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ABSTRACT
In this paper, we show howseparation(decomposing a verifica-
tion problem into a collection of verification subproblems) can be
used to improve the efficiency and precision of verification of safety
properties. We present a simple language for specifyingseparation
strategiesfor decomposing a single verification problem into a set of
subproblems. (The strategy specification is distinct from the safety
property specification and is specified separately.) We present a gen-
eral framework ofheterogeneous abstractionsthat allows different
parts of the heap to be abstracted using different degrees of precision
at different points during the analysis. We show how the goals of
separation (i.e., more efficient verification) can be realized by first
using a separation strategy to transform (instrument) a verification
problem instance (consisting of a safety property specification and
an input program), and by then utilizing heterogeneous abstraction
during the verification of the transformed verification problem.

1. INTRODUCTION
Recently there has been significant and growing interest in static

verification of safety properties (e.g., see [3, 5, 2, 8, 7, 1, 12, 6,
4]). Such verification is valuable since it can identify software de-
fects early on, thereby improving programmer productivity, reduc-
ing software development costs, and increasing software quality and
reliability.

Consider the Java program fragment shown in Fig. 1. This pro-
gram performs a number of database queries using JDBC [19]. This
example violates one of the usage constraints imposed by the JDBC
library. Specifically, the execution of a query in line 28, using a
Statement object, has the implicit effect of discarding the re-
sults to the previous query executed in line 27 (using the same
Statement object). Hence, the subsequent attempt to use these
discarded results, in line 40, is invalid.

We are interested in verifying that a given Java program satisfies
safety properties of the kind illustrated above. While significant
progress has been made recently in such lightweight verification,
doing precise verification that can scale to large and complex pro-
grams still remains a challenge. In this paper, we investigate a
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technique to improve the precision and efficiency of such verifica-
tion.

The starting point for our work is the notion ofseparation: the
idea that separating or decomposing a verification problem into a
collection of smaller subproblems can help scale verification algo-
rithms (e.g., see [4]). Consider again the example in Fig. 1. This
example program executes 5 different queries, producing 5 different
ResultSet s. We can verify that the program satisfies the desired
safety property byindependentlyverifying the property for each of
theseResultSet s.

It may seem like we are just restating the problem, but this restate-
ment is important from the point of view of the underlying analysis.
It can significantly increase the efficiency of the analysis by reducing
the size of the state space that needs to be explored. In our running
example,Statement stmt1 andResultSet rs1 can be in
several possible states in line 28. While this information is relevant
for verifying subsequent use ofResultSet rs1 , it is irrelevant
for verifying the usage of ResultSet rs2 , for example. The
motivation for separation is to exploit this to improve efficiency,
without losing precision.

In this paper, we explore this approach by addressing the follow-
ing questions:

(1) How do we decompose a verification problem into a collection
of subproblems?

(2) How can we adapt the state abstractions to each subproblem
(so that we may achieve the desired efficiency improvement)? One
of the key characteristics of our approach is that we break up this
question into two parts: (a) What are the objects that arerelevant
to a verification subproblem? (b) Given the set of relevant objects,
how can weadaptthe state abstraction to utilize this information?

In this paper, we introduce the notion of aseparation strategy
as something that can help answer question (1) and partly help
answer (2)(a). Rather than adopt a fixed strategy for separation,
we introduce a simple language for specifying separation strate-
gies that can be used to manually specify strategies. One strategy
for the JDBC problem would be to apply separation at the level
of a Connection , where verification of allResultSet s cre-
ated over a singleConnection is treated as a single verification
subproblem.

Currently, we see the strategy specification language as a way for
analysis designers, such as ourselves, to specify and experiment with
different strategies. Our intuition, however, is that end users may
be able to easily identify objects of interest and relevance to some
verification subproblem and that the strategy specification may be
a lightweight way to allow end user input to guide verification.

Given a verification problem instance (consisting of a safety prop-
erty specification and an input program) and a separation strategy,
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…
10 ConnectionManager cm = new ConnectionManager();
11 Connection con1 = cm.getConnection();
12 Statement stmt1 = cm.createStatement(con1);
…
15 ResultSet maxRs = stmt1.executeQuery(maxQry);
16 if (maxRs.next())
…
18 ResultSet rs1 = stmt1.executeQuery(balancesQry);
19 if (maxBalance1 < threshold) {
20 stmt1.close();
21 closed1 = true;
22 }

23 Connection con2 = cm.getConnection();
24 Statement stmt2 = cm.createStatement(con2);
…
27 ResultSet rs2 = stmt2.executeQuery(balancesQry);
28 ResultSet maxRs2 = stmt2.executeQuery(maxQry);
29 if (maxRs2.next())
…
31 ResultSet minRs2 = stmt2.executeQuery(minQry);
…
40 while (rs2.next())
…

Figure 1: JDBC example snippet.

the first step of our approach is totransform(or instrument) the ver-
ification problem instance to reflect the separation strategy. (Here,
it is worth pointing out that when we talk about “decomposing a
verification problem into subproblems”, we are talking at a concep-
tual level; the transformed verification problem mentioned above is
equivalent to solving the subproblems in parallel.)

The second step is to perform verification for the transformed pro-
gram and safety property in a way that exploits the separation. This
leads us to question (2) above. One of the distinguishing character-
istic of our approach is that we rely on anintegratedanalysis that
performs, e.g., heap analysis in conjunction with the verification (as
opposed to doing it as a separate preceding analysis). Thus, we are
interested in exploitingseparationeven for the heap analysis. (In-
deed, the benefits of separation may be greatest for the heap analysis
component if the verification utilizes precise, but expensive, heap
analysis.)

