
RC23014 (W0311-156) November 21, 2003
Electrical Engineering

IBM Research Report

A Semi-Custom VLSI Design Flow and Its Application to the
Branch Address Calculator in IBM Power4 Microprocessor

Pong-Fei Lu, Gregory A. Northrop, Kevin A. Chiarot
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Semi-custom Design Flow and Its Application to the
Branch Address Calculator in the IBM Power4

Microprocessor

Pong-Fei Lu*, Gregory A. Northrop*, Kevin Chiarot**

ABSTRACT
In this paper we present the design and implementation of the
branch address calculator in the Instruction Fetch Unit (IFU) of
the IBM Power4 Microprocessor which operates at 1.7 GHz in a
0.18 µm SOI technology. A semi-custom methodology combining
flexible custom circuit design with automated tuning and physical
design tools is shown to provide new opportunities for
optimization of designs throughout the development cycle. The
resulting branch calculator supports a 3-cycle branch redirect loop
to the L1 cache, which is key to the IFU performance. To achieve
high fetch bandwidth, eight branch calculators are used to
calculate the branch addresses in parallel for the eight instructions
from the L1 cache. The replication of hardware makes the power-
performance tradeoff an important issue in the circuit
implementation. It is shown that with careful optimization, high
performance can be achieved with a robust, tuned static design,
thereby maintaining a power efficient design point.

Index Terms- Standard cell, circuit tuning, semi-custom
design, methodology, adder, branch address.

1. INTRODUCTION
The development of high performance microprocessors requires
concurrent design at many levels (logical, circuit, physical) with
large teams and tightly interlocked schedules. Often the best
design flow is one that most effectively addresses the natural
conflicts within this flow (e.g., logic stability vs. timing closure),
in contrast to one that simply applies the most modern or
aggressive approach in each domain. For example, full custom
design is very effective at optimizing performance and achieving
high area efficiencies, particularly where elements are identical
across the bit range of a dataflow stack, where design hierarchy
can be exploited with careful tiling to produce highly optimal
designs. This clearly applies to register files, working registers,
multiplexors, and the like. However, many of the most labor
intensive and critical functions, particularly those that implement
more complex numerical functions (adders, incrementers,
decrementers, and comparators) do not make such a compelling
case for full custom design. They are far less regular across the
stack, more complex, and often do not tile very easily. They are
often timing critical, and although the logical function usually has
a stable definition early in the design process, the most
appropriate circuit architecture may change throughout the design
cycle depending on the maturity of the input timing assertions and
the requirements at the outputs.

Also, a new processor design project usually spans several
generations of CMOS technology from the concept phase to the
final product, and may often include multiple technology remaps
over the life of the product cycle. The circuit simulation model for
the technology under development needs to be extrapolated from

the current one, and may contain large uncertainties. This ‘pre-
manufacturing’ model used for performance assessment in the
early design phase may change significantly in device electrical
characteristics as well as the physical design rules throughout the
development cycle. With conventional full-custom design styles,
the long lead-time of manual layout works for those complex
logic blocks mandates early commitment in the physical design
before the technology is fully stable. The design may therefore
run a risk of requiring major rework to accommodate late timing
fixes or design changes. A more versatile design style combining
flexible layout and performance tuning is desired to achieve the
needed fast turn-around time in a fluid design environment. This
paper describes such a ‘semi-custom’ design methodology, and its
application to the design of the branch calculator of IBM Power4
processor. The coordinated use of a common parameterized gate
representation, standard cell generation capabilities, place and
route merged with custom physical design, static transistor level
timing coupled with formal circuit tuning, have all led to
significant improvements in both quality-of-result and time-to-
market in the conventional static CMOS design domain. Inside
the Instruction Fetch Unit (IFU) branch address calculator, a 24-
bit binary adder, a 38-bit incrementer and a 38-bit decrementer
are designed using this new methodology. Coupled with careful
pipeline optimization, this implementation meets the 3-cycle loop
requirement for the taken-branch address redirect, which is
pivotal to the IFU performance. Quick turnaround for a late
change in the adder design also demonstrates the flexibility and
performance tuning advantages of this semi-custom methodology
in a changing design environment.

The paper is organized as follows. Section 2 gives an overview of
the semi-custom methodology flow. Section 3 describes the
micro-architecture requirements and the circuit implementation of
the branch address calculation in Power4 microprocessor. Section
4 presents the physical design of the functional blocks including
the adder, incrementer, and decrementer using the semi-custom
design technique. Section 5 concludes the paper.

Table 1 List of parameterized logic types

Logic type Comments
INVERTER
NAND2…NAND4 Multiple T
NOR2…NOR3 Multiple T
AOI21 & OAI21 Multiple T
AOI22 & OAI22
XOR2 & XNOR2 Pass-gate style
MUX2 2-Way transmission gate mux
PGMERGE G+P*C (restricted AOI21)
DRXOR2 Dual rail xor (true & comp inputs)

 1

 2

Schematic design Timing 2. SEMI-CUSTOM DESIGN FLOW
Restructure

2.1 Primitive parameterized bookset
Flatten to gate level Extraction

NW

PW

NW*T

NW

PW PW

Figure 1. Parameterized gate and sample instance, showing
parameters NW and PW. The expressions on the transistors are
widths, and T represents an optional taper factor.

