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Abstract

This paper describes a semi-custom design methodology that was prototyped/demonstrated through the develop-

ment of low-power high-performance DSP core. The developed methodology achieves significant speed improvement and

reduction in power and area, compared with standard ASIC flow, without compromising its generality and high produc-

tivity. Because of the fast turn-around time from RTL description to post PD timing results, and stable convergence

on timing the developed flow enables optimizations spanning multiple levels of the design hierarchy. Such optimizations

proved much more effective than those that focus on any single phase of the design, which makes the described flow a

compelling choice for the development of embedded processor cores.
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I. Introduction

The design and implementation of high-performance embedded processor cores is characterized by

conflicting requirements. These include (1) the functionality to be provided by the instruction set archi-

tecture (ISA), which depends on the target domain of the embedded processor; (2) the ever increasing

demand for higher performance; (3) usually, stringent power consumption and area limitations; and

(4) short development schedule driven by time-to-market considerations. An attempt to fulfill all these

requirements at once throughout the design process is -in general- not feasible, thus some compromises

need to be made early in the design cycle. One of the common choices that characterizes many current

embedded systems is the use of ”soft-cores,” with the associated reliance on tools to achieve short
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turn-around time and the be able to handle changes late in the design cycle. Moreover, the use of

soft-cores simplifies porting designs across multiple foundries, a desirable feature nowadays. In fact,

recent years have seen a dramatic growth in the development of ”soft intellectual property” (soft-IP),

representing a major trend in the embedded systems industry. Only companies whose products are

manufactured in very large volume can tolerate the cost associated with the development of ”hard-

cores,” that is, cores that have been improved through the use of custom circuits and low-level (eg.,

VLSI layout) tools and techniques [1].

Although the use of soft-cores offers significant advantages, the resulting systems tend to exhibit

lower performance, larger area, and higher power consumption than what can be achieved in a cus-

tomized implementation. Such differences have led to the search for ”semi-custom” design flows that

could achieve many of the benefits of full customized implementations, yet offer the flexibility and

turn-around time that is typical of the soft-core counterparts.

The aspects mentioned above are even more relevant when designing and implementing a new

instruction set architecture, because in such cases it is possible to perform tradeoffs encompassing

multiple design levels, from ISA through micro-architecture, logic and circuit design. Exploiting such

opportunities requires the ability to quickly iterate throughout the design space, yet obtain appropriate

results in terms of area, frequency and power consumption.

In this paper, we describe the methodology used in the implementation of a digital signal processor

(DSP) architecture, whose performance and power targets were such that a conventional soft-core

approach would not be adequate, yet the design constraints (resources available and time to completion)

did not allow for a custom design approach. The implementation was carried out in conjunction with

the development of the instruction set architecture, enabling the evaluation of tradeoffs at all levels

in the design. The salient features of the DSP architecture have been described in [11]; details on

the methodology and metric developed to perform power/performance tradeoffs among features of

the architecture have also been provided there. The implementation in a 0.13um foundry technology
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was targeted to reach 500 MHz under worst-case conditions, and limited to consume 350 mW when

operating at 1.5V, 105 degrees Celsius.

Significant progress has been reported recently in physical synthesis tools [2], [17], [14], as well as

placement and routing tools for datapaths [8], [6], [16], [5]. However, such contributions focus mostly

on a single phase or design tool. In contrast, we focus on a methodology which spans multiple layers

of the design hierarchy, from microarchitectural definition down to layout, and which enables opti-

mizations across different design phases. Consequently, the contributions of this paper are the detailed

description of the techniques and tools deployed for a semi-custom design flow, which improve in design

productivity over custom design flows, such as those used in the design of high-end processors [3], [15],

[7], [13], and make it applicable to the design of embedded systems. Although we have used a DSP

architecture as a vehicle for developing this methodology, the resulting design flow is applicable to

embedded processor cores in general.

