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ABSTRACT 
In this paper we present the design and implementation of the 
branch address calculator in the Instruction Fetch Unit (IFU) of 
the IBM Power4 Microprocessor which operates at 1.7 GHz in a 
0.18 µm SOI technology. A semi-custom methodology combining 
flexible custom circuit design with automated tuning and physical 
design tools is shown to provide new opportunities for 
optimization of designs throughout the development cycle. The 
resulting branch calculator supports a 3-cycle branch redirect loop 
to the L1 cache, which is key to the IFU performance. To achieve 
high fetch bandwidth, eight branch calculators are used to 
calculate the branch addresses in parallel for the eight instructions 
from the L1 cache. The replication of hardware makes the power-
performance tradeoff an important issue in the circuit 
implementation. It is shown that with careful optimization, high 
performance can be achieved with a robust, tuned static design, 
thereby maintaining a power efficient design point.     

Index Terms- Standard cell, circuit tuning, semi-custom 
design, methodology, adder, branch address. 

1. INTRODUCTION 
The development of high performance microprocessors requires 
concurrent design at many levels (logical, circuit, physical) with 
large teams and tightly interlocked schedules.  Often the best 
design flow is one that most effectively addresses the natural 
conflicts within this flow (e.g., logic stability vs. timing closure), 
in contrast to one that simply applies the most modern or 
aggressive approach in each domain.  For example, full custom 
design is very effective at optimizing performance and achieving 
high area efficiencies, particularly where elements are identical 
across the bit range of a dataflow stack, where design hierarchy 
can be exploited with careful tiling to produce highly optimal 
designs.  This clearly applies to register files, working registers, 
multiplexors, and the like. However, many of the most labor 
intensive and critical functions, particularly those that implement 
more complex numerical functions (adders, incrementers, 
decrementers, and comparators) do not make such a compelling 
case for full custom design.  They are far less regular across the 
stack, more complex, and often do not tile very easily. They are 
often timing critical, and although the logical function usually has 
a stable definition early in the design process, the most 
appropriate circuit architecture may change throughout the design 
cycle depending on the maturity of the input timing assertions and 
the requirements at the outputs.   

Also, a new processor design project usually spans several 
generations of CMOS technology from the concept phase to the 
final product, and may often include multiple technology remaps 
over the life of the product cycle. The circuit simulation model for 
the technology under development needs to be extrapolated from 

the current one, and may contain large uncertainties. This ‘pre-
manufacturing’ model used for performance assessment in the 
early design phase may change significantly in device electrical 
characteristics as well as the physical design rules throughout the 
development cycle. With conventional full-custom design styles, 
the long lead-time of manual layout works for those complex 
logic blocks mandates early commitment in the physical design 
before the technology is fully stable. The design may therefore 
run a risk of requiring major rework to accommodate late timing 
fixes or design changes. A more versatile design style combining 
flexible layout and performance tuning is desired to achieve the 
needed fast turn-around time in a fluid design environment. This 
paper describes such a ‘semi-custom’ design methodology, and its 
application to the design of the branch calculator of IBM Power4 
processor. The coordinated use of a common parameterized gate 
representation, standard cell generation capabilities, place and 
route merged with custom physical design, static transistor level 
timing coupled with formal circuit tuning, have all led to 
significant improvements in both quality-of-result and time-to-
market in the conventional static CMOS design domain.  Inside 
the Instruction Fetch Unit (IFU) branch address calculator, a 24-
bit binary adder, a 38-bit incrementer and a 38-bit decrementer 
are designed using this new methodology. Coupled with careful 
pipeline optimization, this implementation meets the 3-cycle loop 
requirement for the taken-branch address redirect, which is 
pivotal to the IFU performance. Quick turnaround for a late 
change in the adder design also demonstrates the flexibility and 
performance tuning advantages of this semi-custom methodology 
in a changing design environment.  

The paper is organized as follows. Section 2 gives an overview of 
the semi-custom methodology flow. Section 3 describes the 
micro-architecture requirements and the circuit implementation of 
the branch address calculation in Power4 microprocessor. Section 
4 presents the physical design of the functional blocks including 
the adder, incrementer, and decrementer using the semi-custom 
design technique. Section 5 concludes the paper.  

Table 1 List of parameterized logic types 

Logic type Comments 
INVERTER  
NAND2…NAND4 Multiple T 
NOR2…NOR3 Multiple T 
AOI21 & OAI21 Multiple T 
AOI22 & OAI22  
XOR2 & XNOR2 Pass-gate style 
MUX2 2-Way transmission gate mux 
PGMERGE G+P*C (restricted AOI21) 
DRXOR2 Dual rail xor (true & comp inputs) 
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Schematic design Timing 2. SEMI-CUSTOM DESIGN FLOW 
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NW  

PW  

NW*T 

NW 
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Figure 1. Parameterized gate and sample instance, showing 
parameters NW and PW.  The expressions on the transistors are 
widths, and T represents an optional taper factor. 

