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Abstract— There are a number of sensor possibilities for mobile 
robots. Unfortunately many of these are relatively expensive (e.g., 
laser scanners) or only provide sparse information (e.g., sonar 
rings). As an alternative, vision-based navigation is very 
attractive because cameras are cheap these days and computer 
power is plentiful. The trick is to figure out how to get valuable 
information out of at least some fraction of the copious pixel 
stream. In this paper we demonstrate how environmental 
landmarks can be visually extracted and tracked in order to 
estimate the rotation of a mobile robot. This method is superior 
to odometry (wheel turn counting) because it will work with a 
wide range of environments and robot configurations. In 
particular, we have applied this method to a very simple 
motorized base in order to get it to drive in straight lines. As 
expected, this works far better than ballistic control. We present 
quantitative results of several experiments to bolster this 
conclusion. 

Keywords-robot navigation, vision, landmarks, optical flow 

I.  INTRODUCTION 
Robotic navigation can be divided into two components, a 

tactical component that handles particular environmental 
conditions such as obstacle avoidance and doorway traversal, 
and a strategic component that provides overall route guidance 
[1]. Our concern here is just the strategic component; there are 
many well-known, specific solutions to the tactical problems. 
The question then becomes how does the robot know where it 
is in relation to something like the floor plan of a building or, at 
least, how does it know it is correctly following some 
externally specified path?  

For path following, there are a number of solutions that 
explicitly lay down robot-perceptible guide lines such as tape 
stripes or RF emitting wires embedded in the floor [2]. Other 
approaches require the installation of active beacons or at least 
passive markers (like barcodes) at known locations [3]. The 
environmental modifications required for these approaches is 
undesirable due to the cost and labor involved in establishing 
such an embedded coordinate system. It is also clearly not 
applicable to novel environments which have not been suitably 
engineered yet. 

For overall positioning there are solutions such as GPS or 
Glonass. Unfortunately the positional uncertainty is relatively 
high compared to the size of a typically robot (although this 
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ure 1. Our robot, “Gander”, has a dual-wheel differential drive and a
de-angle video camera. It is designed to carry items in a basket on its back. 
n be decreased using differential GPS) and they rarely works 
doors due to signal blockage. While there are starting to be 

ilar indoors systems based on received signal strength of 
iFi concentrator nodes [4], the positional uncertainty is still 
irly high and the location to signal strengths mapping must be 
arned (and sometimes relearned if the furniture is 
arranged). Another solution is to use an inertial navigation 
sed on gyros and/or accelerometers to integrate incremental 
splacements from a known starting pose. Such systems are 
ll relatively expensive and most experience drift over time. 
lso, there are arguably certain environments for which they 
e inappropriate, such as aboard an aircraft carrier which itself 
moving. 

One of the most popular forms of position estimation is 
ometry. This is typically based on counting wheel rotations 
r, equivalently, gear or motor rotations) and then using the 
ometry of the drive train to infer overall displacement and 
ientation of the whole robot with respect to the original 
cation. On flat, smooth floors the performance of these 
stems can be quite good. However, their performance 
teriorates rapidly on rough or bumpy surfaces like bricks, 
ppery surfaces such as sand, rounded or crowned surfaces 
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such as roads, or when they encounter small obstacles like 
cables or door sills. They are also unsuitable in non-contact 
environments such as undersea or with aerial vehicles.  

Another approach compares current sensor readings to 
learned or pre-programmed representations of the target 
environment. There is a long history of systems which compare 
building floor plans to radial sonar range measurements or, 
more recently, distance profiles from scanning laser 
rangefinders [5]. A related approach compares camera 
snapshots (sometimes very wide-angle) to a series of pre-stored 
views to find the best match and hence the robot's position 
within an environment [6]. For all of these approaches, 
however, not only must the layout of the environment be 
known -- which paths lead where -- but details of the geometry 
or appearance of the environment must also be learned (or 
programmed in). 

