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Synchronization in arrays of coupled systems with
delay and time-varying coupling

Chai Wah Wu

Abstract

We study synchronization in an array of coupled systems with delay and time-varying coupling and present
synchronization criteria which generalize previous synchronization results. We show that the array synchronizes
when the non-delay coupling term is cooperative and large enough. In particular, as in the nondelay case, the
synchronization criteria is related to the second smallest eigenvalue of the matrix describing the coupling topology.

. INTRODUCTION

Recently, there has been much activity studying the behavior of arrays of coupled systems. In this paper, we
study synchronization phenomena in an array of coupled systems with delay where there is a time-varying coupling
term between state variables and between delayed state variables. The time-varying coupling and the delay describ
the constantly changing nature of the coupling topology and the decentralized nature of real-world coupled systems
respectively. Analytical synchronization conditions were presented for the case of constant coupling [1], [2], time-
varying coupling [3], [4] and constant coupling with delay [5]. We present synchronization criteria for the case of
time-varying coupling with delay that generalize and unify these conditions.

We next list some mathematical notations useful in this brief. We will only work with real matrices and vectors
in this paper. A (not necessarily symmetric) matrixis positive (semi)-definite if:” Az > 0 (27 Az > 0) for all
x # 0. We denote the positive (semi) definitenessddby A > 0 (A > 0). We writeA > B(A>B)if A—-B >0
(A — B > 0). For a symmetric real matriX, its eigenvalues are written as(X) < Ay(X) < ... < A\ (X). We
denote the transpose &f as X7 and the transpose of ~! as X~7. The Moore-Penrose generalized inverse or
pseudo-inverse of a matriX is written asXf. The matrix norm used will be the norm induced py ||» (also
called the spectral norm).

Il. ARRAYS OF COUPLED SYSTEMS WITH DELAY AND TIMEVARYING COUPLING

We consider an array of coupled systems with delay coupling and time-varying coupling where the state equations
are given by:

2(t) =1 ® f(zs,t) + (G(t) @ D()x(t) + (G- (t) @ D (t))z(t — 7) 1)

wherez = (z1,...,z,) and I @ f(z;,t) = (f(z1,t),..., f(z,,1))T. G(t) and G, (t) describe the time-varying
coupling topology of the array whil®(t) and D, (t) describe the individual coupling between two systems in the
array.
Lemma 1:For matricesX andY and a symmetric positive semidefinite matfix of suitable dimensions,
XTKK'Y +YTKK'X < XTKX +YTKY.

In particular, if z andy are vectors ands< is symmetric positive definite, then'y < %xTKx + %yTqu_
Proof: Let the real Schur decomposition df be K = CTI'C where C = C~T is orthogonal andl =
diag A1, ..., \,) is the diagonal matrix of eigenvalues. The Lemma then follows from

0 < (VITCX —VTiCc-TY)T(VTCX —VTTC-TY)
= XTcTrex +vTo-ricy —yTo-WWrivicx — xTeTyrvric-Ty

asC~'WTIiVIC = CTVIVITC~T = KK' and Kt = C~'TC. H
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Lemma 1 can be further generalized as follows:
Lemma 2:For matricesX andY and a symmetric matrix<,

XTVEIKY + YIVERKTX < XTVEEX + YIVE?R Y.
Proof: As in Lemma 1 let the real Schur decompositionffbe CTT'C. Let L = diag(sign\1),...,sign\,))
where sigifiz) = 1 for z > 0 and —1 otherwise. Note that. is orthogonal andv K? = CTTLC > 0. By
Lemma 1XTVEEVERY + YIVEIVEZ X < XTVEZX + YIVED'Y. Using the invertible transformation
Y — C-'LCY and the observation that K2 C—1LC = KT and C-LLCVEZ? C'LC = VEZ', we get the
required inequality. O
Definition 1: W; is the class of irreducible matrices with zero row sums and nonpositive off-diagonal elements.
Definition 2: M is the synchronization manifold defined as the linear subspacer; = x;, Vi, j}. If © — M
ast — oo, the coupled array is said ®ynchronize
An element ofM can be written a$l,...,1)” ® z. The main result in this paper is the following theorem which
gives conditions under which the array in Eq. (1) synchronizes.
Theorem 1:Let V be some symmetric positive definite matrix such that- 2)"V (f(y,t) + P(t)y — f(z,t) —
P(t)z) < —cl|ly — z||* for somec > 0. Let U be a symmetric matrix ifl¥;, (B;(t), B2(t)) a factorization of
UG, (t) ® VD, (t) = B1(t)B2(t), and K (t) a positive definite symmetric matrix for all The array synchronizes
if
1

