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Power Performance Tradeoffs in Design for SoCs

Victor Zyuban and Philip Strenski

INTRODUCTION

The design and implementation of processor cores is characterized by conflicting requirements of the ever

increasing demand for higher performance and, usually, stringent power budget. Thus compromises between

performance and power need to be made early in the design cycle. In the design of a processor core there is

typically a very specific power budget, but there are several ways to trade power for performance.

At the system level, varying power supply is the most straightforward and well understood method for

controlling power. One advantage of this method is that power supply can typically be adjusted within a

certain range even after the chip has been manufactured. Also, scaling Vdd around the nominal value in

ASIC foundry technologies has a known cost which is “typically” 2% in energy per 1% in performance,

although it can be anywhere from 0:5% to more than 3% in energy per 1% in performance. A notion of

voltage intensityhas recently been introduced [18] to quantify power-performance tradeoffs through varying

the power supply. Although a very powerful technique, scaling Vdd may have a relatively high performance

cost for saving power in a processor core that does not meet its power budget, as shown in Section III of this

chapter.

Another method for making power-performance tradeoffs is technology scaling, such as shrinking the oxide

thickness and effective channel length. Although, such tradeoffs are not generally available to average ASIC

customers, some foundry technologies provide libraries and transistors with multiple threshold voltages, and

some high end microprocessor designs work with foundries (typically their own) to engineer these parameters

effectively.

At the circuit level, power and performance can be traded by changing transistor sizes and power levels of

ASIC cells, controlled by changing transistor tuning targets, or by restructuring logic to increase or decrease
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the parallelism in circuits, for example, perform more computations in parallel in order to reduce the critical

path. These tradeoffs are controlled by either custom or logic designers or by running synthesis tools with

different directives. Although more difficult to quantify, this method for power-performance tradeoffs is at

least as powerful as scaling the power supply. By scaling circuits, in “typical” designs that we analyzed, one

percent in performance could be traded for from 0:5% to 5% in energy, or even higher, if the frequency target

is too aggressive. A concept ofhardware intensityhas been introduced in [18] to quantify power-performance

tradeoffs through scaling circuits.

Finally, scaling the processor core microarchitecture and, possibly Instruction Set Architecture (ISA), is

one more way for trading power and performance. This method involves changing machine organization,

such as pipeline depth, issue width, the set of functional units, bypasses, number of ports and entries in

queues and register files, the size of branch predictors, etc. Scaling microarchitecture is even a more powerful

method for power-performance tradeoffs than voltage and circuit scaling, but it is more difficult to quantify

and optimize, and can only be used at early stages of the design. A concept ofarchitectural complexitywas

introduced in [16] to analyze power-performance tradeoffs at the ISA and microarchitectural levels. It has

been demonstrated thatarchitectural complexitycan not only be measured but also set as a design target [8].

It was demonstrated in [18] that in order to develop an energy-efficient processor core, design decisions

at all levels must be balanced in such a way that all forms of spending power, described above, have a

similar marginal cost. In the following sections we summarize some of the most important formulas for

balancing hardware intensity and power supply voltage derived in [18], and give a graphical interpretation of

the major result. Then we discuss in detail the formula for balancing architectural complexity with voltage

and hardware intensity, and the iterative process of refining the processor core architecture in the power-

performance space. Then, since making power-balanced decisions at the architectural level plays such an

important role in the development of the energy-efficient processor cores, we give a derivation of a new

form of the architectural energy-efficiency criterion that does not require evaluation of the relative changes

in processor frequency. In Section IV we discuss other power-performance metrics that are commonly used
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in the architectural community and discuss some common mistakes made by architects when applying these

metrics. Section V gives some examples of using the architectural energy-efficiency criterion, and Section VI

concludes the chapter.

I. HARDWARE INTENSITY

The concept ofhardware intensityη was introduced in [18] as a quantitative measure of how aggressively

the circuits in a processor are tuned to meet a target clock frequency. Hardware intensity shows the energy

cost (in %) required to improve the delayD of a hardware macro by 1% through restructuring the logic and

retuning the circuits, at a fixed power supplyv1,

η =�
D∂E
E∂D

�
��
�
fixed v

or η =�
%E
%D

�
��
�
through retuning

(1)

Alternatively, we can define the hardware intensityη as a parameter in the cost function for optimizing

hardware:

Fcost(E;D) = (E=E0)(D=D0)
η η� 0; (2)

whereD is the critical path delay through the circuit,E is the average energy dissipated per cycle,D0 andE0

are the corresponding lower bounds that can be achieved through tuning and logic restructuring for a fixed

supply voltage. Under a very general assumption that the curvature of the energy-delay curve is higher than

the curvature of the contour of the cost function (2) at any point the two touch,D2

E
∂2E
∂D2 > η(η+1), we can

show that for any power supply voltagev, every point on the energy-delay curve corresponds to a certain value

of hardware intensityη, 0� η < +∞. Then, the energy-delay curve in the energy-versus-delay coordinates

can viewed as a parameterized curve:D = D(η;v), E = E(η;v).