We first provide a summary of the main limitations of the typical soft-core ASIC design flow, and then

describe the various steps in the methodology deployed. In Section III, we discuss techniques used for

assembling and timing the core, and the steps used to enable hierarchical synthesis and pre-placement

of components. In Sections IV, we illustrate these aspects further by describing the procedure for

balancing synthesis assertions, grouping latches for clock splitters, the pre-placement of latches and

splitters, as well as the instantiation and pre-placement of decoupling buffers. In Section V we describe

the clock gating methodology and techniques used to increase the portion of clock-gated latches in a

processor core. In Section VI we demonstrate the effectiveness of the developed methodology through

the design of a large multi-ported register file, which had proven not feasible through conventional

synthesis procedures. In Section VII, we complete the description of the methodology by illustrating

the hierarchical design of a DSP core.
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II. Limitations of the standard ASIC flow

The ASIC design flow is typically chosen whenever there are limited resources which do not allow

supporting custom design, in-house tools and libraries, or whenever the schedule is very tight. However,

the standard ASIC flow and the associated tools have a number of known limitations [1], [8], [6], [16],

[5]. First, the power level of gates is chosen based on fan-out and total size of the design in flat

synthesis. As a result, gates driving short wires tend to be oversized, whereas gates driving long wires

tend to be underpowered, resulting in power overhead and loss of performance. Second, the switching

activity of wires is ignored during placement and routing, resulting in power waste. Also, the criticality

of wires for timing is ignored during placement and routing, resulting in non-optimal or ”scenic” routes

on critical paths, and further loss of speed. Clock trees generated by ASIC tools are typically not well

balanced, resulting in large clock skews. Finally, the integration of custom-designed components is not

supported, and the application of advanced power reduction techniques used in custom designs, such

as back bias control, power gating, or data retention [10], is not allowed in the current generation of

ASIC libraries.

III. Overview of the Design Methodology

The main objective of our methodology was to exceed the performance and power characteristics of

designs built using standard ASIC flow, without compromising its productivity and generality. The

second objective was to enable integration with custom components, and enable the application of

power reduction techniques not provided by ASIC flow, such as power gating, reverse bias, and data

retention [18], [10]. Finally, in order to remove some of the critical paths or power hot spots in the

design of a newly developed architecture, it may be necessary to use optimizations spanning multiple

levels of the design hierarchy. In order to enable such optimizations, the methodology must allow a

fast turn-around time from RTL level description to post PD timing results.

Figure 1 depicts our design flow. Although not a required step, the architectural and microarchi-
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tectural definition of the microprocessor core is entered to an architectural database [11]; this is the

”golden” definition of the design. Architectural features such as pipeline latencies, functional units,

ports to the register files, bypasses, etc. are stored in the architectural database. An architectural sim-

ulator is automatically updated from the design database and used for verification of the architecture

and VHDL description.

IBM Research/Systems/VLSI Systems/Computer Architecture
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Fig. 1. Overview of the methodology

In our methodology, like others [3], [15], the design of the processor core is organized into units. The

number of units is chosen such that the size of each individual unit can be handled by synthesis and

physical design tools. The partitioning between units is chosen such that the interfaces between the

units are intuitive, and different units can be designed by different designers in parallel.

The physical design (PD) environment supports many IBM internal design and analysis tools written

for server design groups [13]. It also allows integration of custom components in the design. Custom

components can be used at several levels of the design hierarchy. At the lowest level, individual

custom cells can be added to the design library, such as latch or XOR gate. Then, custom designed

components can be used, such as custom functional units (adder, shifter, multiplier), or multi-bit

latches and registers. Finally, the custom designs can be used for the whole units, such as register

files, memories, vector pipeline. This environment also allows application of custom design techniques

for reducing leakage power, mentioned earlier.
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The overall design flow consists of two steps: individual units are built first, then the core is assembled

and global timing is performed. We now describe these two steps in detail.

A. Synthesis and Physical Design of Units

The VHDL view contains the hierarchical RTL description of the design. All latches are explicitly

instantiated in VHDL as behavioral flip-flops, connected to an ideal clock; that is, the VHDL descrip-

tion does not have clock trees, clock splitters or support for scan. Clock gating is explicitly defined in

VHDL code, and so is the grouping of latches for clock splitters.

The VHDL view is passed through the hierarchical synthesis step. Synthesis directives, timing and

capacitive assertions are created for every level of the design hierarchy. All optimizations during the

synthesis step are performed with behavioral flip-flops. Static timing analysis is performed on the

library-mapped netlist. Wire capacitances are estimated by timing tools, based on the size of the

design and fan-out of each wire. Depending on the results, synthesis assertions and directives are

adjusted, and the synthesis is repeated until satisfactory timing results are achieved.

