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Abstract 
 
BlueGene/L (BG/L) is a 64K (65,536) node scientific and 
engineering supercomputer that IBM is developing with 
partial funding from the United States Department of 
Energy.  This paper describes one of the primary BG/L 
interconnection networks, a three dimensional torus.  We 
describe a parallel performance simulator that was used 
extensively to help architect and design the torus network 
and present sample simulator performance studies that 
contributed to design decisions.  In addition to such studies, 
the simulator was also used during the logic verification 
phase of BG/L for performance verification, and its use 
there uncovered a bug in the VHDL implementation of one 
of the arbiters. 
 
1. Introduction 
 
BlueGene/L (BG/L) is a scientific and engineering, 
message-passing, supercomputer that IBM is developing 
with partial funding from the U.S. Department of Energy 
Lawrence Livermore National Laboratory.  A 64K node 
system is scheduled to be delivered to Livermore, while a 
20K node system will be installed at the IBM T.J. Watson 
Research Center for use in life sciences computing, 
primarily protein folding. A more complete overview of 
BG/L may be found in [1], but we briefly describe the 
primary features of the machine. 
 
BG/L is built using system-on-a-chip technology in which 
all functions of a node (except for main memory) are 
integrated onto a single ASIC.  This ASIC includes two 32-
bit Power PC cores (the 440); the 440 was developed for 
embedded applications.  Associated with each core is a 64-
bit “double” floating-point unit (FPU) that can operate in 
SIMD mode.  Each (single) FPU can execute up to two 
multiply-adds per cycle, meaning that the peak 
performance of the chip is 8 floating-point operations per 
cycle. Each 440 has its own instruction and data caches 
(each 32KB), a small L2 cache that primarily serves as a 
pre-fetch buffer, a 4MB shared L3 cache built from 
embedded DRAM, and a DDR memory controller.  In 
addition, the logic for five different networks is integrated 
onto the ASIC.  These networks include a JTAG control 
and monitoring network, a Gbit Ethernet macro, a global 
barrier and alert network, a “tree” network for broadcasts 
and combining operations such as those used in the MPI 
collective communications library, and a three dimensional 
torus network for point-point communications between 
nodes. This paper will focus on the torus network. 
 
The ASIC can be used as either an I/O node or as a 
Compute node. I/O nodes have their Ethernet macro 
connected to an external switch enabling connectivity to 
hosts, however they do not use the torus network.  Compute 
nodes do not connect their Ethernet, and talk to the I/O 
nodes over the tree network. The Livermore machine will 

have 64 Compute nodes for each I/O node. I/O nodes will 
have at least 512MB and Compute nodes will have at least 
256 MB of memory, depending on the cost of memory at 
the time of delivery. 
 
Because of the high level of integration and relatively low 
target clock speed (700 MHz target), the system is designed 
to deliver unprecedented aggregate performance at both 
low cost and low power consumption. At this clock rate, 
each node has a peak of 5.6 GFlops, while the 64K node 
system has a peak of 367 Tera Flops. Each ASIC will 
consume only 12 watts of power. Because of the low 
power, a very high density of packaging can be achieved.  
Two compute ASICs and their associated memory are 
packaged onto a compute card, 16 compute cards are 
mounted on a node card, and 16 node cards are packaged in 
a 512 node midplane. Two midplanes are packaged in a 
1024 node rack, which is about the size of a large 
refrigerator.  
 
Because the 440 core does not contain shared memory 
support, the L1 caches of the two cores on the same ASIC 
are not coherent. Memory is consistent from the L2 on out, 
but software is required to appropriately manage the L1’s.  
The system can operate in one of two modes. In 
communications coprocessor mode, one core is responsible 
for computing while the other core handles most messaging 
functions.  Careful software coordination is required in this 
mode to overcome the lack of L1 coherence. When 
configured in this mode, the peak performance of the 64K 
node system is 183 Tera Flops.  In the second mode, 
“virtual node” mode, each core has its own memory space 
and each core is responsible for both computing and 
message handling; the system has two sets of network 
injection and reception FIFOs, so that both cores can 
simultaneously access the network interfaces. 
 