Figure 1 gives a graphical interpretation of the hardware intensity. The solid line plots a typical energy-

delay curve for some hardware function. Dotted lines show several contours of the cost function (2), for

two values of hardware intensityη. Point(D;E) at which the energy-delay curve tangents the lowest of the
1It is assumed that the curvature of the energy-delay curve is sufficiently high, so thatD2

E
∂2E
∂D2 > η(η+1) is satisfied at every point.
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Fig. 1. Typical energy-efficient curve and constant cost function contours forη= 0:5 andη= 2:0.

contours (Fcost(E;D) = A with the smallest value ofA) corresponds to the implementation for this value of

hardware intensityη. Taking advantage of the equivalence of the tangents to the energy-delay curve and the

counter of the cost function, we get:

∂E
∂D

�
��
�
fixed v

=
∂E(η;v)

∂η
�∂D(η;v)

∂η
=�

∂Fcost

∂D

�∂Fcost

∂E
=�η

E
D
: (3)

This establishes the equivalence of the two definitions of the hardware intensity in (1) and (2).

Then, by formally solving the problem of minimizing the delay as a function ofη and v, subject to a

constant energy constraint, the following relations were derived in [18] for the optimal balance between

hardware intensity and power supply voltage:

isolated macro η = θ(v) (4)

composite macro
wj
uj

η j = θ(v) 1� j �M (5)

multi-stage pipeline ∑i wiηi = θ(v) (6)

wherewi are energy weights of pipeline stagesi in (6), wj anduj are energy and delay weights of sub-blocks

j in (5), η j are the hardware intensities in the corresponding sub-blocks, andθ is thevoltage intensitydefined
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as

θ =
Ev

Dv
Ev =

v
E

∂E
∂v

Dv =�
v
D

∂D
∂v

: (7)

Relation (4) has a simple interpretation, shown in Fig. 2. The solid curve shows an energy-delay tradeoff

curve for variable hardware intensity at a fixed power supply,v= 1:5V, θ = 2 in this example (hardware

intensity energy-delay curve). The curve was fitted to simulation data [18] for an integer adder, obtained

using EinsTuner [5]. The dotted curves show the energy-delay curves for a fixed tuning point (fixed hardware

intensityη) of the circuit, but varying power supply, plotted for an idealE � v2 and f � v dependence, as

commonly assumed in many studies. The dashed curves showsimulateddata (for a set of FUs, running

PathMill and PowerMill), with 50mV steps in the power supply marked with circles. The point at which the

power supply energy-delay curve (dashed curve) tangents the hardware intensity energy-delay curve (solid

curve) corresponds to the optimal balance betweenη andv.

To show this, suppose that the circuit is over-tuned, for example,η = 4. Then, retuning the circuit for

a lower value ofη will move the design point down the hardware intensity energy-delay curve. Increasing

the power supply to recover the performance will move the design up the power supply energy-delay curve

(dashed curve). Since the hardware intensity energy-delay curve (solid curve) is steeper than the power

supply energy-delay curve, the same performance will be achieved at a lower energy. Similarly, if the circuit

is under-tuned for, say,η = 0:5, then tuning the circuit for a higherη and then reducing Vdd to achieve

the same critical path delay (if the faster operation is not needed) will result in a circuit operating at the

same speed, but lower energy. Notice that this reasoning does not require that the curvature of the hardware

intensity energy-delay curve be higher than that of the power supply energy-delay curve. Although this

property was experimentally verified for a 0:13µ and older CMOS technologies it may or may not hold true

in future technologies, depending on the dependence of the gate and subthreshold leakage currents on the

power supply. If the curvature of the Vdd energy-delay curve becomes higher, the range in which energy and
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performance can be traded through adjusting Vdd will be more limited, but the optimality relation (4) will

still hold.
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Fig. 2. Graphical interpretation of the optimum hardware intensity balance for an isolated macro.