The basic building block used in this methodology is a set of
parameterized gates, called the primitive bookset, an example of
which is shown in Fig 1. These gates are generally a single level
of conventional (inverting) static CMOS, with complimentary
pull-up and pull-down nfet and pfet trees, and the

parameterization simply scales the pfets with a parameter PW and
the nfets with a parameter NW. In general, each fet can have an
additional fixed multiplier, T, which is used to define multiple
flavors of each logic type making tradeoffs between the delays
from each input pin. With the exception of the XOR and XNOR
functions, all these primitive gates are a single level of inverting
logic. A complete set of represented topologies can be found in
Table 1.

Tune sizes Paras
itics

Select flatten

Map to standard cells Layout

Layout custom cells Place and route

Generate layout for
remaining cells

Schematics with
all leaf cell

Figure 2. Complete design flow using the primitive bookset.
The custom designed schematics can be a hierarchical
combination of parameterized and custom designed cells.

2.2.1 Schematic design (contents)
The initial schematic design can be all or part of a macro, but
generally should encompass function that can be floor-planned in
a simple block, and whose components can be routed
automatically. It can contain hierarchy, with the assumption that
it will be flattened to a set of routable leaf cells going into the
final physical design. It can contain a mixture of parameterized
primitive gates, cells from a standard cell library, and custom
cells.

2.2.2 Gate level flattening
Even though the design will be flattened to the leaf cell level
going into the physical design process, there can be significant
advantage to flattening a hierarchical design while still in
schematic form, particularly when tuning a design with low
symmetry in its structure or timing constraints. The flattened
schematic gives the circuit tuner maximum flexibility in adjusting
transistor widths (‘PW’ and ‘NW’) of each gate although the
starting schematic is usually hierarchical for ease of entry and
readability. Both the hierarchical and the flat schematics are kept
in the database.

Together, this basic set of parameterized gates is capable of
covering most of the design space for combinational static
circuitry found in a conventional ASIC library, as more complex
functions, such as wide ANDs and ORs are typically composed of
multiple levels of these gates. Note that this bookset is only a
schematic representation; there is no directly associated layout
representation.

A cell generation tool, described in more detail in section 2.5, is
designed specifically to produce layout in a row based standard
cell image for arbitrary values of NW and PW for each primitive
cell. The design flow used to implement custom designs that use
the primitive bookset is summarized in Fig 2. This flow is largely
automated, with most of the work contained in the initial design
and the place and route floorplan. After an initial pass, iteration
of the design is a relatively rapid process, making possible cost-
effective trials of multiple design implementations, and late
adjustments for changing performance requirements, both of
which are impractical when applying full custom physical design
techniques.

2.2.3 Static circuit tuning
Automated tuning of fet widths to optimize the timing slack of a
macro is one of the key elements of this methodology. This tuning
allows the exploitation of the advantage of the sizing flexibility of
the primitive bookset to optimize the timing and area of the
design. An expanded discussion of the tuning method can be
found in section 2.4.

2.2.4 Mapping to standard cell library
After sizing, many of the parameterized gates can often be
mapped to cells from a fixed standard cell library, with only a
modest change in fet sizes and a minimal impact on timing. This
helps to control data volume since all remaining cells must be
uniquely generated for use specifically by the macro in question.

2.2 Design flow step details
This section catalogs some of the details of each step in the flow.
Note that not all steps are always needed, and a wide variety of
combinations have been used, depending upon the details and
needs of each design. The primary goal of this flow is to retain as
much detailed control of the design at the schematic level as
possible while relying on layout automation, particularly place
and route techniques, for a rapid physical implementation.

2.2.5 Inclusion of custom leaf cell physical design
Custom leaf cells for the design must be abstracted for place and
route. These can be either standard cell image, or bit-slice blocks
that are pre-placed.

2.2.6 Automated cell generation
Any parameterized cells that remain after mapping to the standard
cell library are generated. Details of the generation process can
be found in section 2.5.

2.2.7 Floorplanning, place and route
An interactive floorplanning and place and route environment is
used to complete the layout of the designs. This environment
features:
1. Manually constructed floorplan with detailed wire contracts

and pin locations. If the semi-custom block is imbedded in a
macro, the wire contracts need to accommodate through-
wires at the next level of hierarchy, so that re-routing will
not interfere with macro assembly. As long as the abstract is
obeyed, the semi-custom block can be re-designed in
arbitrary ways even after the top level macro is done.

2. Customizable row configurations for placeable cells, capable
of multiple site types. Typical designs use a row height
image which is 16 wiring tracks high, but for designs
involving many small devices, 12-track or 14-track images
might be more suitable.

3. Pre-placement of non-placeable and placeable cells.
4. Placement constraints (regions, weights) to better guide the

placement and routing tools.
5. Code-based or manual pre-routing.
6. Grid based router (Cadence Warp Router).
7. Incremental (EC) placement to retain stable timing when

iterating a design.
In addition, the finished design has the following enhancement
options:
1. Flattening and post-processing the final layout to trim the

poly-gate and unused metal contact shapes in the (multi-
fingered) leaf cells to reduce parasitic capacitances.