The basic building block used in this methodology is a set of 
parameterized gates, called the primitive bookset, an example of 
which is shown in Fig 1.  These gates are generally a single level 
of conventional (inverting) static CMOS, with complimentary 
pull-up and pull-down nfet and pfet trees, and the 

parameterization simply scales the pfets with a parameter PW and 
the nfets with a parameter NW.  In general, each fet can have an 
additional fixed multiplier, T, which is used to define multiple 
flavors of each logic type making tradeoffs between the delays 
from each input pin.  With the exception of the XOR and XNOR 
functions, all these primitive gates are a single level of inverting 
logic.  A complete set of represented topologies can be found in 
Table 1. 

Tune sizes Paras
itics 

Select flatten 

Map to standard cells Layout 

Layout custom cells Place and route

Generate layout for 
remaining cells

Schematics with 
all leaf cell 

Figure 2. Complete design flow using the primitive bookset.  
The custom designed schematics can be a hierarchical 
combination of parameterized and custom designed cells. 

2.2.1 Schematic design (contents) 
The initial schematic design can be all or part of a macro, but 
generally should encompass function that can be floor-planned in 
a simple block, and whose components can be routed 
automatically.  It can contain hierarchy, with the assumption that 
it will be flattened to a set of routable leaf cells going into the 
final physical design.  It can contain a mixture of parameterized 
primitive gates, cells from a standard cell library, and custom 
cells. 

2.2.2 Gate level flattening 
Even though the design will be flattened to the leaf cell level 
going into the physical design process, there can be significant 
advantage to flattening a hierarchical design while still in 
schematic form, particularly when tuning a design with low 
symmetry in its structure or timing constraints. The flattened 
schematic gives the circuit tuner maximum flexibility in adjusting 
transistor widths (‘PW’ and ‘NW’) of each gate although the 
starting schematic is usually hierarchical for ease of entry and 
readability. Both the hierarchical and the flat schematics are kept 
in the database. 

Together, this basic set of parameterized gates is capable of 
covering most of the design space for combinational static 
circuitry found in a conventional ASIC library, as more complex 
functions, such as wide ANDs and ORs are typically composed of 
multiple levels of these gates.  Note that this bookset is only a 
schematic representation; there is no directly associated layout 
representation. 

A cell generation tool, described in more detail in section 2.5, is 
designed specifically to produce layout in a row based standard 
cell image for arbitrary values of NW and PW for each primitive 
cell. The design flow used to implement custom designs that use 
the primitive bookset is summarized in Fig 2.  This flow is largely 
automated, with most of the work contained in the initial design 
and the place and route floorplan.  After an initial pass, iteration 
of the design is a relatively rapid process, making possible cost-
effective trials of multiple design implementations, and late 
adjustments for changing performance requirements, both of 
which are impractical when applying full custom physical design 
techniques. 

2.2.3 Static circuit tuning 
Automated tuning of fet widths to optimize the timing slack of a 
macro is one of the key elements of this methodology. This tuning 
allows the exploitation of the advantage of the sizing flexibility of 
the primitive bookset to optimize the timing and area of the 
design. An expanded discussion of the tuning method can be 
found in section 2.4. 

2.2.4 Mapping to standard cell library 
After sizing, many of the parameterized gates can often be 
mapped to cells from a fixed standard cell library, with only a 
modest change in fet sizes and a minimal impact on timing.  This 
helps to control data volume since all remaining cells must be 
uniquely generated for use specifically by the macro in question.  

2.2 Design flow step details 
This section catalogs some of the details of each step in the flow.  
Note that not all steps are always needed, and a wide variety of 
combinations have been used, depending upon the details and 
needs of each design.  The primary goal of this flow is to retain as 
much detailed control of the design at the schematic level as 
possible while relying on layout automation, particularly place 
and route techniques, for a rapid physical implementation. 

2.2.5 Inclusion of custom leaf cell physical design 
Custom leaf cells for the design must be abstracted for place and 
route.  These can be either standard cell image, or bit-slice blocks 
that are pre-placed. 



2.2.6 Automated cell generation 
Any parameterized cells that remain after mapping to the standard 
cell library are generated.  Details of the generation process can 
be found in section 2.5. 

2.2.7 Floorplanning, place and route 
An interactive floorplanning and place and route environment is 
used to complete the layout of the designs.  This environment 
features: 
1. Manually constructed floorplan with detailed wire contracts 

and pin locations. If the semi-custom block is imbedded in a 
macro, the wire contracts need to accommodate through-
wires at the next level of hierarchy, so that re-routing will 
not interfere with macro assembly. As long as the abstract is 
obeyed, the semi-custom block can be re-designed in 
arbitrary ways even after the top level macro is done.   