In this paper, we utilizeheterogenous abstractionsthat allow us to
model different parts of the heap with different degrees of precision
at different points in time as a technique to exploit separation.

Consider the example in Fig. 1. Fig. 2(a) informally shows two
possible states of the heap at line28 , corresponding to different
branches taken at line18 . TheStatement referenced bystmt1
and theResultSet references byrs1 are in aclosedstate inC2

(as illustrated by the “c” inside the component node). Fig. 2(b) illus-
trates the abstract representation produced by our technique (with
a simple separation): the representation above the line corresponds
to one subproblem (corresponding toConnection con1 ), and
the representation below the line corresponds to a different subprob-
lem (corresponding toConnection con2 ). (We present more
details about these representations in later sections.)

Main Results
The main contributions of this paper are:

• We present a simple language for specifying separation strate-
gies for decomposing a single verification problem into a set
of subproblems.

• We present a general framework ofheterogeneous abstrac-
tions that allows different parts of the heap to be abstracted
using different degrees of precision at different points during
the analysis.

• We show how the goals of separation (i.e., more efficient ver-
ification) can be realized by first using a separation strategy to
transform (instrument) a verification problem instance (con-
sisting of a safety property specification and an input pro-
gram), and then utilizing heterogeneous abstraction during
the verification of the transformed verification problem.
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Figure 2: Separation and heterogenous abstraction.

• We have implemented a prototype of a separation verifica-
tion engine using TVLA, and applied it to verify properties
of several Java programs, using several different separation
strategies. Initial results indicate that separation does improve
the efficiency, and possibly precision, of verification results.

One of the themes to emerge in recent work (e.g., see [12, 6,
4]) is that maintaining just the right correlation required between
“analysis facts” can be the key to efficient and precise verification:
maintaining no correlations (independent attribute analysis) can lead
to imprecision, while maintaining all correlations (relational anal-
ysis) can lead to inefficiency. However, finding this intermediate
ground can be hard for heap analyses that, e.g., use graph-based
representations of the heap. Our approach may be seen as a step
towards achieving such a balance in a heap representation.

Existing approaches to verification range from more automated
techniques that rely on no extra human input (other than the safety
property specification) to techniques that rely on end users to pro-
vide significant annotation, such as program invariants. We see the
strategy specifications we use as a potentially useful, lightweight,
way for users to assist a verifier.

Related Work
ESP [4] is a system for typestate verification [17] that utilizes a
simple separation technique. Our work differs from ESP in several
respects. ESP uses a two-phase approach to verification in which
pointer-analysis is performed first, followed by typestate verifica-
tion. Often, this prevents ESP from being able to apply “strong”
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f := new File();
while (?) {

f.read();
if (?) {

f.close();
f := new File();

}
}

Figure 3: Program illustrating the difficulty of verifying the
property no read after close.

updates necessary for successful verification. Separation in ESP is
exploited only during the typestate verification phase. We utilize an
integrated analysis, where the heap analysis and verification are per-
formed simultaneously, allowing the heap analysis to benefit from
separation. We also explore separation in a more general setting
than ESP: we explore its applicability to first order safety prop-
erties, such as JDBC, which involve relationships among multiple
objects; we allow user-specifiable separation strategies; finally, our
technique can achieve separation between multiple objects allocated
at the same allocation site. Since our analysis is capable of separat-
ing out asingleobject (even from among multiple objects allocated
at the same allocation site), it can utilize “strong” updates when
ESP is forced to use “weak” updates. This can lead to more precise
results, as illustrated by the example in Fig. 3. Unlike ESP, our
separation-based verification can successfully verify this example.

The instrumentation technique we use to implement separation
strategies may be seen as an extension of techniques previously used
(e.g., by Bandera [3] and SLAM [11]) to instrument a program with
respect to a safety property specification prior to verification. How-
ever, these approaches use such instrumentation purely to encode
the verification problem, and do not exploit it for separation and the
generation of adaptive abstractions like we do.

Separation is similar in spirit to McMillan’s functional decompo-
sition which divides the verification task according to units-of-work
rather than dividing according to the program syntax. His division,
however, is applied at the specification level since all entities have
static names.

Guyer [9] shows that it is valuable to have pointer analyses that
are client-driven. His analysis is a two pass analysis, with a client-
independent first pass pointer analysis, followed by a second pass
pointer analysis that uses different levels of context-sensitivity for
different analyzed procedures, based on sources of imprecision iden-
tified from the use of the results computed by the first pass.

[12] explores techniques to derive abstractions that are special-
ized to a safety property. Our work on separation is orthogonal to
these techniques. In [16], a heap-safety-automaton (HSA) is used
to specify local heap properties (corresponding to typestate proper-
ties) which are later verified without using any form of separation.
We believe that the separation techniques in this paper could be
beneficial for their analysis as well.

Our heterogeneous abstraction technique is based on the paramet-
ric analysis framework of Sagiv et al. [15]. This analysis framework
has been used to derive several powerful and precise, but very expen-
sive, heap analyses. We believe that successful verification systems
need to use such powerful analyses when needed (to handle difficult
cases when they arise), but scalability requires that the scope of such
analyses be restricted to a small enough universe. We believe that
the identification of “relevant” objects via our separation technique
is a step towards achieving this.

An alternative separation technique would be to decompose a
verification problem into subproblems that verify that eachuseof

an object, such as aResultSet , is safe, utilizing demand-driven
analysis to solve the subproblems. This inherently involves “back-
ward analysis”, while our approach utilizes “forward analysis”. The
motivation for our approach is that “backward analysis” is inherently
hard when complex heap analysis is involved.