2. Backfill of the ‘gaps’ in the layout with de-coupling
capacitors for better power-supply noise reduction.

2.2.8 Cell count and data volume reduction
After completion of place and route, designs that have made
heavy use of tuning and cell generation will have a large number
of unique cells, many used only once or a small number of times.
Selective flattening of these cells in the layout, with a
corresponding change back to the parameterized schematic
representation, helps strike a balance between a high cell count
and the large data volume of a completely flat layout.

2.2.9 Parasitic feedback into tuning
The effects of wiring parasitics have become quite important,
accounting for as much as 30% of the delay in even moderate
sized macros. Lumped capacitance, from either wire length
measurements (automatically extracted from the place and route
data) or from a subsequent full extraction of the layout, can be
merged into the schematic netlist and the circuit re-tuned to
compensate for its effect.

2.2.10 Design restructuring & alternate circuits
The combination of automated sizing and timing-based real
physical design allows the designer to try multiple restructurings
and circuit architectures, and make a confident comparison of the

relative quality of each approach. This part of the flow, and the
associated change in the approach to design, are the most
important part of this methodology, and the place where the most
benefit will be found when it is fully applied.

2.3 Circuit Tuner
A pivotal driver of this methodology is the circuit tuner used to
automate the sizing of transistors. The tool, called EinsTuner [2-
4], formulates the optimization problem through static timing,
optimizing slack in the presence of timing assertions. The large,
non-bitslice circuits for which semi-custom design is best suited
are ideal candidates for static tuning, since the tuner can keep
track of a large number of critical paths as tuning proceeds.
The EinsTuner static tuner is built on top of a static transistor-
level timing tool (EinsTLT), which combines a fast event-driven
simulator (SPECS) with a timing tool (Einstimer). The SPECS
simulator provides timing information (delay and slew) along
with first derivatives with respect to circuit parameters,
specifically transistor width. EinsTuner uses this information to
formulate the optimization problem for solution by a large-scale
general-purpose nonlinear optimization package LANCELOT [5],
generally optimizing a linear combination of slack and area,
nominally treating all fet widths as free parameters. Additional
features of this tool that make it effective in a practical design
environment include:

• Parasitics (lumped capacitance or RC) from physical design.
• Area modeled as the sum of fet widths.
• A fet-width ratioing mechanism, used to constrain fet widths

to match hierarchy or gate parameterization.
• Input capacitance, node slew, effective pull-up and pull-

down (beta ratio), and min/max fet-width constraints.
• Complete interactive environment (GUI), including size

constraint generation and back annotation.
In its current state of development, EinsTuner is capable of tuning
in excess of 3000 gates with run times normally < 24 hours (with
lumped capacitance). Thus even large circuits, such as a 64-bit
adder (~2000 gates), can be tuned with reasonable turn around
time. Experience has shown that tuning results are largely
independent of the starting point, meaning that a designer can
have a high degree of confidence that the results from a run are
optimal for the conditions and design.

2.4 Cell generation
A key component of the semi-custom design methodology is the
use of a cell generator to create layout corresponding to the
parameterized gates. This in-house tool, called C-cell, is not a
general-purpose cell compiler, but rather a script-based system
designed to produce optimal layout, but only for the defined
parameterized bookset. The definition of the parameterized gate
set is tightly integrated into this tool, delivering a framework that
supports semi-custom design in a number of ways:

• Contains functions to generate a set of layouts and associated
views for use as a standard cell library, based upon a list of
cell specifications: (gate, NW, PW).

• Provides features to parse a custom schematic, forming a list
of cells to generate to replace parameterized gates, and
minimizing the number of required cells assuming a
maximum allowed deviation in size. After this, cells are

 3

generated and modified custom schematic is created to
reference the generated cells.

• Includes a facility to convert between parameterized and
standard cell (fixed-size cell) representation.

• Has an integrated floorplanning aid with an interface to the
place and route tool.

• Does layout post-processing, including selective layout
flattening.

In the cell generation part of the tool, topology and technology
specific code takes as input the gate type, size parameters NW
and PW, and a global cell image, and generates layout after
selecting the optimal configuration from a range of finger
partitioning and topology options. In practice the measure of
optimality is cell area, but factors such as wireability,
manufacturability, etc., could also be weighted in the selection.
While this system is not capable of implementing an arbitrary
gate topology, it has been very successful in the domain of
conventional static CMOS, where there are a small number of
effective topologies, and optimization of the simplest (nand/nor)
types is vital. To date, the effort required to migrate and modify
this approach from technology to technology has been easily
justified in its use in both the high-performance synthesis
environment and in semi-custom design.

3. Branch Target Address Calculation in
IBM POWER4 Microprocessor
In the previous section, we described the new semi-custom design
methodology. In this section, we describe the application of this
methodology to the branch calculator of the IBM Power4
processor design [6,7]. We will first review the micro-architecture
requirements of the design and will then discuss the circuit
implementation.