SBIOK 0B <0 @

RE (U@ V)G @ D) ~ T P(1) + 3 B KWB (1) +

for all ¢.
Proof: Construct the Lyapunov functiond = 327(U @ V)x + [ 27 (s)U,(s)z(s)ds whereU, is a symmetric
positive semidefinite matrix to be determined later. Note {8at V') > 0. The derivative ofE along trajectories
of Eq. (1) is: )
E = 2TUeV)I® f(zi,t)+ (I P)x)
+2T(U@V)(GeD—-I® P)x+2T(U®V)(G, ® D,)z(t — )
+atUrx —x(t — 7)TU2(t —7)

Using the same argument as [1], [2], we obtain
(U VYI @ f(zi,t) + (IR P)z) < —pzt (U V)z (3)
for somep > 0. Next, we use Lemma 1 to obtain:

' (U V)G, @ D)zt —7) = (27B1)(Bax(t — 1))
< L2T"BiKBTaT + fa(t — )" BY K~ Bya(t — 1)

If we chooselU, = $BIK~1B, which is a symmetric positive semidefinite matrix for lithen
E < —pu2"(U® V) + 2T Ra

If R <0, then by Lyapunov’s method [6], [7] the trajectories approach the{ﬁetE =0}. If E =0, the above
equation implies that” (U ® V)z = 0 which in turn implies that: € M sinceU € W; andV > 0 (see [1], [2]).
Therefore the sefx : E = 0} is a subset of the synchronization manifdld and thus the array synchronizesl

This result has several degrees of freedom: the choidd3ofB,), the choice ofK and the choice ot/. Next
we study several of these choices that simplify the condition in Eq. (2).

A. Choosing the factorizatio®; B, = UG, Q@ VD,

There are several ways to choose the factorizati®n Bs). Depending on the factorization, the matik can
have different dimensions th&n® D andG, ® D-. When the delay coupling term is abse@t (2 D, = 0), we can
pick By = By = 0 and the synchronization criterion reverts back to the nondelay criterion in [4]. The factorization
should be chosen such that the synchronization manifélds in the kernel of bothBlT and B,. Otherwise, as
M is in the the kernel of U @ V'), this would mean that the matri® in Eq. (2) is never negative semidefinite.
Therefore if Eqg. (2) is satisfied, the®, has constant row sums. This can be seen as follows, Iloes not have



constant row sums, theliG(1,...,1)" # 0 and M is not in the kernel o/ G, ® V D, and thus also not in the
kernel of Bs.

Let J be the matrix of alll’'s and@ = I — %J € W;. The eigenvalues af) are0 and1. If X is a matrix with
zero column sums, thedX = 0 and thusQX = X. In particular,Q? = Q, andQU = UQ = U for U € W;.
By choosing the factorization§B, By) = (U ® V,G, ® D;) and (By, B2) = (Q ® I, UG, ® VD,) we get the
following Corollary:

Corollary 1: Let V be some symmetric positive definite matrix such that 2)TV (f(y,t) + P(t)y — f(z,t) —
P(t)z) < —c|ly — z||* for somec > 0. Let U be a symmetric matrix in¥; and K (t) a positive definite symmetric
matrix for all . The array synchronizes if one of the following conditions is satisfied fot: all

U V)G(Ht)@D(t)—Ix P(t)) + %(U QKU V)
1

+3(Gr(t) ® D, () K71 (0)(G (1) © D (1) < 0 *)

U V)(GE) @ D) -1 P(t) + %(Q R NKG)(Q®I)

+5(UGH() © VD,(0)T K ()(UG, (1) & V(1)) < 0 (5)

The condition in Eqg. (4) was obtained in [5] for the case of constant coupling, lias zero row sums, we can
choose the factorizatiofB;, B2) = (UG, ® VD,,Q ® I) to get:

Corollary 2: Let V be some symmetric positive definite matrix such that- 2)7V (f(y,t) + P(t)y — f(z,t) —
P(t)z) < —c|ly — z||* for somec > 0. Let U be a symmetric matrix in¥; and K (¢) a positive definite symmetric
matrix for all t. If G, has zero row sums, then the array synchronizes if the following condition is satisfied for all
t:

(U V)G & D(t) ~ T P1) + 5(Q® DE()(Q® 1)

+5(UGH (1) © VD, (1)K (UG, (1) & V(1) <0 (6)

B. Choosing the matrix/ € W;

By choosingU = Q) as was done in [4] and using the fact tliaX = X for X a zero column sum matrix, the
synchronization condition can be further simplified:

Corollary 3: Let V be some symmetric positive definite matrix such that 2)TV (f(y,t) + P(t)y — f(z,t) —
P(t)z) < —c|ly — z||* for somec > 0. Let K (t) be a positive definite symmetric matrix for all Suppose&=, and
G are zero column sums matrices. The array in Eg. (1) synchronizes if one of the following conditions is satisfied
for all ¢:

G © VD) - Qe VPN + L (@8 VIKNQE V)