2. SAFETY PROPERTIES
We are interested in verifying that client programs that use a

component (library) satisfy correct usage constraints imposed by
the library API. In this paper, we use some of the usage constraints
imposed by the JDBC library to illustrate our separation technique
for verification of such safety properties.

The JDBC library allows client programs to createConnection s
to databases. Any number ofStatement s may be created over
a Connection . A Statement can be used to execute an SQL
query over the database, via theexecuteQuery() method, which
returns the results to the query as aResultSet . The next()
method of aResultSet can be used repeatedly to iterate over the
results of the query. However, the execution of theexecuteQuery()
method of aStatement implicitly closesanyResultSet pre-
viously returned by theStatement , and it is invalid to use any of
thoseResultSet s any more. Similarly, after closing aConnection ,
it is invalid to use any of theStatement s created from thatConnection
or any of theResultSet s returned by theseStatement s.

Thus, the execution of line 28 in the example of Fig. 1 implicitly
closes theResultSet created in line 27, and this will cause an
error when this closedResultSet is used in line 40.

We specify safety properties usingEasl [12], a procedural lan-
guage for specifying an abstract semantics for a component library.
Easl statements are a subset of Java statements containing as-
signments, conditionals, looping constructs, and object allocation.
Easl types are restricted to booleans, heap-references, and a built-
in abstract Set and Map types. Finally,Easl provides arequires
statement to specify the correct usage constraints imposed by the
library: it is the responsibility of any program that uses the library
to ensure that the condition specified by therequires clause will
hold true at the corresponding program point. These are the safety
properties we are interested in checking for.

Easl supports object references and dynamic allocation of ob-
jects. This allows us to naturally express the structural relationships
between the objects of interest, as well as dynamic allocation of
these objects.

Fig. 4 shows anEasl specification for the JDBC1 safety prop-
erties described above.

Note the use of the setstatements and the fieldsmyResultSet ,
myConnection , andownerStmt to specify the relationships be-
tween the components. Also note that applyingexecuteQuery
closes theResultSet component referenced bymyResultSet
if one exists.

In the rest of this paper we will address the problem of verifying
that a given Java program satisfies the safety properties specified by
anEasl specification.

3. SEPARATION STRATEGIES
The goal of a separation strategy is to separate or decompose a

verification problem into a collection of verification subproblems.
We now present an informal description of separation strategies. A
more formal meaning will be given to separation strategies in Sec-
tion 4.2.

1field names are taken from Sun’s SDK1.3.1 sun.jdbc.odbc imple-
mentation.
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class Connection {
boolean closed;
Easl.Set statements;
Connection() {

closed = false;
statements = {};

}
Statement createStatement() {

requires !closed;
Statement st = new Statement(this);
statements = statements U { st };
return st;

}
void close() {

closed = true;
for each st in statements

if (st.myResultSet != null) {
st.closed = true;
st.myResultSet.closed = true;

}
}

}

class Statement {
boolean closed;
ResultSet myResultSet;
Connection myConnection;
Statement(Connection c) {

closed = false;
myConnection = c;
myResultSet = null;

}
ResultSet executeQuery(String qry) {

requires !closed;
if (myResultSet != null)

myResultSet.closed = true;
myResultSet = new ResultSet(this);
return myResultSet;

}
void close() {

closed = true;
if (myResultSet != null)

myResultSet.closed = true;
}

}

class ResultSet {
boolean closed;
Statement ownerStmt;
ResultSet(Statement s) {

closed = false ;
ownerStmt = s;

}
void close() {

closed = true;
}
boolean next() {

requires !closed;
}

}

Figure 4: An Easl specification for a simplified subset of the JDBC API.

Consider a typestate property, such as “anInputStream should
not beread after it isclosed ”. In this case, verification of the
safety property for oneInputStream object does not depend on
the state of anotherInputStream object. Hence, the verification
can be done independently for eachInputStream object. This
amounts to a very simple separation strategy.

Some safety properties, such as theJDBC ResultSet prop-
erty, involve multiple related objects – we refer to these asfirst order
safety properties. Consequently, verification of such properties can
be separated into subproblems in several different ways, each with
potentially different efficiency and precision tradeoffs. Before we
present some of the possible separation strategies, we introduce a
simple language for specifying a separation strategy.

In our approach, a separation strategy represents a method for
choosinga set of objects (during program execution or from a pro-
gram trace). A set of chosen objects identifies a subproblem where
verification is restricted to the chosen objects. For effective veri-
fication, a strategy should identify other objects that may have an
impact on a chosen object and choose them too. This motivates the
definition of the following language for specifying strategies.

An (atomic) separation strategy is a sequence ofchoiceopera-
tions, where each choice operation identifies one or more objects
that are chosen, as a function of previously chosen objects.

<atomic-strategy> ::= <choice-spec> *
<choice-spec> ::=

choose (some|all) <var>:<constr> [/<condition>]
<constr> = <type-name> ( <var-list> )

Each choice operation consists of a variable name, a signature
of a constructor, and an optional condition. The choice operation
choose some performs a non-deterministic selection of objects
created through the specified constructor that satisfy the condition.
The operationchoose all chooses all objects created through
the specified constructor that satisfy the condition. Both choice
operations evaluate the condition, and apply their choice on entry
to the specified constructor.

We now present some strategies for theJDBC ResultSet
property.