3.1 Micro-architecture
The branch address calculator contains the logic required to
calculate the branch-taken next instruction address for four
different types of branch instructions: (1) Branch I-form (‘b’); (2)
Branch Conditional B-form (‘bc’); (3) Branch Conditional to Link
Register XL-form (‘bclr’); and (4) Branch Conditional to Count
Register XL-form (‘bcctr’) [8]. The B- and I-form instructions
contain different width immediate fields that specify either an
absolute address or a relative offset to the current instruction
address (CIA). Thus, the result of a calculation is either a sign-
extended absolute address or the sum of the CIA and the sign-
extended relative offset. The calculated target addresses will then
be sent to the branch instruction queue for handling at a later
stage, or will be sent to the Instruction Fetch Address Register
(IFAR) in case of a branch re-direction.
Figure 4 shows the timing and the block diagram of the branch
redirect dataflow in IBM Power4 design. In cycle 1, eight
instructions of 32 bits each are delivered by the I-cache (64KB,
direct-mapped [6]). In cycle 2, the cache data en route to the
branch calculator is muxed with other bypass data, and then fed to
the calculator where eight branch addresses are calculated in
parallel. In cycle 3, the final branch address is selected through an
8:1 priority mux, merged with other IFAR dataflow and then sent
back to I-cache to re-fetch. Physically, this loop path traverses
through four macros with long wires in between: (1) I-cache
SRAM; (2) the bypass mux macro; (3) the branch-calculator

macro; and (4) the IFAR macro containing the instruction fetch
logic. With this 3-cycle loop, predicted-taken branches can be
executed with only a penalty of a 2-cycle bubble, which
represents the best achievable branch performance with perfect
prediction accuracy. Any cycle slip in this path will incur a
significant CPI (cycle per instruction) penalty. Since this is the
most critical path in the IFU, separate master and slave latch
designs are used to eliminate setup time penalty as well as to
facilitate flexible latch placement (see [9] for details). The latch
points in Figure 4 denote the positions of scan-testable cycle
boundary (c1, or master) latches; the mid-cycle (c2, or slave)
latches are not shown.
The detailed block diagram of the branch address calculator is
shown in Figure 5. Note that PowerPC is a Big-Endian
architecture; that is, bits in a word are ordered from left to right.
The instruction is represented by ‘I(0:31),’ where bit 0 is the
MSB. First, bit 4 (‘I(4)’) of each instruction is examined to
differentiate between the “Branch” (op-code(0:5)=b’010000’) and
“Branch Conditional” (op-code(0:5)=b’010010’) instructions to
create a correct sign-extended immediate operand from either
I(6:29) or I(16:29). This immediate operand is then added to the
CIA, which is the instruction cache sector (1 sector=eight
instructions) address, IFAR(38:58), concatenated with the
instruction’s position (i.e. word-offset) in the sector and b’00’
since the instructions are always word-aligned (Table 2). The
result of the addition is then 4-way muxed with: 1) the original
sign-extended immediate operand based on the Absolute Address
bit (“AA”=I(30)) of the instruction to support an absolute address
[8], 2) the data from Link Stack (a register file for storing recently
used Link Register data) for ‘bclr’ instruction, and 3) the data of
Count Cache (a register file for storing recently used Count
Register data) for ‘bcctr’ instruction [7,10].

Table 2

Instruction slot IFAR(38:58) || word-offset field (0:2)

0 IFAR(38:58) || b’000’

1 IFAR(38:58) || b’001’

2 IFAR(38:58) || b’001’

3 IFAR(38:58) || b’011’

4 IFAR(38:58) || b’100’

5 IFAR(38:58) || b’101’

6 IFAR(38:58) || b’110’

7 IFAR(38:58) || b’111’

Although conceptually the eight branch calculators are eight
individual copies, there are opportunities for sharing. Since the
immediate fields are always 24 bits, the most significant 38 bits
are common to all eight instructions. Like the low-order bits,
there are four possible branch outcomes of address bit (0:37):

1) The sign-extended I(6) for immediate branch mode (‘b’
or ‘bc’ instructions with ‘AA’=1);

2) The link stack data (‘bclr’ instruction) for branch to
link;

3) The count cache data (‘bcctr’ instruction) for branch to
count;

 4

4) The incremented or decremented IFAR(0:37) for
relative branches.

In the latter case, if the sign-extended I(6) is a ‘0’, indicating a
forward branch, the IFAR will be incremented by one if the
carryout of the 24-bit adder is a ‘1;’ otherwise it will be
unchanged. Likewise, if the sign-extended I(6) is a ‘1,’ indicating
a backward branch, the IFAR will be decremented by one if the
carryout of the 24-bit adder is a ‘1’ (i.e. underflow); otherwise it
will be unchanged. Note that while the decrementer and
incrementer can be shared since all 8 instruction use the same
IFAR(0:37), the 24-bit adder and the associated target address
muxes are unique to each instruction, thus are replicated 8 times
(Figure 5). The selects for the muxes, ‘sel(0:3)’, which are
unique to each instruction, are generated by a random logic
macro outside the dataflow stack.