Although the optimal values of hardware intensities in different pipeline stages,ηi are different, it is useful

to abstract for the higher-level microarchitectural analysis of energy-performance tradeoffs a single aggregate

quantity for hardware intensityηag that represents the whole processor, such thatηag = � D∂E
E∂D

�
�
�
v
, whereD

is the clock period, andE is the total average energy dissipated per cycle in the processor,E = ∑Ei . To

derive an expression forηag, notice that increasing the clock cycle time bydD through retuning the circuits

in all stages of the pipeline, increases the total energy of the pipeline bydE= ∑dEi = �∑ Ei
Di

ηidD, where

the summation is performed over all stages of the pipeline. SinceDi = D (all stages are tuned for the same

delay), dE
E = �dD

D ∑wiηi , which means that the aggregate hardware intensity for a multi-stage pipeline is

expressed through the hardware intensities of individual stagesηi as

ηag=∑
i

wiηi : (8)

II. A RCHITECTURAL COMPLEXITY

Changing the processor architecture is another way to make tradeoffs between performance and energy.

More complex architectures deliver higher architectural performance or IPC, but inevitably dissipate more
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energy per every executed instruction. Similar to building the optimal energy-delay curve in the circuit

domain, an optimal energy-delay curve can be constructed in the architectural domain, as an envelope in

the power-performance space of all feasible architectural alternatives [17]. Similar to (1), the architectural

complexityξ can be defined as2

ξ =�
D∂E
E∂D

��
�
�
fixed vη

or ξ =�
%E
%D

��
�
�
through architecture

(9)

Similar to the optimal balance betweenη and v in the circuit domain, there exists an optimal balance

between architectural complexityξ and η and v in the unified architectural-circuit domain. By formally

solving the problem of minimizing energy as a function of three variablesE=E(ξ;η;v), subject to a constant

delay constraintD(ξ;η;v) = D0, we arrive at3

∂D
∂η

∂E
∂v

=
∂D
∂v

∂E
∂η

∂D
∂ξ

∂E
∂v

=
∂D
∂v

∂E
∂ξ

(10)

Using definitions (1) and (9), expressions (10) can be re-written as

ξ = η = θ (11)
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Fig. 3. Graphical interpretation of the optimum architectural complexity balance.

2It is assumed that the curvature of the architectural energy-delay curve is such thatD2

E
∂2E
∂D2 > ξ(ξ+1) is satisfied at every point.

3The converse problem of minimizing D subject to constant E leads to the same equations.
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Figure 3 gives a graphical interpretation of this relation. The solid curve shows the architectural energy-

delay curve, plotted by curve-fitting the power-performance data reported in the optimal pipeline depth

study [14]. Every data point, plotted as stars in Figure 3, represents a different pipeline depth, and we assume

here that the processor microarchitecture was optimally tuned at every pipeline depth. The dotted curves in

the figure show the circuit energy-delay curves for fixedξ, with the power supply and hardware intensity

varied simultaneously, so that the optimum balance (4) is observed at each point. Circles mark 50mV steps in

Vdd, with the corresponding adjustment inη (6). This data was obtained by simulating a set of representative

circuits in a microprocessor [18]. For a reference, triangles show 50mV steps in Vdd without adjustingη.

Although the quality of the energy-delay tradeoff of the fixed-η scaling is almost the same as that of the

optimalv-η scaling, the span is much smaller (larger change in Vdd is needed to achieve the same speed-up

or slow-down).

The point at which the architectural energy-delay curve (solid curve) tangents the circuit energy-delay

curve (dotted curve) is the point of the optimal balance betweenξ, η andv in (11). To see this, suppose the

architecture is over-designed (sayξ = 9). Then by reducing the architectural complexity we can move the

design point down the architectural energy-delay curve. Then the performance can be recovered by increasing

Vdd (by 100mV in this example) and tuning up circuits for higherη, according to (11), which will move

the design point up the circuit energy-delay curve. Since the circuit energy-delay curve is less steep than the

architectural energy-delay curve, the same performance will be achieved at a lower power. Similarly, ifξ< η,

sayξ = 1, then increasing the architectural complexity to improve the architectural performance (moving up

the architectural energy-delay curve) and reducing Vdd andη to save energy (moving down the circuit energy-

delay curve) will result in the same performance at a lower power. As with hardware intensity, this relation is

not dependent on assumptions about the relative curvatures of the various energy-delay tradeoffs.