Single Choice.The motivation for our first strategy is the obser-
vation that there is no interaction between differentConnection s:
it should be possible to perform verification for eachConnection

independently. Hence, the following strategy performs separation
at the level of aConnection .

choose some c : Connection()
choose all s : Statement(x) / x == c
choose all r : ResultSet(y) / y == s

The separation strategy described above first non-deterministically
chooses a singleConnection , then proceeds by choosingall
Statement s created from thisConnection , and then choosing
all ResultSet s created from theseStatement s. For the run-
ning example, this amounts to separating the verification problem
into two independent subproblems, one for eachConnection .

Multiple Choice.However, it should be clear from the JDBC
specification that it is possible to perform a more fine-grained sep-
aration than the single choice strategy described above. In partic-
ular, the correct usage of aResultSet does not really depend
on howany otherResultSet is used. Thus, it is not necessary
to perform verification of the differentResultSet s created from
a singleStatement together, for instance. However, the cor-
rect usage of aResultSet does depend on theStatement and
Connection underlying theResultSet . These observations
motivate the following separation strategy.

choose some c : Connection()
choose some s : Statement(x) / x == c
choose some r : ResultSet(y) / y == s

For the running example, this strategy produces a set of5 sub-
problems, one for each combination of matchingConnection ,
Statement andResultSet .

Note that using a finer grained separation strategy may or may
not lead to more efficient verification. On one hand, finer grained
separation leads to smaller subproblems that can be verified more
easily. On the other hand, it also leads to a larger number of sub-
problems. The relative performance of a strategy may depend on the
amount of work that is duplicated across the different subproblems.
The strategy we present next is likely to reduce the amount of work
duplicated across subproblems.

Hierarchical. The two strategies we have seen are examples of
atomicstrategies. In this paper, we also explore the possibility of
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applying a sequence of increasingly complex separation strategies
to perform verification. The motivation for this is simple: usually
many verification subproblems may be amenable to simple and ef-
ficient verification, but some verification subproblems may require
more precise analysis for successful verification.

A hierarchical strategy is a sequence of atomic strategies, which
are tried one after another, stopping when one of the atomic strate-
gies completely verifies the program. An atomic strategy can make
use of failure information from the previous atomic strategy applied
to the program. We restrict ourselves to a very simple form of fail-
ure information, where the choice operation can restrict attention to
individuals that failed verification in the previous step. We will il-
lustrate this with examples first, and later explain how these strategy
specifications are interpreted.

{
choose some r : ResultSet(y)

} on failure {
choose some s : Statement(x)
choose some failing r : ResultSet(y) / y == s

} on failure {
choose some c : Connection()
choose some failing s : Statement(x) / x == c
choose some failing r : ResultSet(y) / y == s

}

The above strategy optimistically first attempts to verify usage
of eachResultSet independent of even theStatement un-
derlying theResultSet . If that fails, it then attempts to ver-
ify usage ofResultSet s, while tracking usage of the underlying
Statement . If that too fails, it then attempts verification using
even more context.

Note that a hierarchical strategy may be thought of as a very sim-
ple (fixed) iterative refinement scheme. For our running example,
the very first atomic strategy in the sequence above successfully
verifies all correct uses ofResultSet .

Semantics and Correctness.Our explanation above has glossed
over the exact meaning of a separation strategy, especially in the con-
text of programs that may create a potentially unbounded number
of objects. In the following section, we will more formally describe
our treatment of separation strategies.

Ideally, a strategy should affect only the precision and efficiency
of verification and not its correctness. However, the language pre-
sented above is powerful enough to specifypartial verification prob-
lems, where the checking is done only for the specifiedsubsetof
objects. However, for any object that is checked, verification is
guaranteed to be conservative. A syntactically restricted subset of
verification strategies (which includes all of the strategies presented
above) also guarantee that checking is done for all objects of a given
type.

4. SEPARATION
In this section, we show how a separation strategy is utilized to

decompose a verification problem into a set of verification subprob-
lems. We first illustrate how anEasl safety property specification
and a Java program together can be translated into an analysis prob-
lem instance in the parametric analysis framework of [15]. We then
show how anEasl safety property specification, a Java program,
and a separation strategy specification together can be translated
into amodifiedanalysis problem instance (corresponding to a set of
verification subproblems). (This translation provides the semantics
of a separation strategy.)

4.1 Background

Predicates Intended Meaning
x(v) reference variablex points to the objectv
fld(v1, v2) field f of the objectv1 points to the objectv2

bv() boolean variablebv has true value
bf(v) boolean fieldbf holds for objectv
site[AS](v) objectv was allocated in allocation siteAS

Table 1: Predicates for partial Java semantics.

We now present an overview offirst order transition systems
(FOTS), the formalism underlying the parametric analysis frame-
work of [15]. FOTS may be thought of as an imperative language
built around an expression sub-language based on first-order logic

In a FOTS, the state of a program is represented using a first-
order logical structure in which each individual corresponds to a
heap-allocated object and predicates of the structure correspond to
properties of heap-allocated objects.

Definition 1. A 2-valued logical structure over a set of predicates
P is a pairC\ = 〈U \, ι\〉 where:

• U \ is the universe of the2-valued structure. Each individual
in U \ represents a heap-allocated object.

• ι\ is the interpretation function mapping predicates to their
truth-value in the structure: for every predicatep ∈ P of arity

k, ι\(p) : U \k → { 0, 1 }.

In the following we will usep(v) as shorthand forι\(p)(v) when
no confusion is likely.

Table 1 shows some of the predicates we use to record properties
of individuals in this paper. A unary predicatex(v) holds when
the reference (or pointer) variablex points to the objectv. Simi-
larly, a binary predicatefld(v1, v2) records the value of a reference
(or pointer-valued) fieldfld . A nullary predicatebv() records the
value of a local boolean variablebv and a unary predicatebf(v)
records the value of a boolean fieldbf . Finally, a unary predicate
site[AS](v) records the allocation siteAS in which an object was
allocated.