2. Torus Network  
 
We now describe the torus network in some detail.  Many 
of the design decisions were driven by simulation 
performance studies, as will be described in Section 4. 
 
The torus network uses dynamic routing with virtual cut-
through buffering [8].  A torus was chosen because it 
provides high bandwidth nearest neighbor connectivity, 
which is common in scientific applications, but also for its 
scalability, cost and packaging considerations. A torus 
requires no long cables and, because the network is 
integrated onto the same chip that does computing, no 
separate switch is required. Previous supercomputers such 
as the Cray T3E [12] have also used torus networks. 
 
Torus packets are variable in size – from 32 to 256 bytes in 
increments of 32 byte chunks.  The first eight bytes of each 
packet contain link level protocol information (e.g., 
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sequence number) and routing information including 
destination, virtual channel and size. A 24-bit CRC is 
appended to each packet, along with a one byte valid 
indicator.  The CRC permits link level checking of each 
packet received, and a timeout mechanism is used for 
retransmission of corrupted packets.  The error detection 
and recovery protocol is similar to that used in IBM SP 
interconnection networks as well as in the HIPPI standard. 
 
For routing, the header includes six “hint” bits, which 
indicate in which directions the packet may be routed.  For 
example, hint bits of 100100 means that the packet can be 
routed in the x+ and y- directions.  Either the x+ or x- hint 
bits, but not both, may be set. If no x hops are required, the 
x hint bits are set to 0. Each node maintains registers that 
contain the coordinates of its neighbors, and hint bits are 
set to 0 when a packet leaves a node in a direction such that 
it will arrive at its destination in that dimension.   These 
hint bits appear early in the header, so that arbitration may 
be efficiently pipelined.  The hint bits can be initialized 
either by software or hardware; if done by hardware, a set 
of two registers per dimension is used to determine the 
appropriate directions.  These registers can be configured to 
provide minimal hop routing.  The routing is accomplished 
entirely by examining the hint bits and virtual channels, 
i.e., there are no routing tables.  Packets may be either 
dynamically or statically (xyz) routed.  Besides point-to- 
point packets, a bit in the header may be set that causes a 
packet to be broadcast down any dimension.  The hardware 
does not have the capability to route around “dead” nodes 
or links, however, software can set the hint bits 
appropriately so that such nodes are avoided; full 
connectivity can be maintained when there are up to three 
faulty nodes, provided they are not co-linear.   
 
The torus logic consists of three major units, a processor 
interface, a send unit and a receive unit, as shown in 

.  The processor interface consists of network injection 
and reception FIFOs.  Access to these FIFOs is via the 
double FPU registers, i.e., data is loaded into the FIFOs via 
128 bit memory mapped stores from a pair of FPU 
registers, and data is read from the FIFOs via 128 bit loads 
to the FPU registers.  There are a total of 8 injection FIFOs 
organized into two groups: two high priority (for inter-node 
OS messages) and six normal priority FIFOs, which are 
sufficient for nearest neighbor connectivity.  Packets in all 
FIFOs can go out in any direction. Each group of reception 
FIFOs contains 7 FIFOs, one high priority and one 
dedicated to each of the incoming directions. More 
specifically, there is a dedicated bus between each receiver 
and its corresponding reception FIFO. Up to six injection 
and six reception FIFOs may be simultaneously active. 

Figure 
1

 
Each of the six receivers, as shown in Figure 1, has four 
virtual channels (VCs). Multiple VCs help reduce head-of-
line blocking [4], but in addition, mesh networks including 
tori with dynamic routing, can deadlock unless appropriate 
additional “escape” VCs are provided [5,7].  We use a 
recent, elegant solution to this problem, the “bubble” 
escape VC as proposed in [10,11]. BG/L has two dynamic 
VCs, one bubble escape VC that can be used both for 
deadlock prevention and static routing, and one high 
priority bubble VC.  Each VC has 1 KB of buffering, 
enough for four full-sized packets.  In addition to the VCs, 
the receivers include a “bypass” channel so that packets can 
flow through a node without entering the VC buffers, under 

appropriate circumstances. Dynamic packets can only enter 
the bubble escape VC if no valid dynamic VCs are 
available. 
 