Although the nature of the energy-delay tradeoffs at the architectural level is similar to that at the circuit

level, one significant difference between them is that with recent advances in the circuit tuning techniques [5]

all circuit-level implementations (provided an appropriate circuit topology is chosen) in a properly tuned
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processor can be assumed to be on the optimal energy-delay curve, Fig. 2 (designs above the optimal energy-

delay curve should be simply discarded), whereas getting the processor architecture that is on the architec-

tural energy-delay curve, Fig. 3, presents a significant challenge. The initial architectural proposal for a new

processor is likely to be way off the optimal energy-delay curve. Multiple iterations of optimizing the archi-

tecture are required to transfer the design point to the optimal architectural energy-delay curve, and then, to

the point of the optimum balance (11), an iterative process illustrated by sequenceA0!A1! : : :An in Fig. 3.

To make the methodology useful for comparing architectural configurations that are not necessarily on the

optimal energy-delay curve, the definition ofξ was extended to designs above the optimal energy-delay curve

and a more general form of the energy-efficiency criterion was derived in [16], and generalized to include

hardware intensity in [18]:

ηag

I
4I
4ξ

�
ηag+1

N
4N
4ξ

>�
ηag

f
4 f
4ξ

�
�
�
�
fixed η v

+
1
E
4E
4ξ

�
�
�
�
fixed η v

(12)

If the inequality holds, then the architectural feature under evaluation is energy-efficient, that is, after adopting

it, the processor will deliver higher net performance at the same power budget, after appropriate retuning and,

possibly, adjustment in the power supply voltage are done to meet the power budget. In this formula4 f
f4ξ ,

4I
I4ξ , 4E

E4ξ , and 4N
N4ξ are relative increments in the processor frequency, architectural performance IPC, average

energy per instruction and the dynamic instruction count arising from a modification at the architectural or

microarchitectural level, evaluated for afixedhardware intensityηag and power supplyv. Thus, all deltas

in (12) have the meaning of partial derivatives with respect to the architectural complexity.

The terms 4I
I4ξ , and 4N

N4ξ in (12) can be measured by running the benchmark suite on an architectural

simulator. Next we present a methodology for estimating the two remaining terms,4 f
f4ξ and 4E

E4ξ , and derive

a new form of the energy-efficiency criterion that does not require estimating the term4 f .

III. ENERGY-EFFICIENCY CRITERION
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FREQUENCY-INVARIANT FORMULATION

The key assumption in deriving the energy-efficiency criterion (12) was that of the optimal tuning of cir-

cuits in every pipeline stage (4), (5) and (6) for every architectural alternative, so that the aggregate hardware

intensity of the processorηag (8) is unchanged between designs implementing the architectural alternatives.

This assumption imposes special rules on calculating4 f
f , and4E

E , in particular, these relative increments

must be calculated assuming that the processor pipeline is re-optimized after every modification to the mi-

croarchitecture to satisfy (4), (5) and (6).

Suppose, an architectural feature under evaluation introduces an additional complexity in several (or all)

stages of the pipeline, which leads to increments4Dijno retn in critical path delays in the corresponding

pipeline stages, assuming that no retuning is done to recover the clock frequency. Suppose that the corre-

sponding increments in average energies are4Eijno retn. The increments4Dijno retnand4Ei jno retnshould

be evaluated consistently with the initial hardware intensities of the corresponding stages. For example logic

added to stagei should be tuned (or assumed to be tuned) according to equation (5). Then after adding the

logic, the aggregate hardware intensity in pipeline stagei will not change. The delay and energy increments

may be either positive or negative, and in those pipeline stages that are unaffected by the architectural modi-

fication, the delay and energy increments are zero,4Dijno retn= 0, 4Eijno retn= 0, as shown in Figure 4.

Circuit designers usually have no difficulties estimating the “non-retuned” increments in delay and en-

ergy. For example, adding an execution bypass in 10FO4 pipeline results in increments in the critical path

delay and average energy of the execution stage of the pipeline which are approximately4D EX
D

�
�
�
no retn

= 0:2,

and 4E EX
E EX

��
�
no retn

= 0:02, whereas, adding an extra read port to a multiported register file may result in

4DRF
D

�
�
�
no retn

= 0:1, and4E RF
E RF

�
�
�
no retn

= 0:2, with no impact in other stages of the pipeline.

