RC23007 (W0311-138) November 18, 2003
Computer Science

IBM Research Report

XJ: Integrating XML Processing into Java™

Matthew Harren', Mukund Raghavachari’, Oded Shmueli’,
Michael Burke?, Vivek Sarkar?, Rajesh Bordawekar?

'University of California
Berkeley, CA

2IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

*Technion - Israel Institute of Technology

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home



XJ: Integration of XML Processing into Java
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ABSTRACT

The increased importance of XML as a universal data rep-
resentation format has led to several proposals for enabling
the development of applications that operate on XML data.
These proposals range from runtime API-based interfaces
to XML-based programming languages. The subject of this
paper is XJ, a research language that proposes novel mech-
anisms for the integration of XML as a first-class construct
into Java™. The design goals of XJ distinguish it from
past work on integrating XML support into programming
languages — specifically, the XJ design adheres to the XML
Schema and XPath standards, and supports in-place up-
dates of XML data thereby keeping with the imperative na-
ture of Java. We have also built a prototype compiler for
XJ, and our preliminary experimental results demonstrate
that the performance of XJ programs can approach that of
traditional low level API-based interfaces, while providing a
higher level of abstraction.

1. INTRODUCTION

XML [32] has emerged as the de facto standard for data
interchange. One reason for its popularity is that it defines
a standard mechanism for structuring data as ordered, la-
beled trees. The utility of XML as an application integration
mechanism is enhanced when interacting applications agree
on the structure and vocabulary of labels of the XML data
interchanged. This requirement has led to the development
of the XML Schema [28] standard — an XML Schema speci-
fies a set of XML documents whose vocabulary and structure
satisfy constraints in the XML Schema.

Despite the increased importance of XML, the available
facilities for processing XML in current programming lan-
guages are primitive. Programmers often use runtime APIs
such as DOM [29], which builds an in-memory tree from
an XML document, or SAX [23], where an XML docu-
ment parser raises events that are handled by an applica-
tion. None of the benefits associated with high-level pro-
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gramming languages, such as static type checking of oper-
ations on XML data are available to a programmer. The
responsibility of ensuring that operations on XML data re-
spect the XML Schema associated with it falls entirely on
the programmer.

The alternative approach to using standard interfaces to
process XML data is to embed support for XML within the
programming language. For example, a widely used XML-
based standard is XPath [30], a language for navigating and
extracting XML data. Support for XPath in the program-
ming language provides a natural, succinct and flexible con-
struct for accessing XML data. Extending current program-
ming languages with awareness of XML, XML Schema, and
XPath through a careful integration of the XML Schema
type system and XPath expression syntax can simplify pro-
gramming and enables useful services such as static type
checking and compiler optimizations.

The subject of this paper is XJ, a research language that
integrates XML as a first-class construct into Java. The
design goals of XJ distinguish it from other projects that
integrate XML into programming languages. The goal of
introducing XML as a type into an object-oriented imper-
ative language is not new — XTATIC [11], XACT [17] and
other languages [16, 20, 27] have studied the integration of
XML into Cf and Java. What sets XJ apart from these and
other languages is its consistency with XML standards such
as XML Schema and XPath, and its support for in-place
updates of XML data, thereby keeping with the imperative
nature of general-purpose languages like Java.

This paper introduces XJ, explores the issues that arose in
its design, and compares its abstractions with those of other
languages. We have built a prototype compiler and a run-
time system for XJ. The current output of the XJ compiler
is standard Java code that accesses XML data using DOM.
We provide experimental results that demonstrate that the
added flexibility of XJ over APIs such as DOM come with
minimal overhead in performance. We also discuss opti-
mizations that could further improve the performance of XJ
programs.

The contributions of the paper are the following:

1. A description of the XJ language, exploring the design
issues involved and rationale for the choices taken.

2. A discussion of the semantics of subtyping and in-place
updates in XJ.

3. An exploration of the compiler optimizations enabled
by a high-level language approach such as that used
by XJ.



1 import "po.xsd";
2 public class Discounter {
3 public void giveDiscount(){

4 purchaseOrder po =
(purchaseOrder)XMLItem.load("po.xml", null);

5

6 XML<item#*> bulkPurchases =
‘po/item[quantity/text() > 50]1';

7 for (int i = 0; i < bulkPurchases.size(); i++) {

8 item current = bulkPurchases.get(i);

9 ‘current/USPrice/text ()" *= 0.80; // Deduct 20%

10

11 XMLItem.serialize(po, "po.xml");

12

13 }

Figure 1: An XJ program that reduces the price of
certain items in a purchase order.

4. Preliminary experimental results with the XJ compiler
and runtime system that demonstrate that the perfor-
mance of XJ programs approaches that of traditional
DOM-based programming, with some simple optimiza-
tions.

We describe the XJ data model and type system in Sec-
tion 2. We discuss XJ expressions in Section 3. Section 4
describes our support for mutating XML data. In Section 5,
we describe the current implementation of the XJ compiler.
Section 6 investigates possible optimizations that can im-
prove the performance of XJ programs substantially. Sec-
tion 7 contains some preliminary experimental results. In
Section 8, we discuss projects related to XJ and the char-
acteristics that distinguish XJ from these efforts, and we
conclude in Section 9.

Brief Example We introduce the XJ language with the
sample program listed in Figure 1. The complete schema for
this example is given in Appendix A. The language features
used by this program are describe in detail in Sections 2 and
3. In Section 5, Figure 5 shows the DOM-based Java code
generated for this XJ example. The generated code is repre-
sentative of the programming models currently available for
XML processing, and highlights the contrast with the XJ
approach.