In the post-synthesis step, the behavioral flip-flops are replaced with LSSD latches [12], clock splitters

are instantiated, and latches are connected into scan chains. Then, the design is saved as a hierarchical

mapped netlist and ported into the physical design environment [13].

At the physical design phase (PD), a physical image is created for every unit, library cells are

pre-placed, and clock and power/ground grids are pre-routed. Placement and routing are done using

Cadence design tools. A post-PD netlist is extracted, and timing and power analysis is performed with

IBM internal tools normally used in the design of high-end microprocessors [3], [15], [7].

Depending on the results, one or more of the steps may need to be repeated. Changes may involve

re-routing the scan chains, adjusting the synthesis capacitive and timing assertions, re-arranging logic

at the VHDL level, or re-grouping latches for clock splitters. The more severe the timing or power

problem, the more steps are repeated in the iteration, as shown in Figure 1.
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Because of the techniques introduced, as described below, a consistent convergence on timing results

is achieved. According to our experience, the typical number of design iterations ranges from 3 to

5; since all steps in the design process are fully automated, the typical time of going through one

design iteration ranges from 2 to 5 hours, depending on the number of steps involved. If a particular

problem can not be fixed through the steps described above, this indicates an inherent problem in

the microarchitectural definition of the processor. In such cases the micro-architectural definition

need to be appropriately adjusted, and all phases of the design need to be repeated. One example

of microarchitectural modifications resulting from this process that we experienced was an increase in

the latencies of an inter-unit data transfer bus.

B. Core assembly and timing methodology

IBM Research/Systems/VLSI Systems/Computer Architecture
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Fig. 2. Generation of timing and layout abstracts

Core assembly and global timing is done in parallel with the design of the units. For core assembly

and global timing each unit is represented by the corresponding layout and timing abstracts.

For each unit, a layout abstract and a timing abstract are created, as shown in Figure 2. For

the timing abstract, the global wiring between cells is extracted using IBM’s Chipbench [13]; this

information, along with the unit netlist and the standard cell library timing rules, is passed on to

EinsTimer [9], IBM’s sign-off timer.

Core assembly and timing are done hierarchically using abstracts representations of the blocks one

level below, as shown in Figure 3. The top floorplan is created by instantiating those layout abstracts,
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Fig. 3. Core assembly and global timing

placement is done in Cadence Preview using Skill code, and routing is performed with Cadence’s Chip

Assembly Router (CCAR). The global wires of the top routed floorplan are extracted in the same

manner as for the units, and the result is fed back to EinsTimer along with the top floorplan netlist

and the timing abstract of each unit. Depending on the results, some modifications to achieve timing

closure might be needed anywhere from microarchitecture down to PD, and this process is re-iterated

until timing closure is achieved.

IV. Design Techniques used in the Flow

We now give a detailed description of the techniques used in the design flow.

A. Hierarchical Synthesis of Components

The VHDL description of every unit is broken up into components, a few thousand gates each, as

shown in Figure 4. Timing assertions, capacitive assertions and synthesis directives are generated for

every component, and components are synthesized independently of each other. Then, the synthesized

modules of all components of a unit are loaded and the top view of the unit is synthesized, with only

limited optimizations across the hierarchy boundaries [4].

Some portion of the logic in each unit, referred to as ”dust” in Figure 4, does not get assigned to

any of the components. This logic typically consists of some control logic and datapath multiplexors.

The logic is synthesized during the synthesis of the top view of the unit. Since the wire model at this



9

IBM Research/Systems/VLSI Systems/Computer Architecture

eLite Methodology & Implementation |  5/29/2003  |  IBM Confidential © 2003 IBM Corporation

Hierarchical Synthesis and Preplacement of Components: 
methodology

• Every unit is broken up into components (a few thousand gates each)
• Components are synthesized independently
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gates constituting components are assigned to appropriate boxes,
leaving sufficient flexibility for the place and route tools
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Fig. 4. Hierarchical Synthesis and Pre-placement of Components

point is based on the size of the whole unit, gates comprising the dust use library cells with power

levels much higher than those comprising the components. Designers were challenged to minimize the

size of the logic that was part of the dust, typically achieving less 10% to 20% of the size of the unit.
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Fig. 5. Area-delay tradeoffs for an adder

To get energy-efficient designs out of the synthesis of individual components, it is essential to opti-

mally set the synthesis timing constraints. Synthesis design constraints determine how the synthesis

algorithms transform and size the logic, thus they directly impact the tradeoff between delay, area

and power. Typically, the individually synthesized components do not have latched boundaries at

each, or even some, of its input and output ports, because the inputs may be passing through some

re-buffering or logic before getting to the input ports of the components; similarly, the outputs from

the component may have to pass through a multiplexing network and/or bypasses before they are
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latched. Therefore, there exists some flexibility in budgeting the cycle time between the components

and the rest of the logic which may be part of the ”dust”. The apportionment of delay across several

hierarchical boundaries has a significant effect on the area and power of the unit.