+5(Gr(0) @ D) K™ ()(Gr (1) © Dr(1)) <0 ™
Gt © VD) ~ Qe VPN + 1 (Qe DENQ® )
+5(G- () ® VD) K (1)(Cr(1) © VD (1)) < 0 (®)

C. Choosing the matrix<

Corollary 4: Let V be some symmetric positive definite matrix such that 2)TV (f(y,t) + P(t)y — f(z,t) —
P(t)z) < —c|ly — z||* for somec > 0. Suppose&.,(t) andV D, (t) are symmetric for alt, andG and G, are zero
column sums matrix. Suppose further ti@@at has a simple zero eigenvalue ahd is nonsingular for alt. The
array in Eq. (1) synchronizes if the following condition is satisfied forzall

Gt)@VD®E) — QR VP(Et) + /(G- VD)2 <0 )



In particular, if in additionG,(t) ® V D, (t) is symmetric positive semidefinite for all then the array synchronizes
if Gt)@VD(t)+G-(t) @ VD-(t) —Q @ VP(t) <0.

Proof: Since@ commutes withGG there exists a orthogonal matriX such thatQ) = CTFQC andG, = CTT.C
with I'g and I'; diagonal matrices of the eigenvalues [8]. L&t = diag(/\l,...,/\ ). By hypothesis\; = 0
and)\; > 0 for i > 1. Let H = C"diag1,0,...,0)C and K = «/ ;QVD)?2+H®I It is easy to see

that K is symmetrlc positive definite an& —! = /(G, ® VD,) + H® I Slnce QH = = 0 and
QV(G,@VD,)?=./(G-®VD,)? Eq. (8) reduces to Eqg. (9). O

Corollary 5: Let V be some symmetric positive definite matrix such that 2)"V (f(y,t) +D(t)y — f(z,t) —
D(t)z) < —c|ly — z||? for somec > 0. Supposes,, andG are zero column sums matrices. The array in Eq. (1)
synchronizes if the following conditions is satisfied for @ahnd somex(¢) > 0:

a(t)

(G(1) - Q@ VD) + —~(Q &)
+#@)(G7(t) @ VD ()T (G, (t) @ VD,(t) <0 (10)

If in addition VD(t) < 0 for all t andG is a zero row sums matrix, then the array synchronizes if

X @(G@) T GT(t))) > 1+ |G- OIVD- Ol (VD(E) ™| (11)

Proof: Eq. (10) follows from Corollary 3 by choosing = D andK = «l. Let us choose(t) = max(||G-(t)[||VD-(t)|, e
v(VD(t))) for some scalae > 0 wherev(X) = || X~!||~! is the co-norm of the matriX. Eq. (10) is equivalent
to the eigenvalues of the symmetric matrix

1 t
F = (E(G(t) + G - Q) @ VD(t) + g(Q ®I)
1
Toam (G0 ® VD ()" (G-(t) ® VD, (1)) (12)
begin nonpositive. Let = (1,...,1)". For all z, F(e ® z) = 0. Fory a unit norm vector orthogonal te and any

unit norm vectorz, definew = y ® z. SinceV D < 0,
T [(% (G +G@T) - Q> ® VD(t)] w< — {AQ (% (G + G(t)T)) _ 1] v(VD(t))

Furthermore $w” (Q ® I)w < ¢ and

L 7 T ”GTHQHL DT”2 o
2 w (G VD) (Gr @ VD )w 5 =5

This implies that the eigenvalues éf are nonpositive and that the array synchronizes if
1 _
A2 (E(G(t) + GT(t))) > 1+ max(|Gr()|I|VDr(t)]l. e - v (VD) (VD)™
= 1+ max(|G-O[IV DOV D), e)

for any ¢ > 0. Combine this with the fact that > 0 in Eq. (3) this implies that the condition in Eq. (11) also
synchronizes the array. O

Corollary 5 relates synchronization to the eigenvalue§ efG” . In particular, it says that the array synchronizes
if the second smallest eigenvalue Gf+ G” is large enough. In [1], [9] it was concluded that sufficiently strong
cooperative coupling or an underlying graph that is well connected synchronizes a coupled array. As these conditions
correspond to a larg®; (G+GT) Corollary 5 is an extension of this to the delay case provided the coupling between
delayed state variables is small relative to the nondelay coupling.

IIl. CONCLUSIONS

We have presented criteria for synchronization in an array of coupled systems with time-varying coupling and
coupling between delayed state variables that generalize and unify previous results in the literature. We show that
similar to the nondelay case, the array synchronizes if the nondelay coupling is strong enough, provided the coupling
between delayed state variabl@s® D.- is relatively small. These results are also applicable (after suitable changes
to Theorem 1) to the case when = f(z;,t) are retarded functional differential equations.
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