An import statement at the start of the program processes
XML element and type declarations from the specified XML
Schema file. The compiler treats the declarations in this
schema, such as purchaseOrder and item, as types in XJ.
Line 4 loads an XML document, ensures that it is valid with
respect to purchaseOrder, and stores a reference to the root
element in po.

Line 6 uses XPath notation to navigate the XML tree
and selects those item nodes for which more than 50 were
ordered. For convenience, the current XJ design uses the
backquote, “”, to delimit XPath expressions. The back-
quote delimiter helps avoid ambiguity over uses of the “//”
token, which represents the start of a comment in Java, but
has a special meaning in XPath (it represents a descendant-
or-self axis traversal).

XML<7>, where 7 is generally a regular expression, is a
predefined keyword in XJ that denotes an ordered sequence
such that the types of the contents of the sequence satisfy
7. In this particular example, XML<itemx*>, denotes an or-
dered list of zero or more item elements. Each such ordered
sequence is also an instance of java.lang.List, and the

methods defined in this interface can be used to traverse
the sequence, for example, the get () method is used in Line
8 to access contents of the list.

Line 9 uses XPath notation to update the value of a
atomic-typed element. Finally, Line 11 invokes a procedure
to serialize the document back to an external file.

2. XJ DATA MODEL

In this section, we examine the XJ data model and the
issues involved in its design. We begin with a description of
how XML Schema declarations are integrated into the Java
type system as logical XML classes. These logical XML
classes form the basis for the XJ data model. We then de-
scribe how XML data are represented in XJ and the XJ type
system.

The reader familiar with the XQuery 1.0 and XPath 2.0
data model will find several similarities between it and XJ’s
data model. This similarity is intentional. One can define a
function toXQuery() that injects XJ XML values into val-
ues in the XQuery data model. Due to space limitations, we
do not define this function explicitly, but the mapping of XJ
constructs to those of XQuery is straightforward. This func-
tion is useful in defining the semantics of XPath expressions
over the XJ data model as will be described in Section 3.

2.1 Logical XML Classes

XJ extends the Java type system to allow programmers
to declare variables, methods, and fields using types derived
from XML Schema declarations. All the built-in atomic
types defined by XML Schema as well as elements, attributes
and atomic types declared in imported XML schemas are
available to an XJ developer. Element, attribute and atomic
type declarations are viewed as logical XML classes. These
classes are logical in the sense that they are not true Java
classes and may not be tangible at runtime. Instances of
these logical XML classes are instances of java.lang.0Object.
Logical XML classes are used for type declarations and for
static type checking, but are eventually erased during code
generation into more appropriate runtime classes, as will be
described in Section 5. Furthermore, introspection and re-
flection are not supported on these classes.

Logical XML classes support a notion of containment —
an instance of a logical XML class may contain an ordered
sequence of instances of other classes, where the contain-
ment relationship structure forms an ordered tree. Contain-
ment relationships cannot however be observed with conven-
tional Java mechanisms such as field access or method calls.
The only means of observing containment relationships is
through XPath expressions.

The derivation of logical XML classes from XML Schema
declarations is straightforward, complicated only by XML
Schema’s classification of declarations into element, attribute,
and type declarations. An element/attribute declaration de-
clares an element/attribute name and its type. Type decla-
rations declare what values an element or an attribute may
contain. XJ uses element-type and attribute-type pairs for
generating logical XML class names. We use “e :: t” as the
logical XML class name for a declaration of an element e
with type t. In XML Schema, one can declare an element
and an attribute, where both have the same name and type.
In order to distinguish elements from attributes, the logical
class name derived from attribute declarations are prefixed
by a “@”, that is, they are of the form Qa :: t.
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Figure 2: Class hierarchy visible to an XJ pro-
grammer. “Schema-defined” refers to element
and atomic type declarations in imported schemas.
Arrows depict inheritance relationships. Shaded
classes denote abstract logical XML classes.

We also derive logical classes for atomic types defined or
referred to in an XML schema. Analogous to Java’s di-
chotomy of classes and primitive types, it is useful to be able
to use logical classes derived from atomic types in addition
to those derived from the more structured element and at-
tribute declarations. There are coercions defined between
logical classes derived from certain atomic types and Java
primitive types, for example, between xsd:int and int, and
between xsd:boolean and boolean. An XML Schema may
contain anonymous atomic type declarations. Since an XML
schema itself is an XML document, which can be viewed as
an ordered tree, XJ orders type declarations in a canonical
manner and assigns generated names to each such type.

As an example, given the declarations in the sample schema
in Appendix A, purchaseOrder: : POType is a logical class de-
rived from an element declaration, @partNum: :SKU is a log-
ical class derived from an attribute declaration, and anoni
and SKU are logical classes derived from atomic type decla-
rations. The anon1l class refers to the anonymous atomic
type declaration in the definition of quantity. XML names-
paces can be used to distinguish element, attribute, and
type names, though for the most part, we ignore the is-
sue of namespaces in this paper. Where the logical XML
class is unambiguous by using the element name, as a short-
cut, XJ allows programmers to discard the type portion of
logical class names. For example, a programmer may use

purchaseOrder interchangeably with purchaseOrder: : POType.

2.2 Subtyping and Substitution Groups

The XJ subtyping relation on logical XML classes is de-
fined independently of the Java subclassing mechanism. The
logical XML classes are integrated into the Java class hier-
archy as shown in Figure 2, where XMLIten is the supertype
of all logical classes. The shaded classes denote abstract log-
ical XML classes — no direct instances of these classes exist.
Logical XML class inheritance is shown with dotted lines to
distinguish it from normal Java subclassing. Each built-in
atomic type is a subtype of an XMLAtomic type, which serves
as the supertype for all atomic types. Atomic types declared
or referred to in an imported XML Schema are inserted into
the hierarchy as appropriate, as are element and attribute
declarations.