2. Customizable row configurations for placeable cells, capable 
of multiple site types. Typical designs use a row height 
image which is 16 wiring tracks high, but for designs 
involving many small devices, 12-track or 14-track images 
might be more suitable.   

3. Pre-placement of non-placeable and placeable cells. 
4. Placement constraints (regions, weights) to better guide the 

placement and routing tools.  
5. Code-based or manual pre-routing. 
6. Grid based router (Cadence Warp Router). 
7. Incremental (EC) placement to retain stable timing when 

iterating a design.  
In addition, the finished design has the following enhancement 
options:  
1. Flattening and post-processing the final layout to trim the 

poly-gate and unused metal contact shapes in the (multi-
fingered) leaf cells to reduce parasitic capacitances. 

2. Backfill of the ‘gaps’ in the layout with de-coupling 
capacitors for better power-supply noise reduction. 

2.2.8 Cell count and data volume reduction 
After completion of place and route, designs that have made 
heavy use of tuning and cell generation will have a large number 
of unique cells, many used only once or a small number of times.  
Selective flattening of these cells in the layout, with a 
corresponding change back to the parameterized schematic 
representation, helps strike a balance between a high cell count 
and the large data volume of a completely flat layout. 

2.2.9 Parasitic feedback into tuning 
The effects of wiring parasitics have become quite important, 
accounting for as much as 30% of the delay in even moderate 
sized macros.  Lumped capacitance, from either wire length 
measurements (automatically extracted from the place and route 
data) or from a subsequent full extraction of the layout, can be 
merged into the schematic netlist and the circuit re-tuned to 
compensate for its effect. 

2.2.10 Design restructuring & alternate circuits 
The combination of automated sizing and timing-based real  
physical design allows the designer to try multiple restructurings 
and circuit architectures, and make a confident comparison of the 

relative quality of each approach.  This part of the flow, and the 
associated change in the approach to design, are the most 
important part of this methodology, and the place where the most 
benefit will be found when it is fully applied. 

2.3 Circuit Tuner 
A pivotal driver of this methodology is the circuit tuner used to 
automate the sizing of transistors. The tool, called EinsTuner [2-
4], formulates the optimization problem through static timing, 
optimizing slack in the presence of timing assertions. The large, 
non-bitslice circuits for which semi-custom design is best suited 
are ideal candidates for static tuning, since the tuner can keep 
track of a large number of critical paths as tuning proceeds. 
The EinsTuner static tuner is built on top of a static transistor-
level timing tool (EinsTLT), which combines a fast event-driven 
simulator (SPECS) with a timing tool (Einstimer).  The SPECS 
simulator provides timing information (delay and slew) along 
with first derivatives with respect to circuit parameters, 
specifically transistor width. EinsTuner uses this information to 
formulate the optimization problem for solution by a large-scale 
general-purpose nonlinear optimization package LANCELOT [5], 
generally optimizing a linear combination of slack and area, 
nominally treating all fet widths as free parameters.  Additional 
features of this tool that make it effective in a practical design 
environment include: 

• Parasitics (lumped capacitance or RC) from physical design. 
• Area modeled as the sum of fet widths. 
• A fet-width ratioing mechanism, used to constrain fet widths 

to match hierarchy or gate parameterization. 
• Input capacitance, node slew, effective pull-up and pull-

down (beta ratio), and min/max fet-width constraints. 
• Complete interactive environment (GUI), including size 

constraint generation and back annotation. 
In its current state of development, EinsTuner is capable of tuning 
in excess of 3000 gates with run times normally < 24 hours (with 
lumped capacitance). Thus even large circuits, such as a 64-bit 
adder (~2000 gates), can be tuned with reasonable turn around 
time. Experience has shown that tuning results are largely 
independent of the starting point, meaning that a designer can 
have a high degree of confidence that the results from a run are 
optimal for the conditions and design.   

2.4 Cell generation 
A key component of the semi-custom design methodology is the 
use of a cell generator to create layout corresponding to the 
parameterized gates.  This in-house tool, called C-cell, is not a 
general-purpose cell compiler, but rather a script-based system 
designed to produce optimal layout, but only for the defined 
parameterized bookset. The definition of the parameterized gate 
set is tightly integrated into this tool, delivering a framework that 
supports semi-custom design in a number of ways: 

• Contains functions to generate a set of layouts and associated 
views for use as a standard cell library, based upon a list of 
cell specifications: (gate, NW, PW). 