A methodology for balancing hardware intensity introduced in [20], [19] is used for generating the

synthesis timing assertions. Components are synthesized with a range of constraints, so that the

hardware intensity can be quickly estimated for different assertions as η ≈ %AREA
%RAT

, where %AREA is

a relative increment in area and %RAT is a relative decrement in the Required Arrival Time (or a

relative increment in the arrival time). For higher accuracy energy, rather than area, should be used

to measure the hardware intensity, obtained by simulating the component. The aggregate hardware

intensity is an energy-weighted average of hardware intensities in all components. The optimal value

of the aggregate hardware intensity for the chosen technology (0.13um), design library (IBM CU11)

and power supply voltage (1.5V) was determined to be η = 2 [20]. Then, the key rule is to balance

timing assertions in such a way that most of the components sit on the part of the curve, where

every percent reduction in delay costs approximately two percent in energy (or area), Figure 5. It is

especially important to avoid designs that sit on the steep part of the curve for those components that

consume a lot of energy and/or used (that is un-gated) in most of the cycles.

Figure 5 shows a graph of Area vs. Delay for an adder. Two logic restructuring algorithms are used

against several targeted timing assertions, yielding a range of data points from which the design with

a desired value of hardware intensity can be selected [20].

B. Pre-placement of components

A physical image is created for every unit, then a set of overlapping regions is created within the

physical image for the pre-placement of the components, as shown in Figure 4. The sizes of the regions

and the overlaps between them are chosen to provide sufficient flexibility for the automated placement

and routing. Gates comprising the components are assigned to the corresponding regions for pre-
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placement. Gates comprising the dust are not pre-placed, letting the automatic placement tools find

the best locations for those gates. As a result, gates comprising the dust end up driving significantly

larger wire capacitance than those inside components; however, these gates use higher power ASIC

library cells, designed to drive long wires.

One benefit of synthesizing components independently is that different components get best power,

performance and area characteristics when synthesized with different directives. Second, during the

synthesis of components, the wire capacitance model used by the tool is based on the size of the

component, rather than that of the whole unit. The wiring model inside components is adequate

because gates inside components are assigned to the corresponding placement regions, and the wires

that they drive are limited to the same regions (with the exception of component output wires which

are driven by higher-power gates). As a result, gates inside components are implemented with low

power library cells. Since the fraction of logic that is part of the dust is usually limited to below 20%,

the majority of the gates in the design are implemented with low power library cells, thus reducing

both area and power dissipation.

IBM Research/Systems/VLSI Systems/Computer Architecture
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Fig. 6. Hierarchical Synthesis and Pre-placement of Components, Vector Pointer Unite layout; a: bit reversal component

and pointer update component; b: pointer rotate component

As an example, Figure 6 shows the layout of the Vector Pointer Unit in the eLite DSP [11] imple-
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mented in a 0.13 um bulk technology. The size of this unit is approximately 0.6mm by 0.8mm. The

layout is organized into five columns. The first column corresponds to control logic and vector pointer

update control logic. Columns 1 to 5 correspond to four slices of the unit, each one responsible for

generating vector register file indices for the corresponding slice of an associated SIMD vector engine.

Highlighted in Figure 6(a) are gates inside the bit reversal unit in slice 0, pointer update component

(essentially an adder) in slice 3, and the pointer rotate component in slice 2 (Figure 6(b)). Note that

cells comprising components are placed inside very limited regions.