Use of the XML Schema substitution groups and subtyp-

<xsd:complexType name = "NewPOType">
<xsd:complexContent>

<xsd:extension base = "POType">
<xsd:sequence>
<xsd:element name = "NumCustomer"

type = "xsd:int"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Figure 3: Example of XML Schema subtyping.

ing mechanisms(that is, restriction or extension of types)*
in an imported schema results in more logical XML classes
than those derived directly from declarations in the XML
Schema. Let e :: t be a logical class corresponding to an
element declaration in an XML Schema. For each type t'
declared to be a subtype of ¢ through the use of one or more
restriction and/or extension steps, a logical class e :: t’ is
available. The class e :: t’ is a subtype of e :: t in XJ. The
use of the substitution group mechanism results in a set of
classes e’ :: t' where elements of label e’ with type t' are
declared to be in the substitution group of e :: t. Each such
class €’ :: ' is also a subtype of e :: t in XJ.

Figure 3 gives an example of the use of XML Schema sub-
typing, where POType declared in Appendix A is extended to
contain a new element called NumCustomer. The presence of
this declaration in the XML Schema of Appendix A would
result in a logical XML class purchaseOrder: :NewPOType,
which would be a subtype in XJ of purchaseOrder: : POType.

2.3 XJ XML Values

XJ XML values correspond to instances of the logical
XML classes defined previously, where these instances are
related to each other by containment as appropriate. An
XML value in XJ is an item, where each item is either an
atomic value or a mode. An atomic value is an instance
of the atomic logical class derived from an atomic XML
Schema type and stores a value from the set of values de-
noted by the corresponding atomic type. A node is either
an element, an attribute, a comment, a processing instruc-
tion, or a document node. Element nodes are instances
of the appropriate logical XML class derived from an ele-
ment declaration. Similarly, attribute nodes are instances
of a logical XML class derived from an attribute declara-
tion. Each element node may contain a sequence of zero or
more items, and each attribute node may contain a sequence
of zero or more atomic values. Document, comment, and
processing instruction nodes are translated into instances
of XMLDocument, XMLComment, and XMLPI, respectively. We
focus on the elements, attributes, and atomic values and
types in this paper. The handling of document, comment,
and processing instruction nodes is straightforward.

2.3.1 Well-Typed Values

XJ XML values are restricted to only those where the con-
tainment hierarchy of a value satisfies relevant XML Schema
constraints. More precisely, we define a function toXML ()
that converts XJ XML values into canonical XML docu-

n XML Schema, restriction subtyping refers to defining a
type whose possible values are a subset of the possible values
of the base type, while extension subtyping adds new fields
to the base type.
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E E
productName quantity USPrice
cup 12 4.95 456-CU
xsd:string anonl xsd:decimal SKU

Figure 4: Example of an XJ XML value. E denotes
element nodes and A an attribute node. Atomic
values are shown with their logical classes in italics.

ments. Given this function, we define well-typed XML
values as follows:

e An element node n that is an instance of e :: ¢ is well
typed if toXML(n) can be validated successfully accord-
ing to XML Schema rules with respect to the XML
Schema type t (ignoring key and keyref constraints).

e Similarly, an attribute node n that is an instance of
Qq :: t is well typed if toXML(n) can be validated suc-
cessfully according to XML Schema rules with respect
to the XML Schema type t.

e An instance of a logical class corresponding to an atomic
type is well typed if it stores a value from the set of
values denoted by the corresponding atomic type.

We shall be interested in ordered sequences of well-typed
XML values. An ordered sequence of XML values, I1, 2, ..., Ik,
is well typed if each I;,1 < i < k, is well typed. We shall
use S to denote the set of all well-typed ordered sequences.

Updates, construction, and loading of XML values all
guarantee that the resulting XML values are well typed.
Where it is not possible to guarantee statically that values
are well typed, dynamic checks will be used.

2.3.2 Updates

Once an XJ XML value is created, its contents may be
changed, but the class of a node or atomic value may not
be changed (without changing node identity). This invari-
ant helps preserve type safety in the presence of updates,
aliasing, and subtyping, as will be discussed later.

2.4 Type System

The logical XML classes corresponding to XML Schema
built-ins or element, attribute, and atomic type declarations
in imported schemas form the building blocks for the XJ
type system. The primary type constructor in XJ is that of
a sequence XML<7>, where 7 is typically a regular expression
over logical class names (we use £ to range over logical class
names). The set of XJ XML types, 7, are all types of the
form XML<7>, where 7 is defined as follows:

TZZ:T,T’ ’7"’7" &7“ (’7‘)‘ T* | T+ ‘7’? ‘ﬁ

As syntactic sugar, we allow L to stand for XML<L>, where
such use does not collide with Java class names. The inter-
leaving operator, &, is similar to the all construct of XML

Schema. Unlike the XML Schema all construct, it may be
used in a nested fashion.

2.4.1 Semantics

Given the definition of well-typed XML values, the se-
mantics of XJ types is straightforward. The denotation
of a sequence type XML<7>, []:7 — 2%, is a set of or-
dered sequences of well-typed XJ XML values. It is de-
fined in terms of 7], whose definition follows. In the defi-
nitions, the concatenation of ordered sequences results in a
flat ordered sequence. More formally, let s1 = w1, u2,...,u;
and s2 = wi,v2,...,v; represent ordered sequences. The
concatenation of ordered sequences, s1 - s2, is the ordered
sequence ui,...,U;v1,...,v;. The interleaving of the se-
quence s1, P(s1), is the set whose members are ordered
sequences Sz = wi,...,w; such that wi,...,w; is a per-
mutation of u1,...,u;.

o [,7'] = {51 s2ls1 € [r] As2 €[]}
[fl7T=A{slseFlvs e [-']}

[&7] = Usegr P(s)

[(D] =[]

[7+] = [=+1 U {0}

[7+] = All finite sequences s1-s2-. . .- Sk, where k > 1,
such that s; € [7],1 <i<k.