• Provides features to parse a custom schematic, forming a list 
of cells to generate to replace parameterized gates, and 
minimizing the number of required cells assuming a 
maximum allowed deviation in size.  After this, cells are 

 3



generated and modified custom schematic is created  to 
reference the generated cells. 

• Includes a facility to convert between parameterized and 
standard cell (fixed-size cell) representation. 

• Has an integrated floorplanning aid with an interface to the 
place and route tool. 

• Does layout post-processing, including selective layout 
flattening. 

In the cell generation part of the tool, topology and technology 
specific code takes as input the gate type, size parameters NW 
and PW, and a global cell image, and generates layout after 
selecting the optimal configuration from a range of finger 
partitioning and topology options.  In practice the measure of 
optimality is cell area, but factors such as wireability, 
manufacturability, etc., could also be weighted in the selection.  
While this system is not capable of implementing an arbitrary 
gate topology, it has been very successful in the domain of 
conventional static CMOS, where there are a small number of 
effective topologies, and optimization of the simplest (nand/nor) 
types is vital.  To date, the effort required to migrate and modify 
this approach from technology to technology has been easily 
justified in its use in both the high-performance synthesis 
environment and in semi-custom design. 

3.  Branch Target Address Calculation in 
IBM POWER4 Microprocessor 
In the previous section, we described the new semi-custom design 
methodology. In this section, we describe the application of this   
methodology to the branch calculator of the IBM Power4 
processor design [6,7]. We will first review the micro-architecture 
requirements of the design and will then discuss the circuit 
implementation.  

3.1 Micro-architecture 
The branch address calculator contains the logic required to 
calculate the branch-taken next instruction address for four 
different types of branch instructions: (1) Branch I-form (‘b’); (2) 
Branch Conditional B-form (‘bc’); (3) Branch Conditional to Link 
Register XL-form (‘bclr’); and (4) Branch Conditional to Count 
Register XL-form (‘bcctr’) [8]. The B- and I-form instructions 
contain different width immediate fields that specify either an 
absolute address or a relative offset to the current instruction 
address (CIA). Thus, the result of a calculation is either a sign-
extended absolute address or the sum of the CIA and the sign-
extended relative offset. The calculated target addresses will then 
be sent to the branch instruction queue for handling at a later 
stage, or will be sent to the Instruction Fetch Address Register 
(IFAR) in case of a branch re-direction. 
Figure 4 shows the timing and the block diagram of the branch 
redirect dataflow in IBM Power4 design. In cycle 1, eight 
instructions of 32 bits each are delivered by the I-cache (64KB, 
direct-mapped [6]). In cycle 2, the cache data en route to the 
branch calculator is muxed with other bypass data, and then fed to 
the calculator where eight branch addresses are calculated in 
parallel. In cycle 3, the final branch address is selected through an 
8:1 priority mux, merged with other IFAR dataflow and then sent 
back to I-cache to re-fetch. Physically, this loop path traverses 
through four macros with long wires in between: (1) I-cache 
SRAM; (2) the bypass mux macro; (3) the branch-calculator 

macro; and (4) the IFAR macro containing the instruction fetch 
logic. With this 3-cycle loop, predicted-taken branches can be 
executed with only a penalty of a 2-cycle bubble, which 
represents the best achievable branch performance with perfect 
prediction accuracy. Any cycle slip in this path will incur a 
significant CPI (cycle per instruction) penalty.  Since this is the 
most critical path in the IFU, separate master and slave latch 
designs are used to eliminate setup time penalty as well as to 
facilitate flexible latch placement (see [9] for details). The latch 
points in Figure 4 denote the positions of scan-testable cycle 
boundary (c1, or master) latches; the mid-cycle (c2, or slave) 
latches are not shown.   
The detailed block diagram of the branch address calculator is 
shown in Figure 5. Note that PowerPC is a Big-Endian 
architecture; that is, bits in a word are ordered from left to right. 
The instruction is represented by ‘I(0:31),’ where bit 0 is the 
MSB. First, bit 4 (‘I(4)’) of each instruction is examined to 
differentiate between the “Branch” (op-code(0:5)=b’010000’) and 
“Branch Conditional” (op-code(0:5)=b’010010’) instructions  to 
create a correct sign-extended immediate operand from either 
I(6:29) or I(16:29). This immediate operand is then added to the 
CIA, which is the instruction cache sector (1 sector=eight  
instructions) address, IFAR(38:58), concatenated with the 
instruction’s position (i.e. word-offset) in the sector and b’00’ 
since the instructions are always word-aligned (Table 2).  The 
result of the addition is then 4-way muxed with: 1) the original 
sign-extended immediate operand based on the Absolute Address 
bit (“AA”=I(30)) of the instruction to support an absolute address 
[8], 2) the data from Link Stack (a register file for storing recently 
used Link Register data) for ‘bclr’ instruction,  and 3) the data of 
Count Cache (a register file for storing recently used Count 
Register data) for ‘bcctr’ instruction [7,10].  