IFT*

By-pass mux

IFAR I-cache

3.2 Floorplan and critical path
Physically, the branch calculation logic is partitioned into 3
macros: (1) ‘IFTA,’ which includes the adder and muxes for the
low-order 24 bits; (2) ‘IFTI,’ which includes the incrementer, the
decrementer, and the muxes for the high-order 38 bits; and (3)
‘IFTM,’ which includes various muxes to select the final 62-bit
branch addresses sent to the IFAR and branch instruction queues
(Figure 5). Note that a ‘macro’ is the basic block in timing and
chip integration in the IBM Power4 design methodology [9]. The
logic is partitioned into these three sections primarily to limit the
total transistor count. With this choice of partitioning, the
extraction, timing, and checking tools have reasonable runtime.
Because of the distinct dataflow of high-order and low-order bits,
the separation of IFTA and IFTI is relatively straightforward and
there are only two interface signals from IFTA to IFTI for each of
the eight instructions: the adder ‘carryout’ and the sign-extended
I(6). Figure 6 shows the micrograph of the IFU and the three
‘IFT’ macros relative to the I-cache and IFAR macro. Figure 7
shows the close-up view of the IFT* macros. The total IFU data
stack is constrained in height due to the processor core chip
floorplan allocation; it is therefore crucial to minimize the vertical
dimension of the adder layout that is replicated eight times in a 2
column x 4 row matrix.

-

The dataflow in Fig 5 represents the logic contained in cycle 2
and the first half of cycle 3 in the timing diagram (Fig. 4). The I
cache access consumes all of cycle 1, and the data are driven

Figure 6: Micrograph of IFU. The arrows show the dataflow of
the 3-cycle path. There are eight instructions (32 bytes) from I-
cache outputs which turn 90 degrees to the IFT* macros. The
branch redirect address is calculated in the IFT* macros, then
sent to IFAR fetch logic macro for final selection. The target bits
(48:58) are sent back to I-cache in the case of branch redirect.
horizontally across the I-cache width (Figure 6). Leaving the
cache, the total delay time is nearly half the cycle. This time
includes the bypass mux, the buffers and the wire delay, and the
2:1 mux at the IFTA input. As a result, only half of a cycle for the
adder delay remains to make the setup time at the cycle boundary
c1 latch in cycle 2. Cycle 3 is fully consumed by the delay of the
8:1 branch mux in IFTM, buffer delay to drive to IFAR macro,
the delay of the 3:1 IFAR late mux, the wire delay, and the fanout
to various arrays. Therefore, there is no slack to steal from in
cycle 3 and the adder delay must be less than a half-cycle in order
to make the critical path.
The incrementer and decrementer are less timing-critical
compared to the adder in performance. In Figure 5, the IFTI
muxing structure for bit (0:37) is optimized by taking advantage
of the timing skew in different paths. The signals from the Link
Stack, the Count Cache (both register files outside the datastack),
and the IFAR are all clock-launched out of latches. The signals
arrive early and can be pre-muxed with the sign-extended I(6),
which are also early compared to the incrementer and
decrementer results. This arrangement effectively reduces the 5-
way mux to a 2-way mux. The 2:1 mux, relevant only to relative
branches, is gated by the ANDing of ‘sel(3)’ (selecting adder
result) and the sign-extended ‘I(6)’ to determine whether it is a
forward or a backward relative branch. If sel(3)=0, identical pre-
muxed results flow through both 2-way muxes, and the carryout
bit has no effect (i.e. non-relative branch). If sel(3)=1 and I(6)=0
(1), the incrementer (decrementer) result flows through one of the
two 2:1 muxes, while the IFAR bits flows through the other 2:1
mux. The adder carryout gates the final selection. This pre-
muxing scheme relaxes the performance requirements for the
incrementer and the decrementer as there is nearly a cycle for the
decrement/increment delay and 2:1 mux function. Note that the
carryout is latched up in IFTA before it is sent to IFTI to drive 38
muxes. The latter forces the duplicate latches for the two interim
2:1 mux results in IFTI in order to align the cycle (cf. Figure 5).
The end results are further muxed in the IFTM according to

5

One key circuit decision in the early design phase is to imbed the
4:1 mux in the adder and to hide the delay behind the adder
(Figure 8). The assumption is that the I-cache data through the
adder is the critical path, and the mux selects and register file data
arrive early. Since the carry bit is the longest path, the partial
sums can be pre-muxed with the other 3 inputs and the final result
selected by the carry. The latter leads to a skewed ‘late-mux’
design as shown in Fig. 9(a). As typical in early phases of a new
processor design project, this ‘dataflow-centric’ view drives the 3-
cycle path delay assessment. It is assumed that controls are non-
critical; however, this assumption turns out not to be true, as will
be discussed later.

priority encoding logic before they are sent to the branch queues,
and in the case of predicted taken branches, sent back to IFAR to
re-fetch from the instruction cache.
The sum and carryout from the 24b adder are both critical paths
of the branch target address calculator. The incrementer and the
decrementer are not as performance critical, but need to be layout
efficient to avoid increasing the data stack height since the whole
IFU floorplan is constrained in the vertical dimension. Therefore
these used a 14-track row height instead of the 16-track image for
the standard cells used elsewhere throughout this project.