[77] = [=-Tu {0}

[£] = {!! is a well-typed instance of logical class £}

In the above definitions, () refers to the empty sequence. If
T is one of XMLElement, XMLAttribute, XMLNode, XMLAtomic
and XMLItem, [7] is defined to be the union of the denota-
tions of all subtypes of 7. For example, the semantics of
XMLElement is [J[e :: t] where e :: ¢ is an XJ subtype of
XMLElement.

2.4.2 Examples

The following examples demonstrate the syntax of type
declarations in XJ. Assume that we have imported the XML
Schema in Appendix A:

e xsd:int declares a variable using the built-in schema
type xsd:int.

e XML<xsd:int> is identical to the previous declaration.

e XML<XMLAttribute?> declares a sequence that is either
empty or contains a single attribute.

o XML<item::Item> or XML<item> or item all declare a
sequence that contains a single XJ value, where the
root element has label item and type annotation Item.
Since the type of item is unambiguous in the schema,
one can omit the type declaration “::Item”.

o XML<(productName | quantity)x*> refers to asequence
of zero or more productName and quantity elements.



2.4.3 Subtyping

Given the semantics of XJ types, subtyping can be de-
fined by a simple rule: an XJ type 7 is a subtype of another
XJ type 7’ if the set of values denoted by 7 is a subset of
the set of values denoted by 7’. While this rule may ap-
pear to be similar to the structural subtyping defined in
XTATIC, subtyping in XJ and XTATIC are quite disparate.
In XTATIC, the language allows arbitrary structural subtyp-
ing through extension and restriction, whether or not the
relationship is declared by name in a schema (substitution
groups, however, are not recognized). Since well-typed XJ
XML values are dictated by XML Schema, XJ permits only
those subtyping relationships defined by a schema using the
substitution group, extension, and restriction mechanisms.

For example, consider the complex type extension shown
in Figure 3. The following XML document is a valid in-
stance of NewPOType, where the XML Schema subtype fea-
ture is used to indicate that the type of this instance of
purchaseOrder is NewPOType.

<purchaseOrder xsi:type = "NewPOType">

<NumCustomer> 999 </NumCustomer>
</purchaseOrder>

The following XJ code makes use of POType and its sub-
type NewPOType. Assume that poNew is a variable of type
purchaseOrder: :NewPOType:

purchaseOrder: :POType po = poNew;

The statement that assigns the reference value of poNew
to po is legal, as poNew yields an instance of the type of po
according to the subtyping rules of XML Schema.

3. EXPRESSIONS

We now describe how values are manipulated in XML.
This section describes construction, querying, and serializa-
tion; update statements are described in the next section.?

3.1 Queries and Expressions

Programmers may use XPath 2.0 expressions, arithmetic
and relational operators to manipulate XML data. The typ-
ical mechanism for specifying XPath expressions on XJ vari-
ables is

‘id/ query'

where id is an identifier in the current context that is de-
clared with an XJ XML type, and query is an arbitrary
XPath expression. id, which may correspond to a single XJ
XML value or a sequence of XJ XML values, is used to de-
fine the context in which query is evaluated. The result of
executing an XPath expression is a sequence of XML values,
the type of which is determined from the XPath expression
and the type of id. For example,

purchaseOrder p = ...;

// Select the last item. This returns a list of
// zero or one item elements.

XML<item?> results = ‘p/item[last()]‘;

2The issue of error handling is beyond the scope of the pa-
per — appropriate Java exceptions or extensions thereof are
thrown which may be caught.

// This statement will throw an exception if results
// is empty (i.e. p contained no items).
item last = results.get(0);

// Now get all of the other item elements in this
// purchase order.
XML<item*> theRest = ‘last/preceding-sibling::item';

The semantics of XPath expressions in XJ is defined in
terms of XPath 2.0. As mentioned previously, there is a
function toXQuery () that can inject XJ XML values into the
XPath 2.0 and XQuery 1.0 data model. Since we are inter-
ested only in XPath expressions (and not general XQuery),
the result of executing an XPath expression can be mapped
back into a sequence of well-typed XJ XML values in a
straightforward manner. By basing our semantics for XPath
expressions on that defined by XPath 2.0, we ensure that
the result of executing an XPath expression in XJ on a file
loaded into an XJ program is the same as if the XPath query
had been executed by an XQuery engine on that file.

A side effect of the decision to use XPath 2.0 as the basis
for the semantics of XPath expressions is that subtyping by
extension has different semantics in the Java and XML com-
ponents of XJ. Consider two Java classes ¢1 and ¢z, where
c2 extends ¢ with some fields. If a value of type c2 is as-
signed to a variable of type c1, the variable cannot “see” the
cz fields. On the other hand, given two XML types 1 and
r2 where x2 is an extension of x1, and a value of type x2
assigned to a variable of type z1, the extensions in xo will
be visible to all XPath expressions executed on the variable
because XPath is defined on the document structure, and
only marginally aware of XML Schema types. As a result,
XML extension behaves differently from class inheritance.

3.2 Loading and Serializing XML Documents

Instances of XJ XML types can be created in two ways:
reading an XML document, or constructing an XJ XML
value procedurally. We describe the first method here; con-
struction of XML values is outlined in Section 3.3.

The class XMLItem defines a static function

XMLItem.load(String URI, Properties properties)

for parsing and validation of external XML documents. The
URI parameter specifies the location of the XML document,
and the properties parameter controls the parsing of the
XML document. The set of properties allow the programmer
control over certain aspects of parsing such as whitespace
preservation. The result of the execution of this operation
is a singleton sequence which contains an XJ XML value as
defined by the XJ data model. For example, the following
statement loads a document:

purchaseOrder p = (purchaseOrder)
XMLItem.load("po.xml", properties);

Since the type returned by XMLItem.load is not known un-
til runtime, it will be checked dynamically with respect to
purchaseOrder.