C. Grouping of latches for clock splitters

To allow the opportunity of licensing RTL as a soft-core, and to simplify code maintenance, edge-

triggered behavioral flip flops are used in the VHDL. Thus, the RTL description of the processor has

no notion of LSSD [12], scan chains, clock splitters or clock distribution.
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Fig. 7. Grouping of latches for clock splitters: latches eligible for clock gating

Multi-bit latches eligible for clock gating (the eligibility criterion is discussed is section V) are

grouped in the RTL description, as shown in Figure 7. The clock inputs of latches in the same group

are connected to the output of an OR gate, instantiated in the RTL for every group of latches. One

input of this OR gate is connected to the grid (ideal) clock, and the other input is connected to the

clock gating signal. The clock gating OR gate has special timing rules that check the setup (guard)
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time for the arrival of the gate signal with respect to the grid clock. Based on simulations of extracted

netlists, we set the guard time to 0.3ns. This timing rule is used for the synthesis and timing of the

logic generating the clock gating signal.

At the post-synthesis step, the edge-triggered flip flops are replaced with master-slave LSSD latches,

scan chains are connected, and the clock gating OR is replaced with a clock splitter and an AND gate,

according to the ”early” clock gating methodology defined in IBM CU11 ASIC library. One input

of the AND gate is connected to the clock gate signal, and the other input is connected to the test

clock CCLK. The output of the AND gate is connected to the input of the clock splitter that stops the

master and slave clocks to the latches at the low and high levels, respectively. This ”early” clock gating

methodology is more efficient than a ”late” clock gating methodology because it stops any switching

in both the master and slave latches, and does not require level sensitive re-timing latch on the path

of the clock gate signal.
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Latches that are not eligible for clock gating are grouped in the RTL code according to Figure 8.

A clock buffer is instantiated for every group of latches. The input of the clock buffer is connected to

the grid (ideal) clock, and the output is connected to the clock inputs of all behavioral flip-flops in the

group. At the post-synthesis step, the edge-triggered flip flops are replaced with master-slave LSSD

latches, scan chains are connected and the clock buffer is replaced with a clock splitter. The grouping
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of latches defined in the RTL is preserved.

D. Pre-placement of latches and clock splitters

At the physical design stage, a set of overlapping regions is created in the unit physical image for

pre-placing clock splitters, clock gating cells and latches. Multi-bit dataflow latches are pre-placed

with bit precision, seeding the bit ordering in the datapath. The size of pre-placement regions for

latches and the overlap between them is determined experimentally to allow sufficient flexibility for

the placement and routing tools, but still providing adequate control over the placement of latches

and clock wires. The typical size of every latch pre-placement region is 48 wiring tracks (3 placement

rows) in the vertical direction by 48 to 60 wiring tracks in the horizontal direction; the typical overlap

between the regions is 36 wiring tracks in the horizontal direction and 36 wiring tracks in the horizontal

(placement row) direction.

The clock grid is pre-routed within each unit as M4 clock spines with the x-coordinates specified

by the contract rules established at the global floorplan. For timing analysis, the clock signal at the

clock grid is assumed to be ideal (zero skew); the clock gating cells, clock splitters, and local clock

distribution are part of the timing path.

Our technique for grouping and pre-placing latches provides the following advantages. First, the

local clock wires, running from clock splitters to individual latches, are short resulting in significant

reduction in power dissipation. Moreover, the length of the local clock wires is under control, with a

controllable variation between different groups of latches, and it does not change between iterations

through the design. This results in small clock skew, higher frequency and improved convergence on

timing.

The bit-precise placement of dataflow latches provides seeding for bit ordering in the datapath,

resulting in improved routability and savings in power and area. Since the coordinates of latches are

allowed to change only within the limits of the corresponding pre-placement regions, the ordering of the
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scan chain produces consistent and predictable results, further improving speed and reducing power.
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a cb
Fig. 9. Grouping of latches for clock splitters (layout examples); a: local clock wires; b: clock splitters; c: individual

latches

Figure 9 illustrates the pre-placement of latches and clock splitters. There are approximately 2000

latches, including register files, and approximately 150 clock splitters. Figure 9(a) shows the layout

view with highlighted clock spines and local clock wires. Figure 9(b) highlights the clock wires and

clock splitters, illustrating that clock splitters are always placed next to the closest clock spines for

better balancing of the clock grid and lower power dissipation (the clock grid switches every cycle,

even when all latches in the unit are clock gated). Figure 9(c) shows the individual latches. Notice

that the latches are not strictly aligned, which indicates that the automatic placement tool had some

flexibility in placing the latches. This made routing easier, and allowed us to change the location of

N-well and substrate contact cells without adjusting the placement of individual latches.