In order to enable interprocedural analysis we explicitly repre-
sent stack frames and a corresponding set of predicates following
[14]. Since this does not interfere with the material in this paper, to
simplify presentation we do not describe these predicates.

In this paper, program configurations are depicted as directed
graphs. Each individual of the universe is drawn as a node. A unary
predicatep(o) which holds for a nodeu is drawn inside the node
u. A binary predicatep(u1, u2) which evaluates to 1 is drawn as
directed edge fromu1 to u2 labelled with the predicate symbol.

Example 1.Fig. 5 shows a concrete program configuration rep-
resenting a global state of the program before executing the state-
ment at line28 . In this configuration, threeString objects were
allocated in the heap and are referenced bymaxQry , minQry ,
balancesQry . The configuration also contains twoConnection
objects referenced bycon1 andcon2 , two Statement objects
referenced bystmt1 andstmt2 , and threeResultSet objects
referenced bymaxRs, rs1 , andrs2 . Note that theResultSet
referenced bymaxRs is closed. The meaning of the predicates
relevant(u), chosen[c](u), chosen[s](u), andchosen[r](u) will
become clear in the next section.
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Figure 5: A concrete program configuration representing a possible program state at line28 .

Figure 6: A concrete program configuration representing program state after execution of statement at line28 .

4.2 Instrumentation For Separation
In this section we explain how we translate a Java program, an

Easl specification, and a strategy specification into a FOTS. Specif-
ically, the strategy specification is used to instrument the standard
translation of a Java program andEasl specification into a FOTS.
(This translation also directly provides a formal semantics for a
separation strategy as a method for non-deterministically choosing
a set of objects during program execution.) Technically, we use
the predicates in Table 2 to instrument the semantics. Predicates
of the formchosen[x](v), wasChosen[x](), andchosen(v) are
used to express the separation strategy. The predicaterelevant(v)
is an abstraction-directing predicate that controls the way in which
an object is abstracted.

Consider a choice operation

choose all x : T ( w1,..., wi) / e( w1,..., wi, z1,..., zk)

Here, we say that the choice operation binds variablex . Variables
w1 throughwi are free variables corresponding to parameters of a call
to a constructor for typeT, whilez1 throughzk are variables bound
by earlier choice operations. In order to model the specified choice
operation, we introduce an instrumentation predicatechosen[x](u).
The idea is for the predicatechosen[x](u) to hold true for exactly the
objects that are chosen by the above choice operation. We achieve
this by translating the conditione(...) specified for the choice

Predicates Intended Meaning
chosen[x](v) objectv was chosen by choice operation

for strategy variablex
wasChosen[x]() some object was chosen for strategy variablex
chosen(v) objectv was chosen by some choice operation
relevant(v) abstraction-directing predicate

recording relevant objects

Table 2: Additional predicates of the instrumented semantics.

operation into a first-order logic formula which is evaluated on entry
to the specified constructorT to compute the value ofchosen[x](u)
for the newly created objectu. (Technically, this translation works
by converting the free occurrences of a variablezj by occurrences
of an existentially quantified logical variableOj that is constrained
to satisfy predicatechosen[zj ](Oj).)

The translation of achoose some x operation is similar, ex-
cept that the translation ensures that at most one of the objects that
is eligible for selection by the operation is chosen. This is done by
introducing a second instrumentation predicatewasChosen[x]()
that indicates if an object has already been selected during pro-
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gram execution for the corresponding choice operation (thus, it is
defined by the instrumentation formula∃O.chosen[x](O)). When
a newT objectO is constructed,chosen[x](O) is set to false if
wasChosen[x]() evaluates to true or if the selection formula cor-
responding to the choice operation evaluates to false. Otherwise,
chosen[x](O) is non-deterministically assigned either true or false,
andwasChosen[x]() is correspondingly updated.

Given a simple strategy specification consisting ofn choice op-
erations over variablesz1 throughzn, we also introduce a unary
predicatechosen(O) that indicates if an object was chosen by any
of then choice operations: thus, it is defined by the instrumentation
formulachosen[z1](O) ∨ · · · ∨ chosen[zn](O).

Finally, the actual checks on objects that verify they satisfy the
necessary preconditions when methods are invoked on them are
instrumented to do the check only for chosen objects.

For now, the predicaterelevant(u) may be thought of as being
equivalent tochosen(u). We will later see that the set of relevant
objects includes all the chosen objects and potentially some other
objects as well.

Example 2.The single-choice strategy for JDBC is modelled
using predicateschosen[c](u), chosen[s](u), andchosen[r](u).
Upon entry to the constructorStatement(Connection c) ,
the condition of the corresponding choice operation is evaluated
and theStatement is chosen if the passedConnection is
the one for whichchosen[c](u) holds. Similarly, the condition
for choosing aResultSet is evaluated on entry to constructor
ResultSet(Statement s) . As a result, for each subproblem
chosen[c](u) holds for (at most) a singleConnection compo-
nent, andchosen[s](u), chosen[r](u) hold for Statement s and
ResultSet s that are related to the chosenConnection .

We now briefly indicate how hierarchical strategies are handled.
The notion of a failed individual is fairly straightforward. A single
strategy specification produces multiple verification subproblems,
each over a set of chosen individuals. An individual is said to be
a failed individual if it is a chosen individual of a verification sub-
problem that fails verification. However, we want to utilize simple
strategy specifications that restrict their attention to individuals that
failed the previous simple strategy specification. In general, this
requires instrumentation that can identify at object-allocation time
whether the allocated object corresponds to a failed individual in
the previous verification step. This is hard to do in a very general
way, and we restrict ourselves to allocation-site based identification
of failed individuals: thus, if any one individual allocated at an al-
location site fails verification, then all individuals allocated at that
allocation site are treated as failed individuals in the next verification
step.