To handle untyped documents (that is those that do not
correspond to any schema), it is necessary to introduce a
family of logical classes of the form e :: anyType and a ::
anySimpleType for elements and attributes, where e may
be any possible element name and a may be any possible



attribute name. A detailed discussion of the handling of
untyped XML data is beyond the scope of the paper.

There is an analogous static method in XMLItenm for seri-
alizing XJ values to XML documents: XMLItem.serialize(
XMLNode value, OutputStream writer). The serialization
of an XJ XML value will satisfy the property that serializ-
ing an XJ XML value and loading it back again (validat-
ing it against the proper schema if necessary) will result in
the same XJ XML value (other than changes introduced by
parsing properties).

The serialization of an XJ XML value is not necessarily
unique. The information preserved about the source docu-
ment from which an XJ XML instance is generated depends
on the properties specified to the XMLItem.load method.
While roundtripping is guaranteed in serializing XJ values
and then loading the serialized value (XJ adds xsi attributes
where needed), it is not guaranteed that loading an XML
document into XJ and serializing it back into an XML docu-
ment will result in the same document. Whitespace may not
be preserved, and values of built-in types may be normal-
ized. For example, leading zeros may be removed from nu-
meric values. One could ensure full roundtripping by storing
enough auxiliary information with XJ XML values, though
we do not do so at the moment.

3.3 Construction of XJ XML values

The new operator can be used to construct new XJ XML
values. For each non-abstract logical XML class, a program
can create a new instance of the logical class by invoking the
new operator. If the logical class corresponds to an element,
e :: t, the arguments to the constructor contain a sequence
XML<7>, where 7 is a regular expression corresponding to the
content model of the complex type, t. As syntactic sugar
for constructing an instance of XML<7>, the program may
provide a sequence of arguments to the constructor, from
which an instance of XML<7> will be constructed. Attribute
values may be specified by attrname=value arguments to
the constructor. For example, the following code creates a
new item element(Figure 4 depicts the XJ XML value that
is constructed as a result of this XJ code fragment):

quantity quan = new quantity(12);

productName pn = new productName("cup");

USPrice price = new USPrice(4.95);

item cup_order = new item(pn, quan, price,
partNum="456-CU") ;

A constraint placed on the arguments to element construc-
tors is that none of the arguments can belong to another
XML value (that is, if any of the arguments is an element,
attribute, or atomic value, it cannot have a parent node).
Otherwise, the situation might arise where a given node has
more than one parent, which would mean that the XML
data is no longer a tree and complicate the semantics of
XPath and other constructs of XJ. For example, the follow-
ing construction is illegal, and will be detected dynamically
or, where feasible, statically:

quan = ‘cup_order/quantity';

pn = new productName("saucer");

price = new USPrice(2.95);

item saucer_order = new item(pn, quan, price,
partNum="456-SC") ;

// now quan has two parent elements.

The problem is that if the construction were allowed, the
node referred to by quan would have two parents: the nodes
referred to by saucer_order and cup_order. This is not
an issue for the nodes pn and price because they have no
parent pointers before being passed to the constructor. XJ
provides a clone method on each XMLNode, with deep-copy
semantics that can be used to construct values from other
XJ XML values. Using the clone operator, the following
alternative would be legal:

item saucer_order = new item(pn, quan.clone(),
price, partNum="456-SC");

4. UPDATES

A central question in defining the semantics of updates in
XJ is whether assignments copy values or references to val-
ues. The semantics of updates in XQuery processors such
as Galax [10] are copy-based. In some sense, copying values
has cleaner semantics, since it is easier to guarantee that
values are always trees. With reference-based semantics, as
seen to some degree in Section 3.3, one must ensure that
every value inserted into another does not already have a
parent node. Otherwise, a node might have have more than
one parent, and the semantics of XPath expressions, serial-
ization, etc. is unclear. On the other hand, since assignment
in Java is reference-based, assignment by reference is more
intuitive to a Java programmer. Moreover, reference-based
semantics simplify the preservation of node identity (since
assignment does not change the identity of nodes by copying
them). We have chosen to be consistent with Java’s refer-
ence semantics; however, to preserve the invariant that all
XML values are trees, it is a runtime type error in XJ to
insert a node with a parent into another node.

4.1 Updating XML Atomic Values

The mechanism for updating an XML value with an atomic
type is to use XPath expressions to specify the element or
attribute that is to be modified on the left-hand side of an as-
signment expression, and then, to provide a value of the ap-
propriate type on the right-hand side. An update statement
is legal only if the left-hand side evaluates to a singleton
ordered sequence containing an XML value at runtime. For
example, if po is a variable with XJ type purchaseOrder,
the following statement updates a po element in place by
performing a replace operation:

‘po/item/productName/text()' = "Lawn mower";

One of the complications of supporting updates is the se-
mantics of XJ with respect to updates, subtyping, and alias-
ing. For example, consider the following XJ fragment:

purchaseOrder: :POType po;
purchaseOrder: :POSubtype pos;

po = pos;
‘po/item[1]/quantity/text()' = 750;

Assume that POSubtype is a subtype of POType derived by
restriction with the constraint that quantity must be less



than 500. Since POSubtype is a subtype of POType, one might
assume that the assignment po = pos should succeed. The
update of the quantity element, however, causes a problem.
The update is valid with respect to POType, but not with
respect to POSubtype. To preserve type safety, this update
would not be allowed and would cause a runtime error. If
the compiler can statically determine that po refers to an
instance of POSubtype, a compile-time error will be raised.