A token flow control algorithm is used to prevent over-
flowing the VC buffers. Each token represents a 32B 
chunk.  For simplicity in the arbiters, a VC is marked as 
unavailable unless 8 tokens (a full-sized packet) are 
available.  However, token counts for packets on dynamic 
VCs are incremented and decremented according to the size 
of the packet.  The bubble rules, as outlined in [10,11] 
require that tokens for one full-sized packet are required for 
a packet already on the bubble VC to advance, but that 
tokens for two full-sized packets are required for a packet 
to enter the bubble VC, upon either injection, a turn into a 
new direction, or when a dynamic VC packet enters the 
bubble. This rule ensures that buffer space for one packet is 
always available after an insertion and thus some packet 
can always, eventually move. However, we discovered that 
this rule is incomplete for variable-sized packets when our 
simulator deadlocked using this rule. With this rule, the 
remaining free space for one full-sized packet can become 
fragmented resulting in a potential deadlock.  To prevent 
this, the bubble rules are simply modified so that each 
packet on the bubble is accounted for as if it were a full-
sized (8 chunk) packet.  
 
Eight byte acknowledgement (ack-only) or combined 
token-acknowledgement (token-ack) packets are returned 
when packets are either successfully received, or when 
space has freed up in a VC.  Acknowledgements permit the 
torus send units to delete packets from their retransmission 
FIFOs, which are used in the error recovery protocol.  The 
send units also arbitrate between requests from the receiver 
and injection units. 
 
Due to the density of packaging and pin constraints, each 
link is bit serial. The torus is internally clocked at one-
fourth the rate of the processor, so at the target 700 MHz 
clock rate, each torus link is 175 MB/sec.  There are 
sufficient internal busses so that each of the 6 outgoing and 
6 incoming links can be simultaneously busy; thus each 
node can be sending and receiving 1.05 GB/sec. In 
addition, there are two transfer busses (paths) coming out 
of each receiver that connect with the senders.  Thus, a 
single receiver can have up to 4 simultaneous transfers, 
e.g., one to its normal reception FIFO, one to the high 
priority reception FIFO, and two to two different senders. 
 
Arbitration is distributed and pipelined, but occurs in three 
basic phases. It generalizes an approach used in [3] and 
represents tradeoffs between complexity, performance, and 
ability to meet timing constraints.  First, each packet at the 
head of the injection or VC FIFOs decides in which 
direction and on what VC it prefers to move.  For statically 
routed packets, there is only one valid choice, but 
dynamically routed packets may have many choices. The 
preferred direction and VC are selected using a modified 
“Join the Shortest Queue” (JSQ) algorithm as follows. The 
senders provide the receivers and injection FIFOs with a bit 
indicating both link and token availability for each VC in 
each direction. This bit vector is and-ed with a bit vector of 
possible moves constructed from the packet’s hint bits and 
VC. This defines the set of possible and available 
arbitration requests.  In addition, the sender provides 2 bits 
for each VC indicting one of four ranges of available 
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downstream tokens.   Of all the possible and available 
dynamic direction/VC pairs, the packet selects the one with 
the most available downstream tokens. Ties are randomly 
broken.  If no dynamic direction/VC combination is 
available, the packet will request its bubble escape 
direction/VC pair (if available), and if that is also 
unavailable, the packet makes no arbitration request. This is 
a somewhat simplified description since bus availability 
must also be taken into account.  In addition, when a packet 
reaches its destination, the “direction” requested is simply 
the corresponding reception FIFO. 
 