Operational Semantics
In a FOTS, program statements are modelled byactionsthat spec-
ify how the statement transforms an incoming logical structure into
an outgoing logical structure. This is done primarily by defining
the values of the predicates in the outgoing structure using first-
order logic formulae with transitive closure over the incoming struc-
ture [15].

Example 3.Fig. 6 shows the effect of the statementmaxRs2 =
stmt2.executeQuery(maxQry) at line28 , where the state-
ment is applied to the configuration in Fig. 5. The effect of the
statement is reflected by its updates to predicate values. Here, we
assume that the choice predicates and the instrumentation predicates
are updated according to the single-choice strategy of Section 3.
Since the constructor of the newResultSet is invoked with a

chosenStatement object, the choice condition is satisfied and
the newly createdResultSet is chosen and made relevant.

4.3 Additional Instrumentation
The predicaterelevantis intended to identify objects that must be

modelled precisely for a verification subproblem. The separation
strategy specification allows users to identify relevant objects (via
choice clauses). An analysis designer, or a component library de-
signer, can create separation strategies that reflect the dependencies
that exist among component library objects, while an end user can
create separation strategies that provide more dependency informa-
tion (specific to their own program).

Currently, however, we do not assume that such extra dependency
information will be available from an end user. Instead, we rely
on a more automatic approach that considers objects which reach
a relevant object as relevant themselves, thus creating a notion of
transitive relevance. Transitive relevance causes all objects that
are on a path to a relevant objects to become relevant as well, thus
separating heap paths that may reach a relevant object from heap
paths that cannot.

We achieve this by defining the instrumentation predicaterelevant(u)
to be true iff there is a path fromu to some chosen objectv (i.e.,
some objectv for whichchosen(v) is true. We update this predicate
using the techniques of [13].

5. HETEROGENEOUS ABSTRACTION
The essence of our separation-based verification is the following:

first, a separation strategy is used to choose a set of objects (for
a given program trace); second, we utilize specialized abstractions
to perform verification for the chosen objects efficiently. These
specialized abstractions represent the chosen objects much more
precisely than the remaining objects. We refer to these abstractions
asheterogeneousabstractions as they represent different parts of the
heap with different degrees of precision. In this section we describe
the abstractions we use for separation-based verification.

Abstract Program Configurations
The first goal of an abstraction is to create a finite (bounded) rep-
resentation of a potentially unbounded set of 2-valued structures
(representing heaps) of potentially unbounded size. The abstrac-
tions we will use are based on 3-valued logic [15], which extends
boolean logic by introducing a third value1/2 denoting values that
may be 0 or 1.

Definition 2. A 3-valued logical structure over a set of predicates
P is a pairC = 〈U, ι〉 where:

• U is the universe of the3-valued structure. Each individual
in U possibly represents multiple heap-allocated objects.

• ι is the interpretation function mapping predicates to their
truth-value in the structure: for every predicatep ∈ P of
arity k, ι(p) : Uk → { 0, 1, 1/2 }.

We allow an abstract configuration to includesummary nodes, i.e.,
an individual which corresponds to one or more individuals in a
concrete configuration represented by that abstract configuration.
Technically, we use a designated unary predicatesm to maintain
summary-node information. A summary nodeu hassm(u) = 1/2,
indicating that it may represent more than a single individual.

As in [15], the abstract interpretations we use work by abstracting
the set of 2-valued structures that can arise at a program point by a
set of 3-valued structures. However, this can be done in a number
of ways as shown below.
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Individual Merging. The basic abstraction primitive used by [15]
is that of individual merging: a larger 3-valued structures (or 2-
valued structures, which is just a special kind of 3-valued struc-
ture) can be safely approximated into a smaller 3-valued structure
by merging multiple individuals into one, and by approximating
the predicate values appropriately. Given an equivalence relation
≡ on individuals, lets/≡ denote the structure obtained by merging
individuals ofs that are≡-equivalent together.

The above primitive induces a functionabs1[≡] that abstracts
a (potentially unbounded) set of 2-valued structures (of potentially
unbounded size) by a bounded set of 3-valued structures of bounded
size, defined byabs1[≡](S) = {s/≡ | s ∈ S}. (Strictly speaking,
abs1[≡](S) retains only a single representative of isomorphic struc-
tures, but we will ignore the fine distinction between isomorphism
and equality here for the sake of simplicity.)

[15] utilizes the equivalence relation≡A induced by a set of unary
predicatesA (referred to as theabstractionpredicates) defined as
follows: o1≡Ao2 iff p(o1) = p(o2) for everyp ∈ A.

Structure Merging.Subsequently, TVLA [10] introduced more
aggressive abstraction mechanisms based on the idea ofmerging
multiple structuresinto one. Define theunions1 ∪ s2 of two struc-
tures to be the structure whose universe is the disjoint union of the
universes ofs1 ands2, with the predicate interpretations ofs1 and
s2 extended appropriately. The union of a set of structuresS is
defined similarly. Structures are merged by first taking their union,
and then merging individuals of the union along the lines indicated
previously: define

⊔
≡(S) to be(

⋃
S)/≡.