In XJ, as in Java, casting an XML value into a super-
type does not change the value or the types associated with
nodes. All updates and XPath expression evaluation are
typed with respect to the runtime type of the value. This is
analogous to overloading in Java where one may cast an ob-
ject to a supertype but method calls invoke the overloaded
implementation in the runtime class associated with the ob-
ject rather than the implementation in the supertype.

4.2 Updating XML Complex Values

We now discuss how structural changes, such as inserting
a new subtree or deleting nodes, can be performed on XML
values. Consider the code sequence:

1  purchaseOrder po = ...
2  XML<item*> purchases = ‘po/item';

8 item newitem = new item(new productName("Lawn Mower"),

new quantity(1), new USPrice(148.95),
partNum="123-LM") ;

4  item current = purchases.get(0);

5 current.insertAfter(newitem);

Line 5 uses an insertAfter operation to insert a new item
after the current (in this case the first) item in the list of
items. An insertBefore operation can be used to insert a
new item before the current item:  current.insertBefore
(newitem) ;

Nodes may be deleted by performing a delete operation:
current.delete();

When a sequence of updates is applied to an XML value,
the constraint that an XML value must always be valid with
respect to its type may be too rigid. It may be desirable to
treat the entire sequence of updates as an indivisible oper-
ation, and perform validation on successful completion of
the sequence of updates. The notion of deferred validation
leads to an unit of work or transaction abstraction, where a
sequence of updates is treated as an atomic unit. An area of
future work is integrating such a concept into the language
in a natural manner. One possibility is a lexically-scoped
deferred validation block that ensures atomicity of modifi-
cations to a certain tree even in the presence of exceptions
(which will undo the operation) or multithreading.

5. IMPLEMENTATION

We have built a prototype compiler for XJ that generates
Java source from XJ source programs. The compiler is im-
plemented with Polyglot [22], which provides a framework
for parsing and typechecking Java source code, and imple-
menting extensions to Java. XML Schemas imported by XJ
programs are parsed using the XML Schema Infoset Model
plugin for Eclipse [7].

The type checking of XJ programs relies on the XAEL
engine [9]. The inputs to XAEL are an XPath expression,
an XML Schema, and the type of the context node for the
XPath expression. XAEL uses abstract evaluation of the
XPath expression on the XML Schema to infer the least
type such that the result of evaluating the XPath expression

1 public void giveDiscount(){
2 org.w3c.dom.Element po =
XJImpl.loadLocal("po.xml", null);
3 java.util.List bulkPurchases =
XJImpl.searchList (po,
"item[quantity/text() > 50]");

4 for (int i = 0; i < bulkPurchases.size(); i++) {
5 org.w3c.dom.Element current = bulkPurchases.get(i);
6 java.util.List _tmpl =
XJImpl.searchList(current, "USPrice/text()");
7 BigDecimal _tmp2 = new BigDecimal(0.80);
8 BigDecimal _tmp3 =
new BigDecimal(_tmpl.get(0)).multiply(_tmp2);
9 XJImpl.updateAtomic(current,"USPrice/text ()", tmp3);
10 }
11 XJImpl.serialize(po, "po.xml");
12 }

Figure 5: Generated Java code for the example in
Figure 1.

on any document conforming to the XML Schema would be
an instance of the least type. Given this information, our
algorithm for typechecking XJ expressions and constructors
is relatively straightforward. We do not, yet, typecheck the
more complex aspects of the XJ type system, that is, the
static typechecking of XML Schema constraints, such as
facets, or updates of complex types (such as the insertion
or deletion of a subtree). An obvious, but expensive, so-
lution is to re-validate the entire document after each such
expression. More efficient analysis is a subject for future
research.

Once an XJ program has passed static typechecking, the
XJ compiler emits Java code where the syntactic constructs
introduced by XJ are erased to appropriate calls to the XJ
runtime system. For example, Figure 5 depicts the code
generated from the XJ code sequence of Figure 1. The key
points to note are that all references to logical classes are
erased to the appropriate DOM type or List (if one cannot
determine that the result will be a singleton). XPath ac-
cesses are translated into calls into the runtime system (ac-
cessed through the class XJImpl), which invokes Xalan [1] to
evaluate XPath expressions on the provided context node.?

A disadvantage of the simple code generation shown in
Figure 5 is that explicit calls to an XPath engine like Xalan
incur a significant overhead. We have implemented an op-
timized code generation scheme, XJ,,;0, where simple (but
common) XPath expressions are translated into explicit nav-
igations of the DOM tree instead of calls to Xalan. For ex-
ample the XPath expression USPrice/text () with the con-
text node defined by current would be converted into a
DOM code that accesses all children of current with el-
ement tag USPrice and returns their text content. This
technique mitigates the overhead of the evaluation of XPath
expressions.

6. ANALYSIS AND OPTIMIZATION

An XML document, which is logically structured as a tree,
may be traversed in an XJ program using a combination
of XPath operators (implicit traversal) and standard Java-
based control flow constructs (explicit traversal). Standard

3Xalan implements XPath 1.0 whereas our semantics are
defined in terms of XPath 2.0. We aim to utilize XPath 2.0
implementations once they are readily available.



optimization techniques such as as common subexpression
elimination (CSE), loop-invariant code motion, and partial
redundancy elimination (PRE) must be extended to handle
XPath expressions as well as interactions between XPath
expressions and Java constructs. In this section, we first
describe optimizations for reducing parsing overhead and
XPath evaluation overhead. We then detail some analysis
problems that must be solved to enable these optimizations
and present a brief overview of the optimization framework
developed to address these issues.