Second, since each receiver has multiple VC FIFOs (plus 
the bypass) an arbitration phase is required to determine 
which of the requesting packets in the receiver wins the 
right to request.  If a high priority packet is requesting, it 
wins. Barring that, a modified  “Serve the Longest Queue” 
(SLQ) is used, based on 2 bit (4 ranges) FIFO Fullness 
indicators, i.e., the packet from the most full VC (as 
measured to within the 2 bits of granularity) wins.  
However, this cannot always be used since doing so may 
completely block out a VC.  Therefore, a certain 
(programmable) fraction of the arbitration cycles are 
designated SLQ cycles in which the above algorithm is 
used, while the remaining cycles select the winner 
randomly. A packet on the bypass channel always receives 
the lowest priority (unless it is a high priority packet). 
 
Third, the receivers and injection FIFOs present their 
requests to the senders. Note that on a given cycle a 
receiver will present at most one request to the senders.   
Thus each sender arbiter can operate independently. The 
sender gives highest priority to token-ack or ack-only 
packets, if any. Barring that, the senders tend to favor 
packets already in the network and use a similar modified 
SLQ algorithm in which there are SLQ cycles and random 
cycles. In particular, a certain programmable fraction of 
cycles (typically 1.0) give priority to packets already in the 
network (unless the only high priority packet requesting is 
in an injection FIFO). On such cycles the modified SLQ 
algorithm is used. Higher priority can be given to injection 
packets by lowering above in-network priority fraction. On 
cycles in which injection packets receive priority (barring 
in-network high priority packets), the modified SLQ 
algorithm is also used.  
     
3. Simulator Overview 
 
Given the complexity and scale of the BG/L 
interconnection network, having an accurate performance 
simulator was essential during the design phase of the 
project.  Due to the potential size of such a model, 
simulation speed was a significant concern and a proven 
shared memory parallel simulation approach was selected. 
In particular, parallel simulation on shared memory 
machines has been shown to be very effective in simulating 
interconnection networks (see, e.g., [13]) whereas success 
with message passing parallel interconnection network 
simulators is harder to come by (see, e.g., [2]).  We also 
recognized the difficulties in developing an execution-
driven simulator such as that in [6] for a system with up to 
64K processes, and therefore decided upon a simulator that 
would primarily be driven by application pseudo-codes, in 
which message passing calls could be easily passed to the 
simulator; such calls include the time since the last call (the 
execution burst time), the destination and size of the 

message, etc.   This pseudo-code included a subset of the 
MPI point to point messaging calls as a workload driver for 
the simulator. We also extended the IBM UTE trace 
capture utility that runs on IBM SP machines and were able 
to use such traces as simulator inputs (for up to several 
hundreds of nodes). 
 
The basic unit of simulation time is a network cycle, which 
is defined to be the time it takes to transfer one byte.  As 
BG/L is organized around 512 node (8x8x8) midplanes, the 
simulator partitions its work on a midplane basis, i.e., all 
nodes on the same midplane are simulated by the same 
processor (thread) and midplanes are assigned to threads in 
as even a manner as possible.  
 
Because different threads are concurrently executing, the 
local simulation clocks of the threads need to be properly 
synchronized.  To deal with this problem, we use a simple 
but effective “conservative” parallel simulation protocol 
known as “YAWNS” [9]. In particular, we take advantage 
of the fact that the minimum transit time between 
midplanes is known and is at least some constant w≥1 
cycles. In this protocol, time “windows” of length w are 
simulated in parallel by each of the threads. Consider an 
event that is executed during the window (starting at time t) 
on processor i that is destined to arrive on processor j in the 
future; such an event represents the arrival of the first byte 
of a packet.  Since the minimum transit time is w, the 
arrival cannot occur during the current window, represented 
by the interval [t, t+w-1].  Processor i simply puts a pointer 
to the event on an i-to-j linked list.  When each processor 
reaches the end of the window, it enters a barrier 
synchronization. Upon leaving the barrier, each processor 
is sure that every other processor has executed all events up 
to time t+w-1 and that all inter-processor events are on the 
appropriate inter-processor linked lists. Processor j can 
therefore go through all its i-to-j linked lists, remove events 
from them, and put the events on its own future event list.  
Once this is done, the processors can simulate the next 
window [t+w, t+2w-1].  If w=1, then this protocol requires 
a barrier synchronization every cycle, however, on BG/L, 
the minimum inter-midplane delay will be approximately 
w=10 network cycles. When a large number of BG/L nodes 
are being simulated, each processor will execute many 
events during a window, i.e., between barriers, and thus the 
simulator should obtain good speedups.   
 