4. Circuit Implementation
Due to the large transistor count of the chip (170 million), and the
power constraints faced by the design team, the Power4 design is
predominantly a static design [9]. Dynamic circuits are of used
sparingly in SRAMs and other critical regions. Since the 24b
adder is replicated eight times, it is important to stay within a
strict power budget while striving for performance. Although
well-tuned dynamic designs can achieve high performance levels,
they are noise sensitive as well as power-hungry. Long design
times and the sensitivity to model changes (p-to-n strength ratio,
capacitive coupling, etc.) are also ill suited for an evolving design
environment as in the Power4 project. In comparison, the static
circuits enjoy an unequivocal robustness. Our approach to tackle
the performance issue is through circuit tuning. The tuner
optimizes the use of device widths in the most economical way by
sizing up the gates in the critical path while sizing down the gates
in non-critical path. With a tool-assisted physical design (PD)
environment as described in Section 2, the design can be iterated
rapidly. The designer chooses the best circuit architecture, and
manages the timing assertions. The tuner then adjusts the device
sizes to minimize the delay. The PD can be completely de-
coupled from the macro assembly as long as the abstract is
obeyed during design iterations. The advantage of this semi-
custom design methodology is its tunability and PD flexibility.
Using this approach, we have seen 10-15% performance
improvement in typical logic macros for a given area/power
constraint .

4.2 Circuit tuning and layout
Once the schematic design is complete and verified, the physical

d
s
‘
a
t
m
m
c
w
e
r
h
p
p
l
d
c
m
p
a
w
f
c
(
u
T

um_bar

The surrounding latches and muxes use full custom design for
better layout density. The semi-custom blocks are imbedded in
the IFTA (adder) and IFTI (incrementer and decrementer) macro
as shown in Figure 7. The IFTM macro is a full custom design.
This mixed design style balances the layout density and design
flexibility. The top-level macro wiring is done manually; the
global wires are blocked out in the abstract of the imbedded semi-
custom blocks to avoid conflicts during iterations.

4.1 Adder Circuit Architecture
The 24-bit adder is a static, carry-look-ahead Ling adder [11]. It is
well known that the carry formation of the Ling adder is a stage
faster than that of the usual adder. The 24 bits are grouped into
six 4-bit blocks for carry propagation. Each block is sub-divided
into two 2-bit groups due to the fan-in limit of 2 in the AOI and
OAI in the bookset in Table 1. Within each group, the local sum
lgeneration uses conditional-sum logic. The local sum is
implemented in parallel with the ‘pseudo-carry‘ [12], and the
result of the pseudo-carry bit is used to select the final value.

s

selects
count
stack

immed
sum

selects

count
stack

immed

(a)

(b)
restructure
Figure 9: Branch mux implementations at the output of the
adder. Initial implementation (a) assumed selects (from
controls) were not critical, and final (b) with optimized control
and sum paths.
esign is implemented according to the flow shown in Fig. 2. The
chematic hierarchy is first flattened to the gate level, then
EinsTuner’ is used to adjust the device widths. Using the netlist
nd the input/output (i/o) assertions (timing, capacitance load) as
he input, device sizes (NW, PW) are optimized for each gate to
inimize the delay. Other constraints such as total device width,
ax/min slew rates and beta ratio can also be set by the user. The

onvergence depends on the constraints; but in most cases it is
ell behaved. The tuner strives for minimum cycle time by

xamining all possible paths [2]. Therefore, the quality of the end
esult (i.e. whether the correct critical paths are optimized, and
ow much the actual performance gain is) depends on the
reciseness of the i/o timing assertions. The latter presents a
articular challenge for designs with transparent latches. Since the
atches are all in flush mode, the timing assertions at the adder
epend on the path delay from the I-cache to IFTA. To better
ontrol the timing and wireability, the major I-cache buses to IFT
acros are engineered pre-routes [13,14]. To assist the critical

aths through the low-order (38:61) bits, the IFU dataflow stack is
rranged with the LSB (bit 61) facing the I-cache to shorten the
ire length (Figure 7). The adder timing assertions are estimated

rom the IFTA macro timing ‘back assertions’ generated by the
hip timing run by Einstimer. Note that not all branch addresses
0:61) have the same required arrival time as only bits (48:58) are
sed for I-cache address for the 3-cycle path depicted in Figure 4.
hese 11 bits are used to select one out of the 2K sectors of the

6

64KB L1 cache. Therefore, non-uniform timing assertions are
applied to stress the timing-critical low-order bits (48:58).
The optimized parameterized gates are fed to the C-cell generator
to generate the layouts and abstracts. The cell is 16 tracks in
height, consistent with the standard cell library. However, no
mapping back to standard cell library (as described in 2.2.4) is
done since the adder is performance critical. The layout is done
by place and route (P/R) in Cadence Silicon Ensemble. The
abstract that defines P/R constraints is customized through
manually adjusting the pin placement and metal blockage. A
limited number of M2 and M3 tracks available for use in the
adder as some tracks are reserved for the macro level routing
through the stack. The abstract serves as a contract between the
imbedded adder module and the macro. It is kept unchanged when
iterating the design, so that the macro level wiring can be
preserved. The final layout is flattened into shapes and a
‘trimming’ routine is used to cut excess metal and PC shapes of
the unused pins to reduce parasitics. The trimming step improves
the delay by about 2-3%. After the layout is extracted and timed,
the parasitic capacitances are inputted to the tuner to iterate the
process. The turnaround time is less than a day for macros
containing ~500 gates. Usually two to three iterations are
sufficient to bring the design to convergence.