Parsing Optimizations The parsing and building of an in-
memory version of an XML document can have significant
performance and memory overhead. In situations where
only small fragments of a document are utilized, filtering the
document and storing only the relevant portions in memory
can improve performance substantially. By deriving a con-
servative estimate, in terms of XPath expressions, of the
portions of an XML document that may be used by an XJ
program, one can use streaming XPath processors, such as
Xaos [2], to filter incoming documents. Such techniques have
been shown to improve the performance of XQuery proces-
sors [18]. Extending such techniques to XJ requires the
ability to analyze multiple XPath expressions in the con-
text of Java control flow. Such information can also enable
the use of techniques such as incremental parsing, where the
program can selectively control parsing depending on con-
trol paths taken at runtime.

Partial Redundancy Elimination When multiple XPath
expressions are evaluated over a document, and each ex-
pression is evaluated independently, there can be significant
overhead in redundant traversals of portions of the docu-
ment. For example, if two XPath expressions = = ‘p/b/c/d'
and iy = ‘p/b/c' that share common traversals occur on the
same control path, it is possible to compute the XPath
expression y and use the results to partially optimize or
strength reduce the computation of x.

Analysis Foundations In order to enable the optimiza-
tions described, it is necessary to be able to answer certain
key XPath analysis questions. Given two XPath expressions
z and y:

e Do the nodes in the result set of = precede (in docu-
ment order) the nodes in the result set of y?

e Is the intersection between the result sets of z and y
empty?

e Does the result set of x subsume that of y ?

e Can two XML references a and b be aliases, either by
referring to the same tree or by one referring to a node
within the tree referred to by the other?

Our analysis framework relies on transforming XPath ex-
pressions into a canonical representation for XPath expres-
sions, called the XDAG, which was introduced in our prior
work on the Xaos system [2]. The XDAG allows the deter-
mination of whether two XPath expressions are equivalent,
even if they are not identical in structure. For example, the
following two XPath expressions are equivalent, ‘p//a/b'
and ‘p//b[parent::al', if p refers the root of an XJ XML
value. Redundancy elimination can then be performed on
sets of equivalent XPath expressions.

l Benchmark H XJunopt [ XJppt0 [ Java+DOM ‘
Totals >7,200,000 579 531
DBOneRow 4,124 477 31
Periodic 388,660 1567 156
Mondial 1,023,078 62 46

Table 1: Running times in milliseconds for the tasks
described in Section 7, excluding parsing. A () in-
dicates that not all of the necessary optimizations
described in Section 5 have been implemented yet,
so some code was hand generated.

The XDAG and XML Schema information is then used
to approximate the set of nodes returned by z and y by ex-
tents of the form, E(z) = [lower(z),upper(x)] and E(y) =
[lower(y), upper(y)], where the lower and upper values are
expressed using Dewey numbers [25]. Through these ex-
tents, one can determine ordering constraints between the
results of XPath expressions. The types of the results of
evaluating an XPath expression, which can be obtained by
abstract evaluation of the XPath over the XML Schema [9],
can be used along with the extent information to determine
whether the result sets of two XPath expression may in-
tersect. In order to determine whether the result of one
XPath is contained in that of another, one can use standard
XPath containment techniques [21]. Our situation is, how-
ever, complicated by issues such as aliasing. The presence
of XML schema can help with the aliasing problem by pro-
viding rich type information. In addition, the use of XPath
expressions increases the effectiveness of escape analysis and
ownership analysis, since evaluation of an XPath expression
cannot cause an XML node to escape. The presence of ex-
tents information can further assist with the calculation of
alias information.

7. EXPERIMENTS

We have tested our prototype XJ compiler on a set of
four (small) benchmark programs. Table 1 shows the results
of our performance tests for the four benchmarks. Two of
the benchmarks are translations of XSLT programs (Totals,
DBOneRow) from the XSLTMark benchmark suite [6] into
XJ. The other two benchmarks (Periodic, Mondial) repre-
sent XML processing for two publicly available XML docu-
ments:

Totals walks over a 10 megabyte XML document comput-
ing the sum of certain values. In XJ, this involves several
simple XPath selections, which our prototype can compile
into direct accesses of the DOM tree.

DBOneRow finds a certain row in a 10 megabyte, 48,700-
row table, and displays the information that it contains. XJ
finds the row with the query ‘table/row[id="0432"]".

Periodic reads a 106 kilobyte document representing the
periodic table of elements, which it sorts according to atomic
weight.

Mondial manipulates the 1.28 megabyte MONDIAL ge-
ographic database [19]. It displays a summary of the infor-
mation about each country in the database, and sorts the
countries according to population.

Totals and DBOneRow were run on artificial datasets
that were large enough for the running times to be measured
with our instrumentation. However, Periodic and Mondial



use real-world data for which a single pass did not take long
enough for us to measure, so the numbers shown in Table 1
reflect 100 consecutive runs of these two tests.

We have written two versions of each test program, one in
XJ using higher-level constructs for XML processing and the
other in Java using the lower-level DOM API. We provide
results for the Java version, “Java+DOM”, and two sets of
results for the XJ version: one for the simple code gener-
ation scheme, “XJyunopt”, and one for the optimized code
generation scheme, “XJ,,;0” (described in Section 5).

The results clearly show that processing all XPath queries
at runtime (the “XJyunopt” case) is very expensive, and that
performance improvements of 100x to 10000x can be ob-
tained by the optimized code generation represented by the
“XJ,pt0” case. Since the code generated by the X.J compiler
for both the “XJunopt” and “XJ,pt0” cases also uses DOM,
the “Java+DOM?” case represents a lower bound on the exe-
cution time that can be expected for the two XJ cases. The
results in Table 1 indicate that the “XJ,,0” case can in-
deed approach the “Java+DOM?” case in performance. The
average gap for the four benchmarks is 23%, and we ex-
pect to further narrow this gap in future XJ compilers by
incorporating the optimizations outlined in Section 6.

