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Synchronization in arrays of coupled systems with
delay and time-varying coupling

Chai Wah Wu

Abstract

We study synchronization in an array of coupled systems with delay and time-varying coupling and present
synchronization criteria which generalize previous synchronization results. We show that the array synchronizes
when the non-delay coupling term is cooperative and large enough. In particular, as in the nondelay case, the
synchronization criteria is related to the second smallest eigenvalue of the matrix describing the coupling topology.

I. INTRODUCTION

Recently, there has been much activity studying the behavior of arrays of coupled systems. In this paper, we
study synchronization phenomena in an array of coupled systems with delay where there is a time-varying coupling
term between state variables and between delayed state variables. The time-varying coupling and the delay describe
the constantly changing nature of the coupling topology and the decentralized nature of real-world coupled systems
respectively. Analytical synchronization conditions were presented for the case of constant coupling [1], [2], time-
varying coupling [3], [4] and constant coupling with delay [5]. We present synchronization criteria for the case of
time-varying coupling with delay that generalize and unify these conditions.

We next list some mathematical notations useful in this brief. We will only work with real matrices and vectors
in this paper. A (not necessarily symmetric) matrixA is positive (semi)-definite ifxT Ax > 0 (xT Ax ≥ 0) for all
x 6= 0. We denote the positive (semi) definiteness ofA by A > 0 (A ≥ 0). We writeA > B (A ≥ B) if A−B > 0
(A − B ≥ 0). For a symmetric real matrixX, its eigenvalues are written asλ1(X) ≤ λ2(X) ≤ . . . ≤ λn(X). We
denote the transpose ofX as XT and the transpose ofX−1 asX−T . The Moore-Penrose generalized inverse or
pseudo-inverse of a matrixX is written asX†. The matrix norm used will be the norm induced by‖ · ‖2 (also
called the spectral norm).

II. A RRAYS OF COUPLED SYSTEMS WITH DELAY AND TIME-VARYING COUPLING

We consider an array of coupled systems with delay coupling and time-varying coupling where the state equations
are given by:

ẋ(t) = I ⊗ f(xi, t) + (G(t) ⊗ D(t))x(t) + (Gτ (t) ⊗ Dτ (t))x(t − τ) (1)

wherex = (x1, . . . , xn) and I ⊗ f(xi, t) = (f(x1, t), . . . , f(xn, t))T . G(t) and Gτ (t) describe the time-varying
coupling topology of the array whileD(t) andDτ (t) describe the individual coupling between two systems in the
array.

Lemma 1:For matricesX andY and a symmetric positive semidefinite matrixK of suitable dimensions,

XT KK†Y + Y T KK†X ≤ XT KX + Y T K†Y.

In particular, if x andy are vectors andK is symmetric positive definite, thenxT y ≤ 1
2xT Kx + 1

2yT K−1y.
Proof: Let the real Schur decomposition ofK be K = CT ΓC where C = C−T is orthogonal andΓ =
diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues. The Lemma then follows from

0 ≤ (
√

ΓCX −
√

Γ†C−TY )T (
√

ΓCX −
√

Γ†C−TY )
= XT CT ΓCX + Y T C−1Γ†CY − Y T C−1

√
Γ†√ΓCX − XT CT

√
Γ
√

Γ†C−TY

asC−1
√

Γ†√ΓC = CT
√

Γ
√

Γ†C−T = KK† andK† = C−1Γ†C. 2
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Lemma 1 can be further generalized as follows:
Lemma 2:For matricesX andY and a symmetric matrixK,

XT
√

K2K†Y + Y T
√

K2K†X ≤ XT
√

K2X + Y T
√

K2
†
Y.

Proof: As in Lemma 1 let the real Schur decomposition ofK be CT ΓC. Let L = diag(sign(λ1), . . . , sign(λn))
where sign(x) = 1 for x ≥ 0 and −1 otherwise. Note thatL is orthogonal and

√
K2 = CTΓLC ≥ 0. By

Lemma 1XT
√

K2
√

K2
†
Y + Y T

√
K2

√
K2

†
X ≤ XT

√
K2X + Y T

√
K2

†
Y . Using the invertible transformation

Y → C−1LCY and the observation that
√

K2
†
C−1LC = K† and C−1LC

√
K2

†
C−1LC =

√
K2

†
, we get the

required inequality. 2

Definition 1: Wi is the class of irreducible matrices with zero row sums and nonpositive off-diagonal elements.
Definition 2: M is the synchronization manifold defined as the linear subspace{x : xi = xj,∀i, j}. If x → M

as t → ∞, the coupled array is said tosynchronize.
An element ofM can be written as(1, . . . , 1)T ⊗z. The main result in this paper is the following theorem which

gives conditions under which the array in Eq. (1) synchronizes.
Theorem 1:Let V be some symmetric positive definite matrix such that(y − z)T V (f(y, t) + P (t)y − f(z, t)−