In order to recover the clock frequency, circuits in those stages of the pipeline that are negatively affected

by the architectural modification need to be tuned up for a higher hardware intensity. To restore the energy

optimal balance in the pipelineηag= θ, circuits in all remaining stages need to be tuned down for a lowerη,
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so that

4ηag=∑
i

ηi4wi +∑
i

wi4ηi = 0 (13)

where4ηi is the increment in the aggregate hardware intensity in stagei as a result of retuning,4ηi =

ηfinal
i � ηinitial

i , as illustrated in Figure 4, whereas4wi is the net increment in the corresponding energy

weight, as a result of both adding hardware and subsequent retuning,4wi =
4Ei
E �wi

4E
E .

We designate by4Di jretuneand4Eijretunethe increments in delay and energy in the pipeline stagei as a

result of retuning the processor, whereas by4Di =4D and4Ei we designate the net increment in delay and

energy in pipeline stagei as a result ofbothmodifying the function and subsequent retuning:

4D = 4Dijno retn+4Dijretune (14)

4Ei = 4Eijno retn+4Eijretune (15)

Thus, the net delay and energy increments in every pipeline stage consist of increments due to a change in

the functionality resulting from a microarchitectural modification, and additional increments as a result of
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retuning the circuits. The net delay increment4D does not need any index because all pipeline stages are

assumed to have the same delay before and after the retuning,Di =D. The relative increment in the maximum

clock frequency is related to4D as

4 f
f

�
�
��
fixed η v

=�
4D
D

(16)

Assuming small changes in hardware intensities in all pipeline stages, and neglecting second order terms,

the increments in energies4Ei jretuneas a result of the retuning can be expressed through the corresponding

increments in delays4Dijretuneas follows:

4Eijretune=�ηi
Ei

D
4Di jretune (17)

Using (14) and (15), the final increments in energies can be expressed as

4Ei = 4Eijno retn�ηi
Ei

D
(4D�4Dijno retn) (18)

The total increment in energy of the whole pipeline,4E = ∑4Ei, is calculated by summing expres-

sions (18) over all pipeline stages and taking advantage of (8) and (16):

4E
E

�
�
��
fixedηv

=
4E
E

�
�
��
noretn

+∑
i

ηiwi
4Di

D

�
�
��
noretn

+ηag
4 f

f

�
�
��
fixedηv

(19)

Substituting this expression into the earlier derived energy-efficiency criterion (12), we notice that the term

4 f
f cancels out, since in both expressions it has the same meaning of a partial derivative with respect to

architectural complexityξ. Then, dropping4ξ in the denominators of all terms we arrive at the form of the

energy-efficiency criterion that does not require estimating the increment in frequency:

ηag
4I
I
� (ηag+1)

4N
N

>
4E
E

��
�
�
no retn

+∑
i

ηiwi
4Di

D

��
�
�
no retn

(20)

where 4E
E

��
�
no retn

is the total increase in average energy dissipated per instruction, assuming no retuning,

4E
E

�
�
�
no retn

= ∑ 4Ei
E

�
�
�
no retn

, summation being done over all stages in the pipeline, affected by the architectural

modification.
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Expression (20) is a more convenient form of the energy-efficiency criterion than (12). According to (20),

in order to evaluate the energy-efficiency of some architectural feature, the architects must supply the relative

gain (or loss) in the architectural performance4I
I and relative change in the dynamic instruction count4N

N

that result from this feature. These estimates can be obtained by running an architectural simulator, or timer,

like Turandot [9], [10]. The second term,4N is non-zero if changes to the Instruction Set Architecture

(ISA) are considered, or compiler optimizations are analyzed for energy efficiency. It may also be non-zero

if microarchitectural changes are considered in a speculative issue processor that impact the average number

of instructions executed from mispredicted paths.

The architect needs to consult circuit designers to estimate the impact of the architectural feature under

consideration on the average energy dissipated per instruction and the critical path delay through every stage

of the pipeline affected by this architectural feature. A significant advantage of the derived formula is that in

estimating the relative changes in energy and critical path delays the circuit designer does not need to worry

about retuning the circuits to recover the frequency, or reducing the positive timing slack to save power in

logic on paths that are no longer critical. Then, the relative increments in critical path delays are summed,

multiplied by the appropriate energy weights and hardware intensities. The higher the energy weightwi and

the hardware intensityηi of a part of the pipelinei affected by the architectural feature the higher the weight

of the increase in the critical path delay through this part of the pipeline.