There are a variety of approaches that exploit various types 
of landmarks in the environment. The landmarks can be 

manually installed beacons as described above, specific objects 
like a particular piece of furniture or overhead lights [7], or pre-
existing environmental feature such as posts, convex corners, 
or doorways [8]. Another class of algorithms relies on 
landmarks, such as Moravec interest points or contour 
curvature maxima, which are not directly associated with 
distinct physical structures [9]. Once the landmarks are found, 
the robot's positions is determined by triangulation based on the 
known real-world positions of the landmarks. For such systems 
to work properly, it is obviously important that the deployment 
environment actually contains these types of items and that 
there is some sort of table listing their positions. 

(a)

(d)(b)

(c)(a)

(d)(b)

(c)

 

Figure 2. Landmarks are the end points of horizontal (a) and vertical (b) edges in the image. In (c) the detected landmarks are overlaid on the original image 
(after lens dewarping). Panel (d) shows the directed edge fragments for each landmark overlaid on the gray scale image from which the edges were extracted. 

Finally, there are other systems that are like odometry or 
inertial guidance that determine the robot's position based on 
integrating optical flow [10]. Unfortunately, optical flow can be 
computationally intensive and small errors can compound 
quickly over a sequence of video frames. Our system is a 
combination of the interest point approach, which makes it 
applicable to a variety of environments, with this flow 
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integration approach, which means no geometric pre-mapping 
is needed. However, we choose to track the motions of a small 
numbers of points, which is generally faster than computing 
optical flow, and we use discrete points matched over long 
intervals of time, which slows down the drift due to 
compounded errors. 

II. 

III. 

 

Figure 3.  The initial pixel value in a run must be 255., while continuing 
values must be 128 or 255.  A line terminates when the three pixels next to 
the end have a value of 0.  Each run must be at least 9 pixels long. 

FINDING  LANDMARKS 
After trying a number of different detection approaches, we 

decided to use the ending of horizontal and vertical lines as our 
landmarks. There are many of these in man-made environment 
and even natural outdoors scenes tend to have a lot of verticals. 
Since we are interested in straight lines (and later the overall 
geometry of the scene), we start be undoing the radial lens 
distortion in our camera. Figure 2c shows the dewarping 
applied to the original color image. Notice that the edges of the 
door and wall are fairly straight, and that the floor tiles appear 
square. A two term correction was necessary because we use a 
wide angle lens. This was implemented using a fixed sampling 
table and bilinear interpolation. 

x’ = x + sc2 * r2 + sc4 * r4 

We actually convert the image to monochrome (Figure 2d) 
by averaging the R, G, and B components before dewarping to 
save time. Separate horizontal and vertical Sobel edge masks 
are then applied to the monochrome image to yield edge 
strength maps. These are subjected to a dual thresholding 
scheme where pixels above the primary threshold are marked 
as white, while those above a secondary threshold (half the 
primary) are marked in green. All other pixels are black, as 
shown in Figure 2a and 2b. The dual thresholding is used to 
combat the phenomenon of streaking, where a portion of some 
line temporarily falls below the primary threshold and would 
otherwise give rise to a spurious landmark. 

Next, we scan the horizontal Sobel edges from left to right 
along the image scan lines. We start a "run" on a white pixel, 
continue it through other white and green pixels, and terminate 
it when we encounter a black pixel. This process is depicted in 
Figure 3. When such a termination is reached, we first check 
that the edge has been tracked for some minimum length (9 
pixels), then we make sure that the pixels directly above and 
below the ending black pixel are also black (i.e. that the line is 
truly ending, not bending). If all these conditions are met we 
generate a new "right ending" landmark. We repeat this 
procedure scanning backwards, from right-to-left, in the 
horizontal edge image to find "left ending" landmarks. A 
similar pair of scans, this time vertically along the image 
columns, is performed on the vertical edge image to generate 
"bottom endings" and "top endings". The detected endings are 
shown as red boxes in Figure 2a, and blue boxes in Figure 2b.  