Table 2 

 

Instruction slot IFAR(38:58) || word-offset  field (0:2) 

0 IFAR(38:58) || b’000’ 

1 IFAR(38:58) || b’001’ 

2 IFAR(38:58) || b’001’ 

3 IFAR(38:58) || b’011’ 

4 IFAR(38:58) || b’100’ 

5 IFAR(38:58) || b’101’ 

6 IFAR(38:58) || b’110’ 

7 IFAR(38:58) || b’111’ 

Although conceptually the eight branch calculators are eight 
individual copies, there are opportunities for sharing. Since the 
immediate fields are always 24 bits, the most significant 38 bits 
are common to all eight instructions. Like the low-order bits, 
there are four possible branch outcomes of address bit (0:37):  

1) The sign-extended I(6) for immediate branch mode (‘b’ 
or ‘bc’ instructions with ‘AA’=1);  

2) The link stack data (‘bclr’ instruction) for branch to 
link;  

3) The count cache data (‘bcctr’ instruction) for branch to 
count;  
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4) The incremented or decremented IFAR(0:37) for 
relative branches.  

In the latter case, if the sign-extended I(6) is a ‘0’, indicating a 
forward branch, the IFAR will be incremented by one if the 
carryout of the 24-bit adder is a ‘1;’ otherwise it will be 
unchanged. Likewise, if the sign-extended I(6) is a ‘1,’ indicating 
a backward branch, the IFAR will be decremented by one if the 
carryout of the 24-bit adder is a ‘1’ (i.e. underflow); otherwise it 
will be unchanged. Note that while the decrementer and 
incrementer can be shared since all 8 instruction use the same 
IFAR(0:37), the 24-bit adder and the associated target address 
muxes are unique to each instruction, thus are replicated 8 times 
(Figure 5). The selects for the muxes, ‘sel(0:3)’, which are 
unique to each instruction, are generated by a random logic 
macro outside the dataflow stack. 

IFT* 

By-pass mux 

IFAR I-cache 

3.2 Floorplan and critical path 
Physically, the branch calculation logic is partitioned into 3 
macros: (1) ‘IFTA,’ which includes the adder and muxes for the 
low-order 24 bits; (2) ‘IFTI,’ which includes the incrementer, the 
decrementer, and the muxes for the high-order 38 bits; and (3) 
‘IFTM,’ which includes various muxes to select the final 62-bit 
branch addresses sent to the IFAR and branch instruction queues 
(Figure 5).  Note that a ‘macro’ is the basic block in timing and 
chip integration in the IBM Power4 design methodology [9]. The 
logic is partitioned into these three sections primarily to limit the 
total transistor count. With this choice of partitioning, the 
extraction, timing, and checking tools have reasonable runtime. 
Because of the distinct dataflow of high-order and low-order bits, 
the separation of IFTA and IFTI is relatively straightforward and 
there are only two interface signals from IFTA to IFTI for each of 
the eight instructions: the adder ‘carryout’ and the sign-extended 
I(6). Figure 6 shows the micrograph of the IFU and the three 
‘IFT’ macros relative to the I-cache and IFAR macro. Figure 7 
shows the close-up view of the IFT* macros.  The total IFU data 
stack is constrained in height due to the processor core chip 
floorplan allocation; it is therefore crucial to minimize the vertical 
dimension of the adder layout that is replicated eight times in a 2 
column x 4 row matrix. 

 
-
 

 

 
  
The dataflow in Fig 5 represents the logic contained in cycle 2
and the first half of cycle 3 in the timing diagram (Fig. 4). The I
cache access consumes all of cycle 1, and the data are driven