As an illustration, Figure 10 shows the layout of the same unit built without pre-placing latches and

clock splitters. The grouping of latches for clock splitters in VHDL was preserved, however. When

the grouping of latches is not done in VHDL, the local clock wiring gets even more convoluted. Notice

that the area of the design built without pre-placing latches is about 20% larger than the area of the

design in Figure 9, demonstrating that area reduction resulting from pre-placement of latches is quite



16

IBM Research/Systems/VLSI Systems/Computer Architecture

eLite Methodology & Implementation |  5/29/2003  |  IBM Confidential © 2003 IBM Corporation

a cb Fig. 10. Local clock wires, no latch pre-placement

measurable.

E. Instantiation and pre-placement of decoupling buffers

Instantiation and pre-placement of decoupling buffers is used when a long wire or non-critical block

of logic needs to be decoupled from the critical path, in order to improve timing. The typical case

for using this technique is when an output of the latch drives a functional unit that is on the critical

path and a signal is going out of the unit, shown as case 1 in Figure 11. The second case, shown as

case 2 in Figure 11, is when an output of a latch drives several functional units, some of which are

not timing critical. If the decoupling buffer is not instantiated explicitly in VHDL, it will be inserted

by the synthesis tool (although sometimes the tool may attempt to increase the size of the gates on

the critical path instead); in such case we do not have a handle on the cells comprising the decoupling

buffer, and have to rely on the automated placement tools to place them in appropriate locations.

Quite often those cells are placed rather far from the latch, leaving a long piece of wire overloading

the gates on the critical path, and resulting in poor convergence on timing.

To solve the problem, decoupling buffers are instantiated in VHDL and preserved in the synthesis

and post-synthesis steps. Overlapping regions for pre-placing the buffer cells are created in the physical
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VHDL Entry (case 1) layout

FU1

latch

FU2

FU1

decoupling buffer

latch

FU1

FU2

latch

VHDL Entry (case 2)

Fig. 11. Instantiation and pre-placement of decoupling buffers: methodology

image of the unit, very close to the pre-placement regions for the corresponding latches, as illustrated

in Figure 11.

This technique provides the following advantages: the power level of the decoupling buffers is pre-

cisely controlled, without impacting the gates constituting the components . This allows the tools to

keep small the power level of most books inside the unit, using high-power books only where they

need to drive long wires or high fan out. The decoupling of high capacitance nodes from critical paths

improves speed and improves the convergence on timing.
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a cb

Fig. 12. Instantiation and pre-placement of decoupling buffers; a: 40-bit datapath latch; b: decoupling buffer; c: output

wires

Figure 12 shows the layout of one slice of the 40-bit accumulator datapath in the eLite DSP. High-
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lighted in Figure 12(a) is a 40-bit datapath latch which supplies one of the operands to the functional

units located above the latch, and also drives wires going out of the datapath. The output pins are lo-

cated at the bottom of the layout. Figure 12(b) shows the instantiated decoupling buffer that decouples

the capacitance of the output wires from the critical path. Comparing Figure 12(a) and Figure 12(b),

we see that the cells of the decoupling buffer are placed next to the corresponding latches, so that

the wire load on the critical path is minimized. Figure 12(c) shows the output wires going from the

decoupling buffer to the output pins.

V. Clock gating

In an effort to save power, our methodology attempts to clock gate any multi-bit latch that is 8 or

more bits wide that is not being used in the current cycle. (The overhead for clock gating latches with

smaller number of bits was measured to be too high due to the need to instantiate a separate clock

splitter for each individually clock-gated latch, as well as logic and possibly extra latches to generate

and re-time the clock gate signal.) In many cases though, the control logic for generating the clock

gate signal for latches eligible for clock gating may be too complex to make the tight setup time on the

clock gate path. Still, it is desirable to be able to clock gate multi-bit latches at least in the majority

of cycles they are not used. We call such a scheme a ”loose” clock gating. To define the ”loose” clock

gating condition, we work backwards from the clock gating timing restrictions, attempting to cover by

clock gating as many conditions a latch is not used as possible.

For example, the 32-bit latch in the Integer Unit at the output of several functional units should not

be clocked if the current instruction has failing predication. However, such a precise resolution on clock

gating conditions requires reading the appropriate bit from the Condition Register, and comparing it

to the immediate bit in the instruction field. This logic does not meet the timing constraints of the

clock gating setup time. In this example, the Integer Units’s data latch is clocked (un-gated) under the

”loose” conditions, whenever the Integer Unit has a valid data instruction, regardless of predication. Of
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TABLE I

Usage of clock gating in the scalar units.