Once all the candidate landmarks have been found, there is 
a merging and pruning process. Landmarks close to each other 
with exactly opposite directions are assumed to be either short 
nuisance segments or small gaps in longer lines. In either case, 
both candidates are removed. Other landmarks that are close to 
each other are merged into composite landmarks, like "top left 
corners", and given slightly adjusted coordinates. Due to the 
nature of edge detection at corners, during merging the position 
of horizontal endings is assumed to be flexible in x, and the 

position of vertical endings is flexible in y. The final landmarks 
are shown in magenta in Figure 2c overlaid on the original 
image. Figure 2d shows more clearly the edge fragments 
(and/or corners) that contributed to each landmark. Note that, 
because the edges tend to be 2-3 pixels wide and we require a 
minimum run of 9 pixels, we only mark the ends of lines that 
are within about +/- 10 degrees of horizontal or vertical in the 
image. 

To make sure there are sufficient landmarks to provide a 
rotation estimate, we automatically servo the edged detection 
threshold. Based on the number N of final landmarks found in 
the current image and a target count (typically 50), we either 
raise or lower the primary detection threshold for the next 
image. Generally, we change the threshold some fraction of the 
way toward a computed target value as detailed below.  

T' = T + 0.2 * T * (1 - N / 50) 

For increments with absolute magnitudes of less than one, 
we force the threshold to change by one in the proper direction. 
We also impose upper and lower "sanity" bounds on the 
threshold (such as 150 and 10) to prevent disastrous 
interpretations and stuck states.  

MATCHING LANDMARKS 
To find the correspondence between landmarks in different 

images, we first determine each landmark's angular position 
based on its image location and the focal length of the lens. We 
then try all possible shifts within a certain range of pan and tilt 
angular offsets. We typically run with a step size of about 0.25 
degrees, and a search range of +/- 20 steps horizontally and +/- 
10 steps vertically (i.e. +/- 5 degs pan and +/- 2.5 degs tilt). For 
each potential angular shift combination we determine how 
many landmarks can be put into correspondence. Landmarks 
are considered to match when they have at least one direction 
in common and are within a small distance of each other (after 
the overall shift). To speed up this calculation, the landmarks 
are sorted into bins based on their horizontal angle so that only 
a few neighboring bins have to be search for each landmark 
comparison. The shift with the most landmarks matched is 
considered to be the best estimate of rotation. Sometimes, 
however, there are ties between two different estimates. To 
resolve these we also compute the residual for each shift as 
detailed below, and prefer the shift with the lower residual. 
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Figure 4. Tracked landmarks.  (a) Shows the previous frame while (b) shows the current frame. The landmarks that match between the frames are superimposed 
in magenta.  The landmarks that were found but not matched in each frame can be seen in (c) and (d), where the yellow squares represent tracked ones, and the 
blue squares represent the untracked.  Note the shift of the yellow constellation. 
R  = [Σ(x0 - x1)]  + [Σ(y0 - y1)]  

Figure 4c and 4d show the landmarks extracted from the 
images in Figure 4a and 4b, respectively. The matched 
landmarks for each image are shown in yellow, while the extra, 
unmatched landmarks are drawn in blue. Just looking at Figure 
4c and 4d it is clear that the cluster of yellow (matched) 
landmarks has shift to the left and hence the robot has turned in 
that direction. To prove that this makes sense, the matched 
landmarks are re-plotted in the original images as magenta 
boxes. As can be seen, the robot is essentially tracking a table 
and set of chairs in the kitchen without, however, 
understanding that these are chairs or even individual objects. 

We originally matched each frame against the successive 
one to obtain an instantaneous rotational velocity which was 
then integrated to obtain orientation. Unfortunately, there is a 
problem with small estimation errors compounding quickly. 
Moreover, sometimes a persistent mismatch of landmarks can 
cause the robots heading to persistently drift in one direction 
even though the robot is obviously stationary. To ameliorate 

these problems, we establish an initial "anchor" reference 
image and compare successive image to this one. We maintain 
the original anchor frame until we find two frames in a row that 
match poorly (less than 20 landmarks in correspondence). At 
this point, we take the current image frame (and associated 
landmark list) to be the new anchor frame. 