4.3 Adder design iterations
The key issue of the semi-custom design methodology is the
accuracy of the timing assertions fed to the tuner. As the control
signal timing is unknown at the beginning of the processor design,
the timing assertions are largely estimates that may not be
substantiated as the chip timing stabilizes. In the 24-bit adder
example, the assumption of the mux selects timing was found to
be incorrect at the first tape-out when the control macros were
built and timed. The arrival time of the select path was as late as
the local sum from the adder, and the circuit construct in Fig. 9(a)
was improper. To address these issues, the mux was re-designed
with a balanced AOI-NAND scheme (Fig. 9(b)). The new
schematic was then re-tuned and iterated based on the correct
timing assertions. The new design was completed in a week, and
the negative slack was reduced by more than 80 ps. Because of
the contract-based place and route, the adder re-design did not
cause any global wiring change. The adder delay including the
built-in 4:1 mux is slightly greater than nine FO4, where one FO4
delay unit is the average delay of an inverter with fanout of four.
The layout uses seven 16-track rows.
The other issue is that a new microprocessor design project like
Power4 often straddles across several different technology
generations. Each technology migration induces device model
changes (for example, different p-to-n strength ratio) which are
difficult to adjust to for full-custom designs. One benefit of the
new semi-custom design approach is that the timing shifts can be
readily accommodated by the tuner, and with the flexible physical
design techniques, adjustments can be made in a timely fashion.
We estimate that the semi-custom design approach reduces the
total design time by at least 50%, even for designers unfamiliar
with the place and route tools, who need to make an initial
investment in learning the tools.

4.4 Incrementer and Decrementer
The physical design of the 38-bit incrementer and 38-bit
decrementer follows the same flow of the adder design, but the

area instead of the speed is the more constrained parameter in
design tuning. Logically, the incrementer increases the input by
one, which means that for every bit position ‘i’, if all of the
previous lower-order bits are one, there is a carry, and the output
needs to change state. Thus the logic expression is:
incr(i) = a(i) XOR (AND(all_previous_bits))
Conversely, the decrementer reduces the input by one. The latter
means that for every bit position ‘i,’ if none of the previous lower-
order bit is a one, the output needs to change state. The logic
expression is:
decr(i) = a(i) XNOR (OR(all_previous_bits))
Thus, the critical path for the incrementer is a wide-AND tree,
while for the decrementer it is a wide-OR tree. The wire-AND
propagation for the incrementer is shown in Figure 10; the wide-
OR has exactly the same topology except that the inputs are
inverted. The chain is built by alternating NAND3 and NOR2
gates. It turns out that there are many small gates in the
incrementer and the decrementer design due to the much simpler
logic cone compared to the adder. For a row-based design, each
gate has the same height. Small gates are not area efficient as they
leave a lot of unused silicon area. Since the IFTI layout adds
directly to the IFT* data stack height (see Figure 7), it is
advantageous to reduce the row height for better efficiency. The
C-cell generator described in 2.4 supports different cell images
(12/14/16 tracks). Both designs are tuned by limiting the area to
fit three 14-track rows. The standard 16-track row image would
have cost six more tracks (48 vs. 42) per layout. The incrementer
and decrementer delays are 10.7 and 11.4 FO4, respectively.

5. Conclusion
The semi-custom VLSI design methods described in this paper
were shown to improve the ultimate quality and performance of
high-speed circuits in a number of ways. The true impact extends
well beyond the ability to either improve an existing design, for
example, through circuit tuning, or to implement one quickly
using place and route. Being able to adapt quickly to changes
associated with global timing convergence is a major advantage
of the semi-custom design approach. The biggest gains come
through changing the approach to custom design. This
methodology provides a true ‘on-demand’ solution in an evolving
design environment, be it for the performance enhancement or for
the area saving. We demonstrated the successful application of
the semi-custom design methodology to the branch address
calculator of the IBM Power4 microprocessor. The AC LBIST
testing showed that the 3-cycle path described in this paper
operates at more than 1.7GHz at 1.6 V.

6. ACKNOWLEDGMENTS
We thank Mary Wisniewski for providing the chip micrograph,
Howard Levy and Eric Shorn the early IFT schematic design
work, Brian Konigsburg for leading the IFU logic team, Joshua
Frederich for AC LBIST data, and Jim Warnock for many circuit
discussions, and IFU Circuit Team at Watson Research Center for
collaboration. We also thank Chandu Visweswariah, Phil
Strenski, and Ee Cho (circuit tuning), Joe Nocerra and Ching
Zhou (cell generation), Brian Curran, Tom McPherson (timing
convergence), and many designers for their experiences and
suggestions.

 7

7. REFERENCES
[1] G. A. Northrop, P.-F. Lu, “A Semi-Custom Design Flow in

High-Performance Microprocessor Design,” Design
Automation Conference, 2001. Proceedings , pp. 426 –431.

