

      Several scenarios with different numbers and different sizes of silos were used in our ex-

periments.  The scenario study provided valuable information, because the cost structure of the 

size of the silos was not linear.  The optimal combination of the number and size of silos was de-

termined with simulation of a pre-determined set.  After several preliminary experiments, we de-

termined that three mid-size silos are most cost effective and are able to support the continuous 

operation of the manufacturing plant.  The followings are experimental results corresponding to 
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the model.  Since we hypothesized that three main silos will be enough to support continuous 

flow, we set up four silos in the model so that we will be able to verify our hypothesis.  Of 

course, we can model the system with three silos and check whether an overflow occurred, how-

ever, we will not have the utilization information of the non-exist silo.  

 

Table 1 
Silo utilization statistics 
 
Silo   Utilization 
Silo1  63.98% 
Silo2  63.91% 
Silo3  10.93% 
Silo4    0.00%___                  
 
 

      Table 1 lists the silo statistics for one particular replication when the model was simu-

lated with one-year time frame.  The report indicates that the fourth silo has not been used, thus, 

it is possible to remove the fourth silo without causing disruption of the production flow.  The 

low utilization of Silo3 is also very re-assuring.  If the fourth silo has been used, it is an indica-

tion that three silos are not enough to support continuous flow.  Table 2 lists the bagging ma-

chine statistics.  The report shows the utilization of the bagging operation is quite low at 43.65%, 

i.e., it is idle 56.35% of the time.  In this plant, the designer purposely built a high-capacity bag-

ging machine to accommodate the anticipated future expansion of the production capacity.  Fur-

thermore, the bagging machine is relatively inexpensive to build and operate.  The report also 

shows that only 2.85% of the simulation time was used in changeover between different grades 

of product, and 1.66% of the time were used in maintenance.   

 
Table 2 
Bagging machine statistics 
 
Bagging Machine   Percentage___ 
Idle     56.35% 
ChangeOver     2.85% 
Maintenance     1.66% 
Grade A      5.98% 
Grade B     19.50% 
Grade C     13.66%______        
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The changeover time between different products is different.  For example, it may take 20 

minutes to switch from bagging Grade A to Grade B and take 30 minutes to switch from bagging 

Grade B to Grade C.  The changeover information is stored in data tables, therefore, the bagging 

process will be able to simulate multi-products without any modification.  The simulation results 

also provided information regarding the number of changeovers and the average time between 

changeovers.   This information was important in determining the campaign volume.   
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5. Conclusions 
 

Chemical industry has unique supply chain characteristics such as continuous and stable 

production processes, large changeover cost, handling of bulk material, high volume per SKU 

(Stock Keeping Unit), long life cycle of products, and low profit margin.  In this paper, we de-

scribed an overview of practical supply chain management applications that have been used in a 

chemical company. 

We also focused on three case studies and discussed the motivations of developing such 

tools, values that those tools have added to the company, issues that needed to be dealt with, and 

lessons learned.  For the first case study, we described a large-scale MILP model that was devel-

oped to optimize distribution of finished goods.  The optimization model consolidated distribu-

tion network that consisted of many independent and fragmented networks. The model generated 

substantial savings in distribution costs and drastically improved customer services.  For the sec-

ond case study, a generic computation framework for web-based optimization was described.  

The framework was developed using a server-side Java programming, and a practical production 

planning optimization model was successfully developed and deployed using the framework.  

The model improved the quality of production plan, flexibility of production plan change and 

accessibility of the tool.  For the third case study, we described how we used a discrete-event 

simulation to model a logistic process and to determine capacity requirements of the storage and 

packaging facilities that allow a continuous production outflow and customer shipments.  The 

simulation model reduced a capital expenditure substantially. 
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