We have now explained the complete process involved in 
generating rotation estimates. These computations can be 
performed in close to real-time on a modern Pentium 1.2GHz 
laptop. The image acquisition takes 27ms, the dewarping takes 
3ms, landmark finding takes 11ms, and the matching takes 
10ms. This comes to a total of 51ms and so allows a frame rate 
of up to 19 fps. This rate is important since, as part of our 
experiments, we use the rotation estimate to attempt to servo 
the robot in a straight path. We employ a simple proportional 
controller that adjusts the differential power applied to the two 
wheels. The faster we can compute these estimate, therefore, 
the tighter the servo loop and the better the control achieved. 
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IV. EXPERIMENTS 
 

The robot we used (see Figure 1) had two 7 inch diameter 
wheels driven by DC gearhead motors. The controller was able 
to set the power level to each motor independently, but there 
was no feedback loop based on tachometers, back EMF, or 
current sensing. For sensing, the robot used an X-10 
"WideEye" color camera mounted approximately 18 inches 
above the floor with an 85 degree horizontal field of view. The 
NTSC analog video signal from the camera was digitized by a 
Belkin USB 1.1 Videobus adapter at 320 x 240 pixels using 24 
bit RGB color. The focal length of the lens was determined to 
be approximately 172 pixels (for SIF) after dewarping based on 
the analysis of a number of images with objects at known 
angular offsets.   

In the first experiment we manually rotated the robot a 
specified amount while recording video at 15 frames per 
second. This video was then later played back through the 
analysis system to derive a rotation estimate that could be 
compared with the known ground truth. The rotation speed was 
about one degree between frames (15 degs/sec absolute). The 
heading of the robot was determined by consulting a simple 
mechanical compass affixed to its head. Care was taken to keep 
the robot away from large steel objects or under-floor power 
lines that could skew the readings. For each sequence of 
rotations the robot was pointed to a specific compass heading, 
then it was lifted slightly and rotated to a new compass 
heading. The precision in human alignment of the compass 
needle was about +/- 2 degrees, so the overall rotation of the 
robot could have been off by as much as +/- 4 degrees overall 
since two readings were taken (i.e. a canonical 90 degree 
rotation might really be from 86 to 94 degrees). 

Figure 5 shows the combined results from four different 
environments: a kitchen, an outdoors deck, a driveway, and a 
narrow hallway. These environments differed both in the 
quantity of man-made objects as well as the ratio of man-made 
to natural objects (which have fewer straight lines in general). 

For each environment the robot was passively rotated once 30, 
60, 90, and 120 degrees to the left, and then once 30, 60, 90, 
and 120 degrees to the right. This yields a total of 32 data 
points in the plot, with error bars for the 4 degree uncertainty 
(the robot's estimates had a much lower quantization of 0.25 
degrees). We then performed an overall least squares line fit to 
this data, forcing the intercept to be zero. As can be seen, the fit 
is excellent (it overestimates by about 0.14% on average).   
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Figure 5. The turn estimates closely match the true turn angles over a wide 
range of rotations. The data in this graph was collected in four different visual  
environments. 

TABLE 1: ROTATION ESTIMATION PERFORMANCE 

turn (degs) +/- 30 +/- 60 +/- 90 +/- 120 

avg. pan error 1.5 2.0 2.2 4.6 

avg. tilt error 0.7 1.3 1.7 2.5 

new anchors 0.8 2.0 3.8 4.8 

 

Table 1 further explores this data. Here we have taken the 
absolute error in rotation (pan) for each experiment, and then 
averaged them across all four environments for each of the 
forced angles. As can be seen, the error does grow slightly as 
the rotation angle increases. However, we believe this is due 
more to the length of the video sequence rather than the angle 
itself. As a check, we also computed the error of the tilt 
estimates for each pan angle. Since, in all cases, the robot was 
on a locally flat surface, the tilt angle should remain zero. As 
can be seen from the second row of the table, there is similar 
growth in uncertainty for this estimate, even though the 
magnitude of the (non) rotation remained constant. Finally, the 
last row of the table shows the number of new "anchor" frames 
acquired during each rotation (beyond the initial anchor). As 
expected, larger rotations causes the system to acquire more 
anchor frames. On average, a single anchor is valid for a one 
way offset of about 30 degrees (i.e. +/- 30 degrees from the 
initial orientation). 