Figure 6: Micrograph of IFU. The arrows show the dataflow of 
the 3-cycle path. There are eight instructions (32 bytes) from I-
cache outputs which turn 90 degrees to the IFT* macros. The 
branch redirect address is calculated in the IFT* macros, then 
sent to IFAR fetch logic macro for final selection. The target bits 
(48:58) are sent back to I-cache in the case of branch redirect. 
horizontally across the I-cache width (Figure 6). Leaving the 
cache, the total delay time is nearly half the cycle. This time 
includes the bypass mux, the buffers and the wire delay, and the 
2:1 mux at the IFTA input. As a result, only half of a cycle for the 
adder delay remains to make the setup time at the cycle boundary 
c1 latch in cycle 2. Cycle 3 is fully consumed by the delay of the 
8:1 branch mux in IFTM, buffer delay to drive to IFAR macro, 
the delay of the 3:1 IFAR late mux, the wire delay, and the fanout 
to various arrays. Therefore, there is no slack to steal from in 
cycle 3 and the adder delay must be less than a half-cycle in order 
to make the critical path.  
The incrementer and decrementer are less timing-critical 
compared to the adder in performance. In Figure 5, the IFTI 
muxing structure for bit (0:37) is optimized by taking advantage 
of the timing skew in different paths. The signals from the Link 
Stack, the Count Cache (both register files outside the datastack), 
and the IFAR are all clock-launched out of latches. The signals 
arrive early and can be pre-muxed with the sign-extended I(6), 
which are also early compared to the incrementer and 
decrementer results. This arrangement effectively reduces the 5-
way mux to a 2-way mux. The 2:1 mux, relevant only to relative 
branches, is gated by the ANDing of ‘sel(3)’ (selecting adder 
result) and the sign-extended ‘I(6)’ to determine whether it is a 
forward or a backward relative branch. If sel(3)=0, identical pre-
muxed results flow through both 2-way muxes, and the carryout 
bit has no effect (i.e. non-relative branch). If sel(3)=1 and I(6)=0 
(1), the incrementer (decrementer) result flows through one of the 
two 2:1 muxes, while the IFAR bits flows through the other 2:1 
mux. The adder carryout gates the final selection. This pre-
muxing scheme relaxes the performance requirements for the 
incrementer and the decrementer as there is nearly a cycle for the 
decrement/increment delay and 2:1 mux function. Note that the 
carryout is latched up in IFTA before it is sent to IFTI to drive 38 
muxes. The latter forces the duplicate latches for the two interim 
2:1 mux results in IFTI in order to align the cycle (cf. Figure 5). 
The end results are further muxed in the IFTM according to 
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One key circuit decision in the early design phase is to imbed the 
4:1 mux in the adder and to hide the delay behind the adder 
(Figure 8). The assumption is that the I-cache data through the 
adder is the critical path, and the mux selects and register file data 
arrive early. Since the carry bit is the longest path, the partial 
sums can be pre-muxed with the other 3 inputs and the final result 
selected by the carry. The latter leads to a skewed ‘late-mux’ 
design as shown in Fig. 9(a). As typical in early phases of a new 
processor design project, this ‘dataflow-centric’ view drives the 3-
cycle path delay assessment. It is assumed that controls are non-
critical; however, this assumption turns out not to be true, as will 
be discussed later.  

priority encoding logic before they are sent to the branch queues, 
and in the case of predicted taken branches, sent back to IFAR to 
re-fetch from the instruction cache.  
The sum and carryout from the 24b adder are both critical paths 
of the branch target address calculator. The incrementer and the 
decrementer are not as performance critical, but need to be layout 
efficient to avoid increasing the data stack height since the whole 
IFU floorplan is constrained in the vertical dimension. Therefore 
these used a 14-track row height instead of the 16-track image for 
the standard cells used elsewhere throughout this project.  

4. Circuit Implementation 
Due to the large transistor count of the chip (170 million), and the 
power constraints faced by the design team, the Power4 design is 
predominantly a static design [9]. Dynamic circuits are of used 
sparingly in SRAMs and other critical regions. Since the 24b 
adder is replicated eight times, it is important to stay within a 
strict power budget while striving for performance. Although 
well-tuned dynamic designs can achieve high performance levels, 
they are noise sensitive as well as power-hungry. Long design 
times and the sensitivity to model changes (p-to-n strength ratio, 
capacitive coupling, etc.) are also ill suited for an evolving design 
environment as in the Power4 project. In comparison, the static 
circuits enjoy an unequivocal robustness. Our approach to tackle 
the performance issue is through circuit tuning. The tuner 
optimizes the use of device widths in the most economical way by 
sizing up the gates in the critical path while sizing down the gates 
in non-critical path. With a tool-assisted physical design (PD) 
environment as described in Section 2, the design can be iterated 
rapidly. The designer chooses the best circuit architecture, and 
manages the timing assertions. The tuner then adjusts the device 
sizes to minimize the delay.  The PD can be completely de-
coupled from the macro assembly as long as the abstract is 
obeyed during design iterations. The advantage of this semi-
custom design methodology is its tunability and PD flexibility. 
Using this approach, we have seen 10-15% performance 
improvement in typical logic macros for a given area/power 
constraint . 

4.2 Circuit tuning and layout 
Once the schematic design is complete and verified, the physical 
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The surrounding latches and muxes use full custom design for 
better layout density. The semi-custom blocks are imbedded in 
the IFTA (adder) and IFTI (incrementer and decrementer) macro 
as shown in Figure 7. The IFTM macro is a full custom design. 
This mixed design style balances the layout density and design 
flexibility. The top-level macro wiring is done manually; the 
global wires are blocked out in the abstract of the imbedded semi-
custom blocks to avoid conflicts during iterations.   