The simulator runs on a 16-way IBM “nighthawk” SMP 
with 64 GB of memory.  The model of the torus hardware 
contains close to 100 resources per node  (links, VC token 
counters, busses, FIFOs, etc), so that a full 64K node 
system can be thought of as a large queuing network with 
approximately 6 million resources. It consumes a large 
amount of memory and runs slowly; a 32K node simulation 
of fully loaded network advances at about 0.25 
microseconds of BG/L time per second of wall clock time. 
However, it obtains excellent speedup, typically more than 
12 on 16 nodes, and sometimes achieves superlinear 
speedup due to the private 8MB L3 caches on the SMP and 
the smaller per node memory footprint of the parallel 
simulator. 
 
The model, which was written before the VHDL, is thought 
to be a quite accurate representation of the BG/L hardware, 
although a number of simplifications were made. For 
example, in BG/L the arbitration is pipelined and occurs 
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Arbitration Policies:  plots the response time for 
the light traffic, random destination workload on a 32K 
node BG/L system using different arbitration policies.  The 
“base” policy is the above-mention random policy.  In light 
traffic, SLQ provides little benefit (since queues aren’t that 
full) but JSQ does reduce response time in moderate traffic; 
at 95% link utilization, the average response time is 
reduced by about 20%.  Figure 5 plots the throughput for a 
4K node BG/L under the hot region model for the different 
arbitration policies.  While the throughputs of all policies 
stabilize near the same value, the decline is slowest for the 
SLQ policy (75% of the cycles are SLQ cycles). For this 
traffic pattern, JSQ provides little benefit.  Thus the two 
policies are complementary; JSQ helps reduce response 
time in moderate traffic and SLQ helps defer throughput 
degradation under heavy, non-uniform traffic. 

over several cycles.  In the simulator, this is modeled as a 
delay of several cycles followed by presentation of the 
arbitration request.  Because the simulator focuses on what 
happens once packets are inside the network, a gross 
simplification was the assumption that the injection FIFOs 
were of infinite size, and that packets are placed in these 
FIFOs as early as possible rather than as space frees up in 
the FIFOs. This has little effect on network response time 
and throughput measurements during the middle of a run, 
but can affect the dynamics particularly near the end of 
runs. The simulator also did not model the error recovery 
protocol, i.e., no link errors were simulated and the ack-
only packets that are occasionally sent if a link is idle for a 
long time were not modeled. However, the arbitration 
algorithms and token flow control are modeled to a high 
level of detail. 

Figure 4

  
All-to-All: MPI_AlltoAll is an important MPI collective 
communications operation in which every node sends a 
different message to every other node.   plots the 
average link utilization during the communications pattern 
implied by this collective.  The Figure again shows the 
benefit of dynamic over static routing.  For this pattern, 
there is marginal benefit in going from 1 to 2 dynamic VCs, 
but what is important is that the average link utilization is, 
at approximately 98%, close to the theoretical peak.  This 
peak includes the overhead for the token-ack packets, the 
packet headers and the 4 byte CRC trailers.  A reasonable 
assumption for the BG/L software is that each packet 
carries 240 bytes of payload, and with this assumption the 
plot shows that the payload occupies 87% of the links.  Not 
shown in these plots is the fact that a very low percentage 
of the traffic flows on the escape bubble VC and that 
statistics collected during the run showed that few of the 
VC buffers are full.  Three-dimensional FFT algorithms 
often require the equivalent of an All-to-All, but on a 
subset of the nodes consisting of either a plane or a line in 
the torus.  Simulations of these communications patterns 
also resulted in near-peak performance.   

4. Sample Performance Studies 
 

Figure 6In this section, we present some examples of use of the 
simulator to study design trade-offs in BG/L.  The studies 
presented are illustrative and sometimes use assumptions 
and corresponding parameters about the system that do not 
reflect the final BG/L design.   
 