Scalar Units Decoder Branch Integer Address

total number of latches (including registers) 792 889 1,038 1,040

latches eligible for clock gating 473 734 975 911

latches with fine grain gating implemented 0 414 783 719

latches with loose clock gating implemented 0 96 192 192

latches with no clock gating implemented 473 224 0 0

course in this manner, the data latch switches in some cycles when it does not need to, but the ”loose”

clock gating methodology proves to be a good compromise between the ”all or nothing” strategy.

Still, there are cases in the design in which latches can not be clock gated even with the ”loose”

gating strategy. In our design this occurred many times in the Branch Unit and in the Decoder, where

control logic could not be pipelined. Table I shows four categories for each of the scalar units in the

eLite DSP. We don’t show data for the vector units, because almost all of the eligible latches are clock

gated in those units. The first row shows the total number of latches in each of the units, including

architected registers and register files. The second row shows the number of latches that were eligible

for clock gating. The third row shows the number of latches where the ”strict” fine grain clock gating

was implemented. These are the latches that are clocked only when the data at the output are used,

and clock gated in all other cycles. The fourth row shows the number of latches where ”loose” gating

was used. The last row shows the number of latches that were unable to be gated even with ”loose”

gating technique because the logic for generating the clock gating conditions did not meet the timing

constraints.

The grouping and pre-placement of latches, clock splitters and clock gating cells, shown in Figure 7,

significantly reduced the setup time requirement on the clock gating paths. For a 500 MHz design

with OR-style (or early mode) clock gating, the time allowed for calculating clock gating conditions
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was increased from 0.1ns to 0.6ns, allowing from 3 to 4 levels of logic on the clock gating path. With a

stricter setup time on the clock gating signal, the number of clock gated latches would be dramatically

reduced.

VI. Application to the design of Large Register Files

The design of large multi-ported register files can present a significant challenge to the ASIC flow.

In this section we further demonstrate the effectiveness of our design methodology through the design

of a 512-entry x 16-bit wide register file with 8 read ports and 4 write ports. This register file is one

of the key components in the architecture of the DSP as described in [11].

The VHDL for the register file is constructed hierarchically as follows. We begin by designing a

register file with a small number of entries, such that it can be synthesized flat. We call this a leaf

cell. In this case we use 8 entries as our starting point. In the leaf cell, all latches in a given register

entry are grouped for the purpose of clock splitter insertion, as described in Section IV-C.

Next, we aggregate a number of leaf cells to form a bigger register file in a hierarchical manner.

In this example, we use 4 leaf cells to create a 32-entry register file. We repeat this hierarchical

composition until we arrive at a register file with the desired number of entries. Thus, the 512-entry

register file is implemented in 4 hierarchical levels: 8-entry leaf cells, 32-entry, 128-entry and 512-entry.
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Hierarchical Synthesis of Large Register Files

1

2

3

4

• VHDL partitioned into subarrays
• Scripts to automate VHDL generation, synthesis, and PD with parameters for:

• Number of entries in RF 
• Number of partitions per hierarchical block
• Number of Read and Write Ports
• Data Width per entry

WADDR(0:1)

WADDR(2:N-1)D
EC

RD(0:15)

wen

wen

RADDR(0:1)

D
ECren

waddr

One per 
Write port

One per 
Read port

Fig. 13. Hierarchical Synthesis of Large Register Files

At any level of the hierarchy, the structure is the same as shown in Figure 13. For each write port,

the most significant write address bits are decoded to enable writing to only one of the underlying
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register file partitions, while the least significant address bits and data busses are broadcast to all

underlying register file partitions. Similarly, for each read port, the most significant read address bits

are used to select the data output from one of the underlying register file partitions, while the least

significant address bits are routed to the read ports of all underlying register file partitions. The

number of read/write address bits used for decoding is log2(number of partitions), in this case log2(4)

= 2 bits.

Taking advantage of the regularity of this scheme, a Perl program was developed to automatically

generate the hierarchical VHDL for the entire register file. The program facilitates rapid exploration

of various design points by parameterizing all relevant design choices, e.g. the size of the leaf cells, the

number of partitions per hierarchical level, the total number of entries required, the number of read

ports, the number of write ports and the width of each entry.