4.1 Adder Circuit Architecture 
The 24-bit adder is a static, carry-look-ahead Ling adder [11]. It is 
well known that the carry formation of the Ling adder is a stage 
faster than that of the usual adder.  The 24 bits are grouped into 
six 4-bit blocks for carry propagation. Each block is sub-divided 
into two 2-bit groups due to the fan-in limit of 2 in the AOI and 
OAI in the bookset in Table 1. Within each group, the local sum 
lgeneration uses conditional-sum logic. The local sum is 
implemented in parallel with the ‘pseudo-carry‘ [12], and the 
result of the pseudo-carry bit is used to select the final value.  

 

s
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Figure 9: Branch mux implementations at the output of the
adder. Initial implementation (a) assumed selects (from
controls) were not critical, and final (b) with optimized control
and sum paths.
esign is implemented according to the flow shown in Fig. 2. The 
chematic hierarchy is first flattened to the gate level, then 
EinsTuner’ is used to adjust the device widths. Using the netlist 
nd the input/output (i/o) assertions (timing, capacitance load) as 
he input, device sizes (NW, PW) are optimized for each gate to 
inimize the delay. Other constraints such as total device width, 
ax/min slew rates and beta ratio can also be set by the user. The 

onvergence depends on the constraints; but in most cases it is 
ell behaved. The tuner strives for minimum cycle time by 

xamining all possible paths [2]. Therefore, the quality of the end 
esult (i.e. whether the correct critical paths are optimized, and  
ow much the actual performance gain is) depends on the 
reciseness of the i/o timing assertions. The latter presents a 
articular challenge for designs with transparent latches. Since the 
atches are all in flush mode, the timing assertions at the adder 
epend on the path delay from the I-cache to IFTA. To better 
ontrol the timing and wireability, the major I-cache buses to IFT 
acros are engineered pre-routes [13,14]. To assist the critical 

aths through the low-order (38:61) bits, the IFU dataflow stack is 
rranged with the LSB (bit 61) facing the I-cache to shorten the 
ire length (Figure 7). The adder timing assertions are estimated 

rom the IFTA macro timing ‘back assertions’ generated by the 
hip timing run by Einstimer. Note that not all branch addresses 
0:61) have the same required arrival time as only bits (48:58) are 
sed for I-cache address for the  3-cycle path depicted in Figure 4. 
hese 11 bits are used to select one out of the 2K sectors of the 
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64KB L1 cache.  Therefore, non-uniform timing assertions are 
applied to stress the timing-critical low-order bits (48:58).   
The optimized parameterized gates are fed to the C-cell generator 
to generate the layouts and abstracts. The cell is 16 tracks in 
height, consistent with the standard cell library. However, no 
mapping back to standard cell library (as described in 2.2.4) is 
done since the adder is performance critical. The layout is done 
by place and route (P/R) in Cadence Silicon Ensemble. The 
abstract that defines P/R constraints is customized through 
manually adjusting the pin placement and metal blockage. A 
limited number of M2 and M3 tracks available for use in the 
adder as some tracks are reserved for the macro level routing 
through the stack. The abstract serves as a contract between the 
imbedded adder module and the macro. It is kept unchanged when 
iterating the design, so that the macro level wiring can be 
preserved. The final layout is flattened into shapes and a 
‘trimming’ routine is used to cut excess metal and PC shapes of 
the unused pins to reduce parasitics. The trimming step improves 
the delay by about 2-3%. After the layout is extracted and timed, 
the parasitic capacitances are inputted to the tuner to iterate the 
process. The turnaround time is less than a day for macros 
containing ~500 gates. Usually two to three iterations are 
sufficient to bring the design to convergence.         

4.3 Adder design iterations  
The key issue of the semi-custom design methodology is the 
accuracy of the timing assertions fed to the tuner. As the control 
signal timing is unknown at the beginning of the processor design, 
the timing assertions are largely estimates that may not be 
substantiated as the chip timing stabilizes. In the 24-bit adder 
example, the assumption of the mux selects timing was found to 
be incorrect at the first tape-out when the control macros were 
built and timed. The arrival time of the select path was as late as 
the local sum from the adder, and the circuit construct in Fig. 9(a) 
was improper. To address these issues, the mux was re-designed 
with a balanced AOI-NAND scheme (Fig. 9(b)). The new 
schematic was then re-tuned and iterated based on the correct 
timing assertions. The new design was completed in a week, and 
the negative slack was reduced by more than 80 ps. Because of 
the contract-based place and route, the adder re-design did not 
cause any global wiring change. The adder delay including the 
built-in 4:1 mux is slightly greater than nine FO4, where one FO4 
delay unit is the average delay of an inverter with fanout of four. 
The layout uses seven 16-track rows. 
The other issue is that a new microprocessor design project like 
Power4 often straddles across several different technology 
generations. Each technology migration induces device model 
changes (for example, different p-to-n strength ratio) which are 
difficult to adjust to for full-custom designs. One benefit of the 
new semi-custom design approach is that the timing shifts can be 
readily accommodated by the tuner, and with the flexible physical 
design techniques, adjustments can be made in a timely fashion. 
We estimate that the semi-custom design approach reduces the 
total design time by at least 50%, even for designers unfamiliar 
with the place and route tools, who need to make an initial 
investment in learning the tools.  