In the second experiment we investigated the robot's ability 
to follow a specific heading using visual information. The robot 
was positioned at one end of a narrow hallway (see Figure 6) 
and aimed (optically) at the far end. It was then allowed to 
travel for a fixed amount of time corresponding to an 
approximate travel distance of 10, 20, or 30 feet. This was 
repeated 5 times for each specified distance. At the beginning 
of each run the robot was centered in the hallway. At the end of 
each run its lateral offset from the centerline was measured and 
recorded. The speed of the robot was about 10 inches per 
second. The laptop computer used to control the robot in real-
time was a slower Pentium 450MHz model and hence the 
visual servo rate was about 7 fps (so about 1.4 inches of travel 
between processed frames). On average, the robot acquired a 
new anchor frame every 2 feet. 

These results from the plain visual servo tests are plotted to 
scale on the left half of Figure 7. Note that in no case did the 
robot crash into a wall; all runs were completed successfully. 
This is in stark contrast to the ballistic (no visual servo) case 
where a collision typically occurs within the first 5 feet (since 
this particular base has a tendency to pull to the left). The 
average of the absolute offset (sometimes it was to the left, and 
sometimes to the right) of the robot's position from the hall 
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centerline for each travel distance is listed in the first row of 
Table 2. Notice that it is fairly constant, largely independent of 
the travel distance. This is especially good given that the robot 
was just trying to maintain a constant angular heading; it had 
no real conception of the geometry of the hallway. 

TABLE 2: VISUAL SERVO PERFORMANCE 

distance (ft) 10 20 30 

normal – avg. offset (in) 5.3 4.3  4.8 

torture – avg. offset (in) 3.2 4.5 3.3 

 

We then made the environment more difficult as shown in 
Figure 6. We constructed a "torture track" by zig-zagging a 1/4 
nylon rope back and forth across the hallway. There were 2 
traverses in the first 10 feet, 5 in the first 20 feet, and 7 in the 
complete 30 foot path. The right half of Figure 7 shows the 
ending lateral offsets for various travel distances under visual 
servo control. As before, the system was run 5 times for each 
distance. Just qualitatively, it can be seen that the results are 
comparable to the case of the "clean" (no rope) hallway. This is 
borne out by looking at the second row of Table 2. The average 
lateral offsets are similar to those recorded in the simpler 
environment. So the system works equally well irrespective of 
the surface smoothness. Note that the multiple rope traversal 
would be enough to totally disorient most odometric wheel-
revolution counting systems.  

The biggest limitation of the current system is the 
occasional paucity of landmarks in man-made environments. 
This can happen, for instance, when the robot is turning in a 
hall with very bare walls. In such cases we have tried to extract 
subliminal landmarks with a variety of techniques -- histogram 
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Figure 7. The robot was sent down a narrow hall under visual servo control. 
The marks show its lateral displacement from the centerline after runs of 
varying distance. The data on the left was obtained under normal conditions, 
while the data on the right was obtained from the bumpy “torture track”. As 
can be seen, surface irregularities make little difference. 
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igure 6. This is the hallway that was used in the experiments. The “torture 
rack” was made by zig-zaging a ¼ inch nylon rope diagonally across the 
allway. This would defeat most wheel turn-counting odometry systems. 
equalization, local automatic gain control, relative contrast 
edge finders, and statistical normalization of texture -- but with 
little success so far.  