The synthesis process for the register file was carried out hierarchically, also with the aid of auto-

mated scripts. First, the leaf cell was synthesized, then each level of the hierarchy from the bottom

up. The timing and capacitive loading constraints were multiplied by a factor (> 1) for every level

of the hierarchy so as to match the increased area and average wire length of that level compared to

the one below. Again, these factors are parameters accessible to the designer. Adequate values were

found empirically by making several trial passes.

The output of the synthesis step is a mapped netlist that was post-processed to replace behavioral

flip-flops with LSSD latches, add clock splitters and scan chains, as described in section IV-C.

During the physical design, the physical image of the register file was hierarchically organized into

regions that match the synthesis hierarchy. Leaf cells were assigned to the placement regions at the

bottom of the hierarchy. All remaining logic at the second level of the synthesis hierarchy, including

decoders, output multiplexors, write control circuits and other ”dust”, Figure 13, was assigned to the

pre-placement regions at the second level of the physical hierarchy, so that all the logic that glue the

leaf cells into a larger register file at the next level of the hierarchy was placed next to the corresponding
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Hierarchical Synthesis of Large Register Files (contd.)

512 entry, 16-bit
8R / 4W ports

Area: 3.19mm^2 (1.2M ICells)

Timing: 510MHz, NC

Routing Overhead: 30%

Place & Route Time: 3 hours

One sub-array
highlighted

Fig. 14. Layout of 512 entry, 16-bit 8R / 4W ports vector register file

leaf cells. The process was repeated until the top of the hierarchy was reached. The process was fully

automated with Skill scripts that drive the physical design tools.

The layout of the completed 512-entry register file design is shown in Figure 14. Highlighted are the

gates constituting on of the leaf cells in the register file. The area of the implemented 512-entry register

file is 3.19mm2, while the internal cell area of the mapped netlist is 1.2M ICells. The placement and

routing overhead is only 30%, including the overhead of N-well and substrate contacts. The placement

and routing time was 3 hours. The register file times at 510MHz under nominal conditions.

VII. conclusions

A semi-custom design methodology has been prototyped/demonstrated through the development of

low-power high-performance digital signal processor core. Significant speed improvement was achieved,

compared with standard ASIC flow, with some critical paths reduced from 3ns to 2ns. A significant

area reduction was achieved due to the dominant usage of low-power cells and improved routability.

Power savings in the range of 50% were achieved. The careful pre-placement of clock splitters and clock

gating circuitry allowed more time for calculating the clock gating conditions. For 500 MHz design

with OR-style clock gating, the time allowed for calculating clock gating conditions was increased from
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0.1ns to 0.6ns, allowing us to clock gate 90% of eligible latches, using the highly efficient OR-style

(early) clock gating.
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DSP core top view (placed and routed)

Fig. 15. eLite DSP core: placed components

This methodology does not compromise the generality and high productivity of the standard ASIC

flow. It preserves generic RTL (VHDL) code which is easy to maintain and simulate, and which can be

used to implement the design in different technologies. The code does not use any technology specific

gates, such as LSSD latches, clock buffers or clock splitters, and it does not have any scan chains.

Short time from VHDL to layout and post-PD timing results was achieved. The fast turn-around

time to close on timing allowed us to go through up to 3 VHDL-to-layout iterations per day performed

by 2 to 3 designers, with consistent convergence on timing. The large size of individual macros (on

the average, 100K ICells per macro) resulted in a small number of macros, which simplified the core

integration.

As an example releasing a test chip implementing a MAC unit with testability support took only 4

days: the synthesis and post-synthesis step took 1 designer x 1 day; Layout, post-PD timing took 1

designer x 1 day. Three iterations to close on timing at 500MHz under worst-case conditions took 2

designer x 1 day. The power grid and PD closure (LVS, DRC, chip pads) took 1 designer x 1 day.
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DSP core top view (placed and routed)

Fig. 16. eLite DSP core: placed and routed core

Finally, Figures 16 show the layout of the eLite DSP core. The core consists of 4-wide SIMD vector

unit, located in the bottom-right corner, a set of scalar units, decoder and vector pointer unit, located

in the middle, 12-port custom register file, located in the upper-right corner, and low-power custom

instruction and data memories.
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