The energy weightswi in (20) are typically available as part of power budgeting at the early stages of

the definition of the processor pipeline. The only additional data that is needed to use the energy-efficiency

criterion are hardware intensitiesηi in all blocks of the processor. Those quantities can be measured by

static tuning tools, like EinsTuner [5], based on the simulations of previous designs, or set as targets at early

planning of the microarchitecture, similar to the way the power targets are budgeted.

Then expression (20) is evaluated. If the inequality holds, then the architectural feature under evaluation is

energy-efficient, that is, after adopting it, the processor will deliver higher net performance at the same power
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budget, after appropriate retuning and, possibly, adjustment in the power supply voltage are done to meet the

power budget.
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Fig. 5. Graphical interpretation of the energy-efficiency criterion

Figure 5 gives a graphical interpretation of the architectural energy-efficiency criterion (20). Modifying the

architecture from an alternativeA to B is evaluated for energy efficiency using (20). The points corresponding

to the implementations of both architectural alternatives with the same hardware intensityη = 2 are marked

with circles, and the curves passing through these circles show implementations of architectural alternatives

A andB with different hardware intensities, assuming that the power supply is adjusted accordingly, to keep

the optimum balance between the hardware intensity and power supply (6). In other words, these curves

show where the corresponding design points will move in the energy-delay space if the same architectures

are implemented with more or less aggressive circuits.

If the inequality (20) evaluates as true for the architectural change from alternativeA to B, then in the

neighborhood of these points, the circuit energy-delay curve passing through pointB is below (or left of)

the circuit energy-delay curve passing through pointA, as shown in Figure 5. This means that for any
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power budget, within a certain range of the initial points, implementations of architectureB, deliver higher

performance than implementations of architectureA, for the same power budget.

Notice that the curves may intersect, as shown in Figure 5, which means that architectural alternativeB is

more energy efficient thanA only within some range of the initial design points. This demonstrates the fact

that an architecture optimized for a certain range in the power-performance space may not perform well out-

side of this range. For example, a high-performance core, scaled down to operated in the lower performance

space may not be competitive with a core specifically optimized for the low-power low-performance applica-

tions. Another conclusion from this analysis is that an accurate estimate of the available power budget for a

core is essential for developing an energy-efficient architecture, because only by knowing the power budget

can we estimate the maximum value for architectural complexity, hardware intensity and power supply that

can be used in the core.

Figure 3 shows a possible outcome of overestimating the power budget available for a processor core at

the microarchitecture definition stage, and choosing an overly high value for the architectural complexity.

Suppose, at early design stages the power budget is estimated to be at 2:2 and the microarchitecture of the

processor core is optimized for the architectural complexity ofξ = 20. Suppose that at a circuit phase of

the design it is discovered that the actual power budget is only 1:2. Since changing the architecture at this

point would result in missing the product release schedule, the only way to bring the processor power under

the budget is to re-design all circuits for a lower hardware intensity and reduce the power supply, or just

reduce the power supply, if it is too late for redesigning the circuits. This will send the design point down the

dashed curve passing through the pointξ = 20 in Figure 3, and leading to an almost 15% loss in performance

compared to the design originally optimized for the power budget of 1:2 with the architectural complexity of

ξ = 2:0. Thus, such late changes in the design may lead to a significant performance degradation, and scaling

down the power supply to bring an overpowered processor core to the power budget may have a very high

performance cost. This demonstrates the importance of accurately estimating the available power budget
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at early design stages, and disproves the notion, common in architectural community, that relative power

estimates are always sufficient when proposing new architectural features.

IV. OTHER POWER PERFORMANCE METRICS

Until energy efficiency criterion (20) was introduced the most popular power-performance metric used in

the architectural community has been [3], [4], [2], [7], [6], [1], [15], [12], [11]

MIPSγ

Watt
(21)

with the value of parameterγ ranging fromγ = 0 to γ = 3, depending on the class of the microprocessor. As

was shown in [16], the prior art metric (21) is a special case of the integral form of the derived metric (12),

with γ set toγ = ηag+1.

Another recent work proposed the following metric for evaluating architectural features [13]

3
4IPC
IPC

>
4Power
Power

(22)

Notice that (22) is also a special case of (12), withηag= 2,4 f = 0 and4N= 0, since in clock gated designs

Power� E� IPC, and4Power
Power =

4E
E + 4IPC

IPC .