Response Time in Light Traffic: Figure 2 plots the 
response time for various 32K node BG/L configurations 
when the workload driver generates packets for random 
destinations and the packet generation rate is low enough 
so that the average link utilization is less than one. This 
Figure compares static routing to dynamic routing with one 
or more dynamic VCs and one or more busses (paths) 
connecting receivers to senders. Simpler, random, 
arbitration rules than SLQ and JSQ were used and the plot 
was generated early in our studies when the target link 
bandwidth was 350 MB/sec. (The 350 MB/sec. assumption 
essentially only affects results by a rescaling of the y-axis.) 
The figure shows the clear benefit of dynamic over static 
routing.  It also shows that there is little benefit in 
increasing the number of dynamic VCs unless the number 
of paths is also increased.  Finally, it shows only marginal 
benefit in going from a 2 VC/2 path to 4 VC/4 path 
configuration.   

 
The above simulation was for a symmetric BG/L.  
However, the situation is not so optimistic for an 
asymmetric BG/L.  For example, the 64K node system will 
be a 64x32x32 node torus.  In such a system, the average 
number of hops in the x dimension is twice that of the y 
and z dimensions, so that even if every x link is 100% busy, 
the y and z links can be at most 50% busy.  Thus, the peak 
link utilization is at most 66.7%.  Since 12% of that is 
overhead, the best possible payload utilization is 59%.  
However, we expect significantly more blocking and 
throughput degradation due to full VC buffers.  Indeed a 
simulation of the All-to-All communications pattern on a 
32x16x16 torus resulted in an average link utilization of 
49% and payload utilization of 44%, corresponding to 74% 
of the peak. This figure is probably somewhat pessimistic 
due to the simulator artifact of infinite-sized injection 
FIFOs, which distorts the effects at the end of the 
simulation. We also believe that appropriate injection flow 
control software algorithms can reduce VC buffer blocking 
and achieve closer to peak performance.   

 
Throughput Under Non-Uniform Traffic:  plots 
the throughput, as a function of time, for a 4K node BG/L 
system under a highly non-uniform traffic pattern.  In this 
pattern, the destinations of 25% of the packets are chosen 
randomly within a small “hot” contiguous sub-mesh region 
consisting of 12.5% of the machine. The remaining 75% of 
the packets chose their destinations uniformly over the 
entire machine.  Again, random arbitration and a 350 
MB/sec link speed were used.  The figure considers three 
different buffer sizes for the VC FIFOs: 512B, 1KB, and 
2KB. At the beginning of the run throughput (as measured 
over 10,000 cycle intervals) increases as packets enter the 
network, but then declines as the buffers fill up.  
Eventually, the throughput levels off at a value that is 
approximately equal for the three buffer sizes.  The decline 
happens more quickly for smaller buffer sizes.  It is worth 
noting that the steady state throughput is close to the peak 
possible throughput for this workload; the throughput is 
limited by the number of links entering the hot region. 
Measurements during the simulations indicated that those 
links generally have a mean utilization of around 95%. 

Figure 3

 
Nevertheless, the above study points out a disadvantage of 
the torus architecture for asymmetric machines in which the 
application cannot be easily mapped so as to result in a 
close proximity communications pattern.  
  

12/16/20039  4



Virtual Channel Architecture: Here we consider several 
different deadlock prevention escape VC architectures.  
The first, originally proposed in [5] has two escape VCs per 
direction. Each dimension has a “dateline.” Before crossing 
the dateline, the escape VC is the lower numbered of the 
pair, but after crossing the dateline the escape VC is the 
higher numbered of the pair.  In addition we consider 
dimension ordered or direction ordered escape VCs.  In 
dimension ordered, the escape VC is x first, then y if no x 
hops remain, then z if no x or y hops remain.  In direction 
ordered, the escape VCs are ordered by x+, y+, z+, x-, y-, 
z- (other orderings are possible).  We also consider 
dimension and direction ordered escape VCs for the bubble 
escape.  We again use the hot region workload where the 
hot region starts at coordinates (0,0,0) and the datelines are 
set at the maximum coordinate value in each dimension.  