P (t)z) ≤ −c‖y − z‖2 for somec > 0. Let U be a symmetric matrix inWi, (B1(t), B2(t)) a factorization of
UGτ (t) ⊗ V Dτ (t) = B1(t)B2(t), andK(t) a positive definite symmetric matrix for allt. The array synchronizes
if

R
4= (U ⊗ V )(G(t) ⊗ D(t) − I ⊗ P (t)) +

1
2
B1(t)K(t)BT

1 (t) +
1
2
BT

2 (t)K−1(t)B2(t) ≤ 0 (2)

for all t.
Proof: Construct the Lyapunov functionalE = 1

2xT (U ⊗ V )x +
∫ t
t−τ xT (s)Uτ (s)x(s)ds whereUτ is a symmetric

positive semidefinite matrix to be determined later. Note that(U ⊗ V ) ≥ 0. The derivative ofE along trajectories
of Eq. (1) is:

Ė = xT (U ⊗ V )(I ⊗ f(xi, t) + (I ⊗ P )x)
+xT (U ⊗ V )(G ⊗ D − I ⊗ P )x + xT (U ⊗ V )(Gτ ⊗ Dτ )x(t − τ)
+xT Uτx − x(t − τ)T Uτx(t − τ)

Using the same argument as [1], [2], we obtain

xT (U ⊗ V )(I ⊗ f(xi, t) + (I ⊗ P )x) ≤ −µxT (U ⊗ V )x (3)

for someµ > 0. Next, we use Lemma 1 to obtain:

xT (U ⊗ V )(Gτ ⊗ Dτ )x(t − τ) = (xT B1)(B2x(t − τ))
≤ 1

2xT B1KBT
1 xT + 1

2x(t − τ)T BT
2 K−1B2x(t − τ)

If we chooseUτ = 1
2BT

2 K−1B2 which is a symmetric positive semidefinite matrix for allt, then

Ė ≤ −µxT (U ⊗ V )x + xT Rx

If R ≤ 0, then by Lyapunov’s method [6], [7] the trajectories approach the set{x : Ė = 0}. If Ė = 0, the above
equation implies thatxT (U ⊗ V )x = 0 which in turn implies thatx ∈ M sinceU ∈ Wi andV > 0 (see [1], [2]).
Therefore the set{x : Ė = 0} is a subset of the synchronization manifoldM and thus the array synchronizes.2

This result has several degrees of freedom: the choice of(B1, B2), the choice ofK and the choice ofU . Next
we study several of these choices that simplify the condition in Eq. (2).

A. Choosing the factorizationB1B2 = UGτ ⊗ V Dτ

There are several ways to choose the factorization(B1, B2). Depending on the factorization, the matrixK can
have different dimensions thanG⊗D andGτ ⊗Dτ . When the delay coupling term is absent (Gτ ⊗Dτ = 0), we can
pick B1 = B2 = 0 and the synchronization criterion reverts back to the nondelay criterion in [4]. The factorization
should be chosen such that the synchronization manifoldM is in the kernel of bothBT

1 and B2. Otherwise, as
M is in the the kernel of(U ⊗ V ), this would mean that the matrixR in Eq. (2) is never negative semidefinite.
Therefore if Eq. (2) is satisfied, thenGτ has constant row sums. This can be seen as follows. IfGτ does not have
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constant row sums, thenUGτ (1, . . . , 1)T 6= 0 andM is not in the kernel ofUGτ ⊗ V Dτ and thus also not in the
kernel ofB2.