The main advantage of the derived criterion (20) is that, in addition to being formally derived and being

more general than the above metrics (21) and (22), all its terms have a clear meaning and an unambiguous

method for estimating them as ’naive’ increments in energies and delays. On the other hand, metrics (21)

and (22), though correct, may be confusing to use by an architect, because they hide important assumptions

about the method for estimating increments in MIPS and Watts. In particular, estimating the term4Power

may be ambiguous, because it requires knowing both4 f and4E which are interrelated and depend on the

assumptions about the allowed change in the clock frequency and retuning the pipeline after modifying the

architecture. When using these metrics, some architects assume that circuit designers will do whatever is

needed to recover the extra delay due to an introduced architectural feature, and set4 f = 0, neglecting the

increase in energy due to redesigning and retuning the circuits. Others calculate the extra delay introduced



17

due to an added architectural feature and set4 f
f = �4D

D , assuming that nothing can be done at the circuit

level to recover the frequency, and neglecting that circuits in stages not affected by the change will have a

timing slack and could be tuned down to save power. In both cases the conclusion of applying metrics (21)

and (22) may be incorrect. In the next section we give typical example of incorrectly using metrics (21)

and (22).

V. EXAMPLE: ADDING AN EXECUTION BYPASS

As an example we evaluate the energy-efficiency of implementing an execution bypass in the Integer Unit

(IU) of a microprocessor with a target cycle time of 10FO4, and an aggregate hardware intensity target of

ηag = 2. This microarchitectural feature impacts only the Register File (RF) and Execution (EX) stages of

the processor. The delay insertion penalty of the bypass multiplexor in front of the latch is approximately

1FO4, and the delay of the bypass wire, including the rebuffering is also approximately 1FO4. Then the

relative ’non-retuned’ increments in the critical path delays through the register file and execution stages are

4D RF
D

�
�
�
no retn

= 0:1 and4D EX
D

�
�
�
no retn

= 0:2.

Adding the bypass multiplexor and the bypass wires also introduces an energy overhead, dissipated when-

ever the IU is accessed. Based on simulation results, we estimate the relative energy overhead of the bypass

wires and multiplexors as 5% of the average energy dissipated in the IU. Suppose the energy budget of the

IU is 10% of the total energy dissipated by the microprocessor. Then4E
E

�
�
�
no retn

= 0:05�0:1= 0:005

Suppose, the aggregate hardware intensity of the microprocessor isηag = 2:0, but since pipelining the

register file access and integer functional units has a high cost in IPC degradation, a higher value of hardware

intensity is budgeted to them,ηRF= ηEX = 3. Also, suppose,wRF= 0:04 andwEX = 0:06. Then, using the

criterion (20), we determine the relative increment in IPC that needs to be demonstrated to justify adding the

execution bypass in the IU as4I
I > 2:7%.

Notice that if we used theMIPS3

Watt metric then, depending on the assumption about the change in frequency,

the architect could arrive at different conclusions. If the view is taken that the circuit designers can do
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nothing to recover the frequency, then metric (21) leads to the answer4I
I > 20%. On the other hand, if the

view is taken that circuit designer will do whatever is needed to recover the frequency, and the architect does

not need to worry about it, then metric (21) leads to the answer4I
I > 0:25%. Similarly, metric (22) leads to

4I
I > 0:25%, assuming the frequency is unchanged. In both cases the conclusions about the energy-efficiency

of the IU execution bypass produced by straightforwardly applying metrics (21) and (22) are incorrect.

VI. CONCLUSIONS

This chapter analyzed common approaches to trading power and performance in the design of processor

cores for SoCs, such as varying the power supply, hardware intensity, and architectural complexity. It was

demonstrated that in order to develop an energy-efficient processor core, that is a core that delivers maximum

performance at a strictly limited power budget, design decisions at all levels must be balanced in such a

way that all forms of spending power have a similar marginal cost. A criterion for optimizing the core

architecture was described which is useful for guiding the iterative architectural optimization process that

leads to the optimal balance between the architectural complexity, hardware intensity and power supply. It

was demonstrated that a single core may not be competitive in both high and low performance domains, and

accurate estimates of the available power budget for a core are essential for developing an energy-efficient

architecture, as opposed to making decisions based on relative power estimates only. It was also demonstrated

that scaling down the power supply to bring an overpowered processor core to under the power budget may

have a very high performance cost.
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