4.4 Incrementer and Decrementer 
The physical design of the 38-bit incrementer and 38-bit 
decrementer follows the same flow of the adder design, but the 

area instead of the speed is the more constrained parameter in 
design tuning. Logically, the incrementer increases the input by 
one, which means that for every bit position ‘i’, if all of the 
previous lower-order bits are one, there is a carry, and the output 
needs to change state. Thus the logic expression is: 
incr(i) = a(i) XOR (AND( all_previous_bits)) 
Conversely, the decrementer reduces the input by one. The latter 
means that for every bit position ‘i,’ if none of the previous lower-
order bit is a one, the output needs to change state.  The logic 
expression is: 
decr(i) = a(i) XNOR (OR(all_previous_bits)) 
Thus, the critical path for the incrementer is a wide-AND tree, 
while for the decrementer it is a wide-OR tree. The wire-AND 
propagation for the incrementer is shown in Figure 10; the wide-
OR has exactly the same topology except that the inputs are 
inverted. The chain is built by alternating NAND3 and NOR2 
gates. It turns out that there are many small gates in the 
incrementer and the decrementer design due to the much simpler 
logic cone compared to the adder. For a row-based design, each 
gate has the same height. Small gates are not area efficient as they 
leave a lot of unused silicon area. Since the IFTI layout adds 
directly to the IFT* data stack height (see Figure 7), it is 
advantageous to reduce the row height for better efficiency. The 
C-cell generator described in 2.4 supports different cell images 
(12/14/16 tracks). Both designs are tuned by limiting the area to 
fit three 14-track rows.  The standard 16-track row image would 
have cost six more tracks (48 vs. 42) per layout. The incrementer 
and decrementer delays are 10.7 and 11.4 FO4, respectively. 

5. Conclusion 
The semi-custom VLSI design methods described in this paper 
were shown to improve the ultimate quality and performance of 
high-speed circuits in a number of ways.  The true impact extends 
well beyond the ability to either improve an existing design, for 
example, through circuit tuning, or to implement one quickly 
using place and route. Being able to adapt quickly to changes 
associated with global timing convergence is a major advantage 
of the semi-custom design approach.  The biggest gains come 
through changing the approach to custom design.  This 
methodology provides a true ‘on-demand’ solution in an evolving 
design environment, be it for the performance enhancement or for 
the area saving. We demonstrated the successful application of 
the semi-custom design methodology to the branch address 
calculator of the IBM Power4 microprocessor. The AC LBIST 
testing showed that the 3-cycle path described in this paper 
operates at more than 1.7GHz at 1.6 V. 
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 Figure 8: Schematic of (a) conventional carry-select adder, 
and (b) carry-select adder with imbedded 4:1 mux. The 
three other inputs to the 4:1 mux are link stack, count cache, 
and the immediate operand.   
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Figure 4: Timing and block diagram of the 3-cycle branch redirect path. Cycle 1 is the array access 
(BHT: Branch History Table; I-ERAT: Instruction Effective-to-Real Address Translator; I-Dir: 
Instruction Directory; CC: Count Cache; LK: Link Stack). Cycle 2 is the branch address calculation. 
Cycle 3 is the branch target address muxing and IFAR logic.
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 Figure 10: Carry-chain of an incrementer. The grouping is shown as 3-2-3-2, with alternating NAND 

and NOR. The (LSB) incr<37> is the inversion of the input. The (MSB) incr<0> is XOR of bits <0:1> 
and the carry-in.   
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 Figure 5: Block diagram of the branch calculator. The red arrowed line is the boundary of the dataflow of 

the high-order bits (0:37) (IFTI) and the dataflow of the low-order bits (38:61) (IFTA). There are eight unique 
copies of the adder and the associated mux in IFTA and IFTI for each instruction. The decrementer and 
incrementer are shared among the eight instructions. The Link Stack and Count Cache are register files 
outside the datastack. The IFTM macro contains various muxes for generating target addresses of the branch 
instruction. The whole branch calculator occupies cycle 2 and the first half of cycle 3 in Figure 4.  
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