[2] C. Visweswariah and A. R. Conn, Formulation of static
circuit optimization with reduced size, degeneracy and
redundancy by timing graph manipulation, IEEE
International Conference on Computer-Aided Design, pages
244-251, November 1999.

[3] A. R. Conn, I. M. Elfadel, W. W. Molzen, Jr., P. R. O'Brien,
P. N. Strenski, C. Visweswariah, and C. B. Whan, Gradient-
based optimization of custom circuits using a static-timing
formulation, Proc. Design Automation Conference, pages
452-459, June 1999.

[4] A. R. Conn and C. Visweswariah, Overview of continuous
optimization advances and applications to circuit tuning,
Proc. International Symposium on Physical Design, April
2001, Sonoma County, CA.

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT:
A Fortran Package for Large-Scale Nonlinear Optimization
(Release A). Springer Verlag, 1992.

[6] Anderson, Carl J., et. al., Physical Design of a Fourth-
Generation POWER GHz Microprocessor, ISSCC Digest of
Technical Papers, 232-233, Feb 2001.

[7] J. M. Tendler et. al., “POWER4 system microarchitecture,”
IBM J. Research and Development, 46, 2002, 5-25.

[8] PowerPC AS User Instruction Set Architecture, Book I.

[9] J. D. Warnock et. al., “The Circuit and Physical Design of
the POWER4 Microprocessor,” IBM J. Research and
Development, 46, 2002, 27-51.

[10] http://www.ibm.com/servers/eserver/pseries/hardware/white
papers/power4.html

[11] Huey Ling, “High-Speed Binary Adder,” IBM J. Res.
Develop., Vol. 25, No. 3, May 1981, pp. 156-166.

[12] M. J. Flynn and S. F. Oberman, “Advanced Computer
Arithmetic Design,” Chap. 1, 2001, John Wiley & Sons.

[13] "The physical design of on-chip interconnections," M. Y. L.
Wisniewski, E. Yashchin, R. L. Franch, D. P. Conrady, D. N.

Maynard, G. Fiorenza, I. C. Noyan, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
March 2003, vol. 22, no. 3.

[14] M. Y. L. Wisniewski et al., “The Physical Design of On-
Chip Interconnections: Part I: Quantification of Interconnect
Properties,” Research Report RC-22345, IBM Thomas J.
Watson Center, Jan. 20, 2002.

 Figure 8: Schematic of (a) conventional carry-select adder,
and (b) carry-select adder with imbedded 4:1 mux. The
three other inputs to the 4:1 mux are link stack, count cache,
and the immediate operand.
8

Figure 4: Timing and block diagram of the 3-cycle branch redirect path. Cycle 1 is the array access
(BHT: Branch History Table; I-ERAT: Instruction Effective-to-Real Address Translator; I-Dir:
Instruction Directory; CC: Count Cache; LK: Link Stack). Cycle 2 is the branch address calculation.
Cycle 3 is the branch target address muxing and IFAR logic.
9

 Figure 10: Carry-chain of an incrementer. The grouping is shown as 3-2-3-2, with alternating NAND

and NOR. The (LSB) incr<37> is the inversion of the input. The (MSB) incr<0> is XOR of bits <0:1>
and the carry-in.

 10

 Figure 5: Block diagram of the branch calculator. The red arrowed line is the boundary of the dataflow of

the high-order bits (0:37) (IFTI) and the dataflow of the low-order bits (38:61) (IFTA). There are eight unique
copies of the adder and the associated mux in IFTA and IFTI for each instruction. The decrementer and
incrementer are shared among the eight instructions. The Link Stack and Count Cache are register files
outside the datastack. The IFTM macro contains various muxes for generating target addresses of the branch
instruction. The whole branch calculator occupies cycle 2 and the first half of cycle 3 in Figure 4.

 11

IFTA I

M

Inc3
Dec3

k

r

r

r

r

r

r

IFTC (RLM)

Figure 7: Chip micrograph of the IFT* macros. The adder, incrementer, and decrementer are semi-custo
the synthesized RLM that generates the select signals to drive the muxes in the IFTA, IFTI, and IFTM m
line oulines the 62 bit datastack. Bit 61 faces the cache SRAMs to reduce the wire length of the critical pa

IFT
IFT
Adde
Adde
Adde
Adder
Adde
Adde
Adde
Adder
62b dataflow stac

<61>
8
8

m designs. The IF
acros. The dash-d

th.
<0>

TC is
otted

12

	INTRODUCTION
	SEMI-CUSTOM DESIGN FLOW
	Primitive parameterized bookset
	Design flow step details
	Schematic design (contents)
	Gate level flattening
	Static circuit tuning
	Mapping to standard cell library
	Inclusion of custom leaf cell physical design
	Automated cell generation
	Floorplanning, place and route
	Cell count and data volume reduction
	Parasitic feedback into tuning
	Design restructuring & alternate circuits

	Circuit Tuner
	Cell generation

	Branch Target Address Calculation in IBM POWER4 Microprocessor
	Circuit Implementation
	Adder Circuit Architecture
	Circuit tuning and layout
	Adder design iterations

	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