We ran our tests using Xerces version 2.5.0 for XML pars-
ing [1], Xalan version 2.3.1 for runtime XPath processing,
and IBM’s Java 1.4.1 virtual machine on a 2.4 GHz Pentium
4 with 1 gigabyte of RAM. Each test was run repeatedly so
that we could obtain performance measurements after the
Java virtual machine had warmed up. We excluded parsing
times from the numbers in Table 1 because all three cases
use the Xerces parser, and the parsing time was the same in
all versions. It is widely recognized that parsing is currently
a major source of performance overhead in XML processing,
and indeed our test cases each took at least 10 times longer
to parse the data than to do the core tasks.

8. RELATED WORK

The languages most similar to XJ in design are XTATIC
and XOBE, both of which integrate XML as a first-class
construct into imperative object-oriented languages. Nei-
ther, however, support in-place modification of XML val-
ues. As a result, the manipulation of XML types in these
languages is functional in nature, which does not mesh well
with the imperative idioms of the base languages (Cf and
Java). Moreover, the data model and the semantics of XML
types and values do not correspond exactly to those in XML
standards such as XML Schema. For example, in XTATIC,
types correspond to non-deterministic top-down regular tree
automata and subtyping is structural, whereas XML Schema
types correspond (in some sense) to deterministic top-down
regular tree automata and subtyping is defined by name
through restrictions and extensions. Navigation of XML val-
ues in XTATIC is accomplished by pattern matching, which
has different characteristics than XPath expressions. While
XOBE does support XPath expressions, subtyping is struc-
tural. Since a design goal of XJ is to provide abstractions
intuitive to XML programmers, XJ is faithful to the XML
Schema and XPath standards.

XQuery [15, 31] is a typed functional language for op-
erating on XML documents. Like XJ, it is XML Schema
aware. Currently, XQuery does not support updates. XL [8]
is a language, based partially on XQuery, for programming
web services. Both these languages are designed as stand-

alone languages. The integration of XML into an existing
language such as Java raises challenges, especially in the
support for updates, in that the abstractions must be in-
tuitive to both XML and Java programmers. Where pos-
sible, however, a design goal of XJ has been to be close to
XQuery semantics. For example, the data model, and sub-
typing, of XML values in XJ is similar to that of XQuery,
and the semantics of XPath expressions are identical in XJ
and XQuery.

XDuce [12, 13] and CDuce [3] are functional languages for
writing programs that operate on XML data. Much of the
foundation of integrating XML into programming languages
was laid by the XDuce project, which also serves as the basis
for the design of XTATIC. Neither XDuce nor CDuce support
updates of XML values, nor are they consistent with XML
standards such as XML Schema.

JWIG [5] is a Java extension designed to support web
services by dynamically producing well-typed XML (and
XHTML), based on a “gap filling” technique. JWIG en-
sures at compile time that no run-time errors will occur
while constructing documents and that constructed doc-
uments will conform to their XHTML DTD. JWIG uses
Document Structure Description 2.0 as its schema language.
JWIG is geared more towards the generation of XML (espe-
cially, XHTML) data than full-scale XML-Java integration.
A similar “gap filling” approach is exhibited by XAcT, a
Java library [17] developed in the context of JWIG. XAcCT
provides various operations for creating and filling “named
holes” as well as extracting XML fragments. XACT uses
static typing to check for DTD output conformance. While
XAcT is a powerful XML transformation tool, it is not as
tightly integrated with Java as XJ is.

Frameworks for Java-XML bindings [4, 14] generate Java
classes statically from XML Schemas. JAXB [14] covers
most of XML Schema and it supports (in theory) evaluation
of XPath expressions over the represented objects. An ap-
plication may modify the in-memory object tree through in-
terfaces generated by the JAXB binding compiler. A draw-
back is that due to differences between the Java and XML
Schema data models, the generated Java classes do not cor-
respond exactly to the source XML Schema, especially when
complex content models are involved. A programmer must
understand the mapping rules used by the engine in order
to use the generated Java classes as proxies for the XML
data. Another drawback of binding approaches is that the
programmer is bound to a particular framework — switch-
ing to another framework may require drastic changes to
applications since the mapping rules may change. In con-
trast, programming language approaches such as XJ allow
the programmer to develop applications natively in XML —
the actual runtime implementation, which may use a binding
framework such as JAXB, is hidden from the programmer.
This allows applications to be more portable since switching
to another framework requires only a one-time reengineering
of the compiler.

9. CONCLUSIONS

We have designed a new language, XJ, that integrates
XML into Java. The distinguishing characteristics of XJ
are its support for in-place updates and its consistency with
XML standards such as XQuery and XML Schema. We have
built a prototype compiler for XJ, structured as a source-
to-source translator that uses DOM to access XML data



in the compiled code. Changing the code generator to ex-
periment with alternative binding mechanisms, for example
JAXB classes, is one area of future research. Since the data
model in XJ is similar to that of XQuery, integration with
an XQuery engine such as Galax [10] as the backend is an-
other option. Finally, we plan to explore static and dynamic
optimizations in the XJ compiler.
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APPENDIX

A. SAMPLE SCHEMA

This schema, derived from that in the XML Schema spec-
ification [28], is used for the examples in this paper.

<xsd:schema xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="POType"/>
<xsd:complexType name="POType">

<xsd:sequence>

<xsd:element name="item" type="Item" minOccurs="0"

max0Occurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Item">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName"

<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positivelnteger">

<xsd:maxExclusive value="100"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="USPrice" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="partNum" type="SKU"

="required"/>

type="xsd:string"/>

use=
</xsd:complexType>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:schema>
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