Let J be the matrix of all1’s andQ = I − 1
nJ ∈ Wi. The eigenvalues ofQ are0 and1. If X is a matrix with

zero column sums, thenJX = 0 and thusQX = X. In particular,Q2 = Q, andQU = UQ = U for U ∈ Wi.
By choosing the factorizations(B1, B2) = (U ⊗ V,Gτ ⊗ Dτ ) and (B1, B2) = (Q ⊗ I, UGτ ⊗ V Dτ ) we get the
following Corollary:

Corollary 1: Let V be some symmetric positive definite matrix such that(y− z)T V (f(y, t)+ P (t)y − f(z, t)−
P (t)z) ≤ −c‖y − z‖2 for somec > 0. Let U be a symmetric matrix inWi andK(t) a positive definite symmetric
matrix for all t. The array synchronizes if one of the following conditions is satisfied for allt:

(U ⊗ V )(G(t) ⊗ D(t) − I ⊗ P (t)) +
1
2
(U ⊗ V )K(t)(U ⊗ V )

+
1
2
(Gτ (t) ⊗ Dτ (t))T K−1(t)(Gτ (t) ⊗ Dτ (t)) ≤ 0 (4)

(U ⊗ V )(G(t) ⊗ D(t) − I ⊗ P (t)) +
1
2
(Q ⊗ I)K(t)(Q ⊗ I)

+
1
2
(UGτ (t) ⊗ V Dτ (t))T K−1(t)(UGτ (t) ⊗ V Dτ (t)) ≤ 0 (5)

The condition in Eq. (4) was obtained in [5] for the case of constant coupling. IfGτ has zero row sums, we can
choose the factorization(B1, B2) = (UGτ ⊗ V Dτ , Q ⊗ I) to get:

Corollary 2: Let V be some symmetric positive definite matrix such that(y− z)T V (f(y, t)+ P (t)y − f(z, t)−
P (t)z) ≤ −c‖y − z‖2 for somec > 0. Let U be a symmetric matrix inWi andK(t) a positive definite symmetric
matrix for all t. If Gτ has zero row sums, then the array synchronizes if the following condition is satisfied for all
t:

(U ⊗ V )(G(t) ⊗ D(t) − I ⊗ P (t)) +
1
2
(Q ⊗ I)K(t)(Q ⊗ I)

+
1
2
(UGτ (t) ⊗ V Dτ (t))K−1(t)(UGτ (t) ⊗ V Dτ (t))T ≤ 0 (6)

B. Choosing the matrixU ∈ Wi

By choosingU = Q as was done in [4] and using the fact thatQX = X for X a zero column sum matrix, the
synchronization condition can be further simplified:

Corollary 3: Let V be some symmetric positive definite matrix such that(y− z)T V (f(y, t)+ P (t)y − f(z, t)−
P (t)z) ≤ −c‖y − z‖2 for somec > 0. Let K(t) be a positive definite symmetric matrix for allt. SupposeGτ and
G are zero column sums matrices. The array in Eq. (1) synchronizes if one of the following conditions is satisfied
for all t:

G(t) ⊗ V D(t) − Q ⊗ V P (t) +
1
2
(Q ⊗ V )K(t)(Q ⊗ V )

+
1
2
(Gτ (t) ⊗ Dτ (t))T K−1(t)(Gτ (t) ⊗ Dτ (t)) ≤ 0 (7)

G(t) ⊗ V D(t) − Q ⊗ V P (t) +
1
2
(Q ⊗ I)K(t)(Q ⊗ I)

+
1
2
(Gτ (t) ⊗ V Dτ (t))T K−1(t)(Gτ (t) ⊗ V Dτ (t)) ≤ 0 (8)

C. Choosing the matrixK

Corollary 4: Let V be some symmetric positive definite matrix such that(y− z)T V (f(y, t)+ P (t)y − f(z, t)−
P (t)z) ≤ −c‖y− z‖2 for somec > 0. SupposeGτ (t) andV Dτ (t) are symmetric for allt, andG andGτ are zero
column sums matrix. Suppose further thatGτ has a simple zero eigenvalue andDτ is nonsingular for allt. The
array in Eq. (1) synchronizes if the following condition is satisfied for allt:

G(t) ⊗ V D(t) − Q ⊗ V P (t) +
√

(Gτ ⊗ V Dτ )2 ≤ 0 (9)
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In particular, if in additionGτ (t)⊗V Dτ (t) is symmetric positive semidefinite for allt, then the array synchronizes
if G(t) ⊗ V D(t) + Gτ (t) ⊗ V Dτ (t) − Q ⊗ V P (t) ≤ 0.
Proof: SinceQ commutes withGτ there exists a orthogonal matrixC such thatQ = CT ΓQC andGτ = CTΓτC
with ΓQ and Γτ diagonal matrices of the eigenvalues [8]. LetΓτ = diag(λ1, . . . , λn). By hypothesis,λ1 = 0
and λi > 0 for i > 1. Let H = CT diag(1, 0, . . . , 0)C and K =