V. DISCUSSION 
We have shown how landmarks can be tracked to give 

easonably accurate rotation estimates, and how these estimates 
an be used to make a robot successfully follow a straight line. 
ur approach is not as accurate as odometry on a flat surface 
or is it completely drift-free. However our approach can be 
sed in odometrically less-friendly environments, and on robots 
ith unknown or changing mechanical properties.  

We have also been concerned with false matches of 
landmarks when there are many clustered together. In practice, 
this turns out not to be much of a problem but we are wary 
nevertheless. We have tried enforcing minimum separations 
between landmarks by making sure they only unambiguously 
match themselves, and have tried suppressing edges whose 
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magnitude, or alternatively ratiometric contrast, are below the 
average local energy level. None of these variations seem to 
have much effect.  

We have noticed that there are sometimes transient 
landmarks in an area caused by a fragment of an edge falling 
below the hysteric threshold, or by slight rotation of the camera 
causing the minimum length criterion to intermittently fail for 
oblique edges. To counteract this we have investigated 
weighted matching where landmarks that have been matched 
previously are considered more "stable" and given more 
influence over the shift magnitude when they are matched 
again.  Again, this seems to make little difference and 
occasionally forces the capture of an extra anchor frame since 
the old "stable" landmarks bias the system to a less than 
optimal match (as based on total number of landmarks in 
correspondence). 

There is clearly room for improvement in the hallway 
traversal system as the trajectories appear underdamped. First, 
a faster laptop computer could be used to give a more frequent 
update rate. Second, the gain of the servo loop could be 
adjusted more carefully. Third, a derivative term could be 
added to the controller to help damp the oscillations. Fourth, 
even though we do not have a true velocity estimate, we could 
assume a roughly constant velocity. This would then let us 
integrate the small displacement vectors between frames to 
compute a real 2D offset from the desired path. We could then 
use a projection pursuit style controller to regain the centerline 
of the hall. 

The obvious next step for this system would be to 
simultaneously estimate both rotation and translation for real. It 
is well know that, in general, it is impossible to get a true 
metric velocity from a visual flow field. However, with 
additional constraints the scale ambiguity can be resolved. In 
particular, we know the actual height of the robot's camera 
above the floor. If we can find landmarks that we believe to 
actually be on the floor -- like the lowest landmarks in the left 
and right corners (the center often has reflections of overhead 
lights), provided that they are below the image center -- we can 
use the imaging geometry to directly determine the real-world 
coordinates of these points. This can then be used to set the 
scaling of the solution and hence to infer the true 2D 
coordinates of all the other landmarks and, incidentally, the 
actual translation of the robot base. Note that while this sketch 
of an approach requires a locally flat floor, it does not require 
that there be no bumps or that the floor remain flat for large 
distances. 

We also need to integrate this strategic navigation 
component with various reactive tactical navigation routines. 
For instance, we could use texture detector or a floor color 
continuity method for collision avoidance. These should have 
no impact on the current rotation estimation method. However, 
if there are dynamic obstacles, like people walking around, this 
could induce a false sense of rotation in the robot (if they filled 
a large portion of the field of view). One possible approach to 
overcoming this problem would be to let the robot do its best 
rotation estimation, shift temporally adjacent images to negate 
the perceived ego-motion, then look for residual motion energy 
(i.e. things not moving with the bulk of the environment). 

Portions of the image around these areas could then be declared 
off limits for landmark extraction, leaving more stable areas 
like the ceiling available. Note that, since we servo on the 
number of valid landmarks produced, the system will simply 
lower its threshold to obtain a sufficient number of landmarks 
in the areas deemed safe.  

A similar approach could be used in conjunction with 
person-following in order to "teach" the robot new paths. We 
currently have a motion-based following program but are 
considering changing over to a color region tracker to handle 
crowds better. Since we know where the target person is in the 
camera image, we can blank out this whole region for the 
landmark acquisition system, thus preventing it from relying on 
landmarks associated with the trainer. 
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