 plots the throughput as a function of time. The 
dimension ordered dateline pair shows particularly poor 
and wild behavior, with a steep decline in throughput, 
followed by a rise and then another steep decline.   
plots the throughput on a per VC basis for a longer period 
of time.  The decreasing and increasing bandwidth waves 
persist even over this much longer time scale.  An 
appreciable fraction of the traffic flows on the escape VCs, 
indicating a high level of VC buffer occupation.  

Figure 7

Figure 8

 
What causes these waves? First, the placement of the 
dateline causes an asymmetry in the torus, whereas the 
bubble escape is perfectly symmetrical in each dimension.  
Since there are two escape VCs, we thought it likely that 
packets at the head of the VC buffers could be waiting for 
one of the escape VCs but tokens are returned for the other 
escape VC.  In such a situation, no packets could move 
even though the link may be available and downstream 
buffer space is available. To confirm this, the simulator was 
instrumented to collect additional statistics.  In particular, 
we measured the fraction of time a token-ack is returned 
that frees at least one previously blocked packet to move. 

 plots this unblocking probability along with the 
throughput as a function of time.  The unblocking 
probability is relatively constant for the bubble (after the 
initial decline), but varies directly with the throughput for 
the dateline pair; when the unblocking probability 
increases, the throughput increases and vice-versa. 

Figure 9

 
Performance Verification:  To verify the VHDL logic of 
the torus, we built a multi-node verification testbench.  This 
testbench, which runs on the Cadence VHDL simulator, 
consisted of workload drivers that inject packets into the 
injection FIFOs, links between nodes on which bits could 
be corrupted to test the error recovery protocol, and packet 
checkers that pull packets out of the reception FIFOs and 
check them for a variety of conditions, such as whether the 
packet arrived at the correct destination and whether its 
contents were received correctly. The workload drivers 
could be flexibly configured to simulate a number of 
different traffic patterns.   
 
As we neared the end of the logic verification process, we 
wanted to ensure that network performance was as 
intended. One of the benchmarks we tested was the All-to-
All.  The VHDL simulator was limited (by memory) to a 
maximum of 64 nodes, so we simulated both a 4x4x4 torus 
and an 8x8x1 torus and compared the average link 
utilizations to those predicted by the performance 
simulator.  While these agreed to within 2%, the VHDL 

(corresponding to the actual network hardware) indicated 
that VC buffers were fuller than that predicted by the 
performance simulator.  A close inspection of the 
arbitration logic revealed that a one cycle gap in the 
arbitration pipeline of the receivers could occur when all 
possible outgoing links/VCs were busy.  This gap was 
sufficient to permit packets from the injection FIFOs to 
sneak into the network, leading to fuller VCs than intended.  
A simple fix to eliminate this possibility was implemented, 
and subsequent VHDL simulations indicated greatly 
reduced levels of VC buffer occupation. 
 
5. Current Status 
 
We received the first pass chips back from manufacturing 
in mid-June, 2003 and have been testing them extensively 
for correctness (and performance).  Second pass chips will 
be released to manufacturing in mid-November, 2003 and 
the first batch of these is expected back in March 2004.  
Build and test of the Livermore machine will occur in 
stages during 2004, and we expect the full 64K node 
system to be operational in early 2005. 
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Figure 1: General Structure of Torus Router 
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Figure 2: Sample Response Time in Light Traffic 
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Figure 3: Throughput Under Non-Uniform Load 
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Figure 4: Response Time in Light Traffic for Different Arbitration Policies 
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Figure 5: Throughput Under Non-Uniform Traffic for Different Arbitration Policies 
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Figure 6: Average Link Utilization During All-to-All 
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Figure 7: Throughput Under Hot Region Traffic for Different Escape VC Architectures 
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Figure 8: Throughput on Each VC for the Dimension Ordered Dateline Pair Escape VC Architecture 
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