√
(Gτ ⊗ V Dτ )2 + H ⊗ I. It is easy to see

that K is symmetric positive definite andK−1 =
√

(Gτ ⊗ V Dτ )2
† + H ⊗ I. Since QH = GτH = 0 and

Q
√

(Gτ ⊗ V Dτ )2 =
√

(Gτ ⊗ V Dτ )2, Eq. (8) reduces to Eq. (9). 2

Corollary 5: Let V be some symmetric positive definite matrix such that(y− z)T V (f(y, t)+D(t)y − f(z, t)−
D(t)z) ≤ −c‖y − z‖2 for somec > 0. SupposeGτ andG are zero column sums matrices. The array in Eq. (1)
synchronizes if the following conditions is satisfied for allt and someα(t) > 0:

(G(t) − Q) ⊗ V D(t) +
α(t)
2

(Q ⊗ I)

+
1

2α(t)
(Gτ (t) ⊗ V Dτ (t))T (Gτ (t) ⊗ V Dτ (t)) ≤ 0 (10)

If in addition V D(t) < 0 for all t andG is a zero row sums matrix, then the array synchronizes if

λ2

(
1
2
(G(t) + GT (t))

)
≥ 1 + ‖Gτ (t)‖‖V Dτ (t)‖‖(V D(t))−1‖ (11)

Proof: Eq. (10) follows from Corollary 3 by choosingP = D andK = αI. Let us chooseα(t) = max(‖Gτ (t)‖‖V Dτ (t)‖, ε·
ν(V D(t))) for some scalarε > 0 whereν(X) = ‖X−1‖−1 is the co-norm of the matrixX. Eq. (10) is equivalent
to the eigenvalues of the symmetric matrix

F =
(

1
2
(G(t) + G(t)T ) − Q

)
⊗ V D(t) +

α(t)
2

(Q ⊗ I)

+
1

2α(t)
(Gτ (t) ⊗ V Dτ (t))T (Gτ (t) ⊗ V Dτ (t)) (12)

begin nonpositive. Lete = (1, . . . , 1)T . For all z, F (e⊗ z) = 0. For y a unit norm vector orthogonal toe and any
unit norm vectorz, definew = y ⊗ z. SinceV D < 0,

wT
[(

1
2

(
G(t) + G(t)T

)
− Q

)
⊗ V D(t)

]
w ≤ −

[
λ2

(
1
2

(
G(t) + G(t)T

))
− 1

]
ν(V D(t))

Furthermore,α2 wT (Q ⊗ I)w ≤ α
2 and

1
2α

wT (Gτ ⊗ V Dτ )T (Gτ ⊗ V Dτ )w ≤ ‖Gτ‖2‖V Dτ‖2

2α
≤ α

2
This implies that the eigenvalues ofF are nonpositive and that the array synchronizes if

λ2

(
1
2
(G(t) + GT (t))

)
≥ 1 + max(‖Gτ (t)‖‖V Dτ (t)‖, ε · ν(V D(t)))‖(V D(t))−1‖
= 1 + max(‖Gτ (t)‖‖V Dτ (t)‖‖(V D(t))−1‖, ε)

for any ε > 0. Combine this with the fact thatµ > 0 in Eq. (3) this implies that the condition in Eq. (11) also
synchronizes the array. 2

Corollary 5 relates synchronization to the eigenvalues ofG+GT . In particular, it says that the array synchronizes
if the second smallest eigenvalue ofG + GT is large enough. In [1], [9] it was concluded that sufficiently strong
cooperative coupling or an underlying graph that is well connected synchronizes a coupled array. As these conditions
correspond to a largeλ2(G+GT ) Corollary 5 is an extension of this to the delay case provided the coupling between
delayed state variables is small relative to the nondelay coupling.

III. C ONCLUSIONS

We have presented criteria for synchronization in an array of coupled systems with time-varying coupling and
coupling between delayed state variables that generalize and unify previous results in the literature. We show that
similar to the nondelay case, the array synchronizes if the nondelay coupling is strong enough, provided the coupling
between delayed state variablesGτ ⊗Dτ is relatively small. These results are also applicable (after suitable changes
to Theorem 1) to the case wheṅxi = f(xi, t) are retarded functional differential equations.
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