Now, consider an equivalence relation' defined onstructures,
indicating which structures must be merged together, and an equiv-
alence relation≡ defined onindividuals. We can now define a
parameterized abstraction functionabs2[',≡](S) that first applies
individual mergingto every structures in S, and then merges to-
gether the resulting structures that are'-equivalent. Formally,
abs2[',≡](S) is defined to be:

{
⊔

≡
(C) | C is an'-equivalence class ofabs1[≡](S) }

TVLA utilizes the following' definitions: (a)s1 ' s2 iff s1

ands2 are isomorphic, (b)s1 ' s2 iff iff s1 ands2 have the same
values for a specified setB of nullary abstractionpredicates, (c)
s1 ' s2 iff s1 ands2 have the same universes (modulo≡).

Heterogeneous Abstraction
Separation creates the possibility for achieving better efficiency by
adapting the abstractions to model chosen individuals more pre-
cisely and the other individuals less precisely. In particular, this can
be done by:

• Adapting individual merging: We could make finer distinc-
tions between chosen individuals than for unchosen individ-
uals, when we decide which individuals should be merged
together. For instance, we could choose to use the less expen-
sive allocation-site based merging for unchosen individuals,
and more expensive variable-name based merging for chosen
individuals.

• Adapting structure merging: Similarly, when deciding which
structures should be merged into one, we could choose to treat
chosen and unchosen individuals differently.

• Adapting predicate values retained: One could even choose
to retain less information (predicate values) for unchosen in-
dividuals. (Technically, this amounts to utilizing many-sorted

logical structures, where the sort of an individual may change
dynamically.) While this can reduce the space required to
represent a structure, this does not, unlike the preceding tech-
niques, reduce the number of structures in the abstraction. We
will not discuss this in this paper.

We now define a new family of equivalence relations for identify-
ing individuals to be merged. Consider a quadruple〈c, A1, A0, A1/2〉
wherec is a unary predicate, andA1, A0, andA1/2 are all sets of
unary predicates. The equivalence relation≡〈c,A1,A0,A1/2〉 on in-
dividuals is defined by:

(c(x) = c(y) = 1) ∧ ∀p ∈ A1.p(x) = p(y)) ∨
((c(x) = c(y) = 0) ∧ ∀p ∈ A0.p(x) = p(y)) ∨

((c(x) = c(y) = 1/2) ∧ ∀p ∈ A1/2.p(x) = p(y))

Given a setΓ of such tuples, we define≡Γ to be γ∈Γ ≡γ .
We similarly define a new criteria for structure merging. Given a

unary predicatec, defines1 'c s2 iff the substructures ofs1 ands2

consisting only of individualsi for whichc(i) = 1 are isomorphic.
For our separation-based verification, we utilize the abstraction

induced by the equivalence relations≡〈relevant,A,φ,A〉 and'relevant,
whereA is the set of abstraction predicates utilized by the underlying
separation-less verification. (In our implementation, this consists of
the set of unary predicates).

Implementation Notes.Our current implementation uses a very
close approximation of the individual merging induced by the equiv-
alence relation≡〈relevant,A,φ,A〉 as follows: for every predicate
p in A, we introduce a new instrumentation predicatepr(o) =
p(o) ∧ relevant(o), and use the set of predicates{ pr | p ∈ A }
as the set of abstraction predicates.

Example 4.Fig. 7 shows an abstract configuration representing
the concrete configuration of Fig. 6, obtained by heterogeneous
relevance-based abstraction. Abstract program configurations are
depicted similarly to concrete configurations with an additional rep-
resentation of summary nodes as nodes with double-line boundaries,
and a1/2-valued binary predicate as a dashed edge. All individ-
uals for whichrelevant holds are abstracted by the values of the
predicates inA1. Other individuals, for whichrelevant does not
hold, are merged into a single summary node sinceA0 = ∅. In par-
ticular, this abstract configuration abstracts away the current state
of objects related toConnection con1 , including the state of
Statement stmt1 . In the figure, we use. . . = 1/2 instead of
listing all predicates that have1/2 value for the summary node.

If we had used a “homogeneous” abstraction, the non-relevant
objects would have been abstracted using the same set of predicates
as the relevant objects (A1), thus keeping the objects related to
the Connection referenced bycon1 with the same precision,
and cost, as the ones related toConnection referenced bycon2 .
The ability to treat these structurally-similar objects very differently
during analysis is a key to obtaining good results with our method.

Abstract Semantics
We will now briefly describe the abstract semantics (“transfer func-
tions”) we utilize for program statements.

A key idea underlying [15] is that the actions defining a standard
operational semantics for a program statement (as a transformer of
2-valued structures) also define a corresponding abstract semantics
for the statement (as a transformer of 3-valued structures). This
abstract semantics is simply obtained by reinterpreting logical for-
mulae using a 3-valued logic semantics and serves as the basis for
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Figure 7: An abstract program configuration representing the concrete configuration of Fig. 6.

an abstract interpretation. However, [15] also presents techniques,
such as materialization, that improve the precision of such an ab-
stract semantics. We directly utilize the implementation of these
ideas available in TVLA.

We described earlier (see Section 4.2) how we utilize instrumenta-
tion predicates to identify relevant objects. We currently also utilize
instrumentation predicates at achieve a heterogeneous abstraction.
We use the techniques in [13] for automatically generating, from
the instrumentation formula, an instrumented abstract semantics for
statements to update the values of these instrumentation predicates.

6. PROTOTYPE IMPLEMENTATION
We have implemented a prototype of the separation verification

engine using TVLA [10]. To translate Java programs and their
specifications to TVP (TVLA input language) we have extended
an existing front-end for Java developed by R. Manevich, which is
based on the Soot framework [18].

The heterogeneous abstraction was emulated using instrumenta-
tion predicates in TVLA and not given a native implementation.
This form of implementation introduces some overhead due to the
vast number of coercion constraints that have to be evaluated. We
believe that a native implementation of the heterogeneous abstrac-
tion will yield better results in terms of performance.

We applied our framework to verify various specifications for a
number of example programs. Our specifications include correct
usage of JDBC, IO streams, Java collections and iterators, and ad-
ditional small but interesting specifications. The experiments were
performed on a machine with a1 Ghz Pentium 4 processor,1 Gb2.
Results are shown in Table 3. Theanalysis modeshows the mode
for each line in the table. Verification with TVLA with no separa-
tion is referred to asvanilla mode. Rep. errors shows the number
of reported errors, act. errors the number of actual errors.

Our implementation allows control over which subproblems are
verified simultaneously. This allows to verify the subproblems re-
lated to an allocation-site (or set of allocation sites) separately from

2SQLExecutor benchmark was analyzed on a machine with a
2.79Ghz processor.

Program Description Analysis Space Time Rep. Act.
Mode (MB) (Sec) Err. Err.

ISPath input streams vanilla 9.17 145.5 0 0
/ IOStreams single 2.51 17.4 0

singlesim 3.94 12.3 0
Input input streams vanilla 16.35 439 1 0
Stream5 holders single 17.65 240 0

/ IOStreams singlesim 21.35 202 0
Input err input streams vanilla 13.72 343 1 1
Stream5b holders single 19.71 279 1

/ IOStreams singlesim 22.74 243 1
JDBC extended vanilla 33.43 2500 1 1
Example example single 28.71 1090 1

/ JDBC multi 16 7340 1
hierarchy 12.5 3579 1

JDBC extended vanilla 32.8 2500 0 0
Example example single 28.8 1090 0
fixed / JDBC multi 29.5 7500 0

hierarchy 25.7 3339 0
db SpecJVM98 db vanilla 89.25 10454 0 0

/ IOStreams single 90 2500 0
singlesim 91.17 1496 0

Kernel Collections vanilla 42.23 8321 1 1
Bench.1 benchmark single 13.15 657 1

/ CMP singlesim 13.84 255 1
multi 14.45 4552 1
hierarchy 14.45 960 1

SQL JDBC vanilla − − − 0
Executor framework single 80.59 5028 0

/ JDBC multi 72.64 4919 0
hierarchy 42.68 412 0

Table 3: Analysis results and cost for the benchmark programs.

other subproblems, thus reducing the maximal memory footprint of
the verification effort. The measurements in Table 3 correspond to
this non-simultaneous mode. The space measurement shown in Ta-
ble 3 for separation modes (single,multi,hierarchy) is the maximal
space required for analyzing a single set of subproblems. The time is
the accumulated time for analyzing all subproblems. The table also
shows measurements for simultaneous verification of all subprob-
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lems using single-mode. For the JDBC example, the simultaneous
single-choice mode is identical to the non-simultaneous mode.

ISPath is a simple correct program manipulating input streams.
InputStream5 is a heapful example program that manipulates input-
streams in holder objects at arbitrary depth of the heap. For this
program, the vanilla version produces a false-alarm that is avoided
by the separation-based analysis. This is due to the use oftran-
sitive relevancewhich makes the separation-based analysis more
precise (for the relevant objects). Generally, since the separation-
based analysis is more focused, it may allow using a more precise
abstraction than the one that could be used when applied uniformly.
InputStream5b is an erroneous version of InputStream5 containing
a single error.

JDBCExample is an extended version of the running example
that uses5 Connection s. The high running-time result for hier-
archical mode in this case is affected by the fact that there is small
number ofStatement s (1) andResultSet s (up to 3) associ-
ated with eachConnection . db is a program from SpecJVM98
that performs multiple database functions on a memory resident
database.

KernelBenchmark1 is part of a benchmark suite for testing Col-
lections and Iterators used in [12], and contains various tests of Col-
lections and Iterators interactions. SQLExecutor is an open source
JDBC framework. For this benchmark, vanilla verification failed to
terminate after more than5 hours, but hierarchical-mode success-
fully verified the program in412 seconds. This is a result of the
correct and relatively simple usage of JDBC objects in this bench-
mark.

In some benchmarks separation gained an overall performance
increase, while in others the accumulated verification time in some
modes was larger than the one required for vanilla-mode verifica-
tion. In all cases, however, the average time for verifying a single
subproblem was significantly lower than the time required for over-
all vanilla verification indicating that separation may be very useful
for answering on-demand queries when one is only interested in
checking whether an object (or a set of correlated object) can pro-
duce an error.

For example,while the accumulated time for multi-mode and
hierarchy-mode in the JDBC example is larger than the time required
for vanilla-mode, the average time for verifying each subproblem
was approximately670 seconds.

One interesting future direction is to exploit separation for in-
creasing performance by parallelizing verification of subproblems.

7. EXTENSIONS AND FUTURE WORK
It is possible to use iterative refinement to approximate the set

of relevant objects for a subproblem. We have obtained an ini-
tial experience with two classes of iterative refinement schemes —
variable-based and object-based. Variable-based refinement oper-
ates by turning a variable into relevance-inducing, making the ob-
ject pointed-to by this variable into a temporarily relevant object.
Object-based refinement operates by making more objects relevant
beginning from their allocation. Both classes of our refinement
schemes are guaranteed to terminate (with all objects being rele-
vant in the worst case), but are not guaranteed to yield a successful
verification.

In both schemes, we refine the abstraction when we encounter a
configuration in which a relevant object is assigned into a field of an
irrelevant object. The intuition is that in such configuration we have
already abstracted away a path that is becoming a reaching path to
a relevant object.

Our initial experience indicates that these techniques work well
for relatively small examples.
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