
RC23029 (W0312-059) December 12, 2003
Computer Science

IBM Research Report

Visual Rotation Detection and Estimation for
Mobile Robot Navigation

Matthew E. Albert
Byram Hills High School

Armonk, NY 10504

Jonathan H. Connell
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Visual Rotation Detection and Estimation
for Mobile Robot Navigation

Matthew E. Albert
Byram Hills High School

Armonk NY 10504
MEA3581@aol.com

Jonathan H. Connell
IBM T.J. Watson Research

Hawthorne NY 10532
jconnell@us.ibm.com

Abstract— There are a number of sensor possibilities for mobile
robots. Unfortunately many of these are relatively expensive (e.g.,
laser scanners) or only provide sparse information (e.g., sonar
rings). As an alternative, vision-based navigation is very
attractive because cameras are cheap these days and computer
power is plentiful. The trick is to figure out how to get valuable
information out of at least some fraction of the copious pixel
stream. In this paper we demonstrate how environmental
landmarks can be visually extracted and tracked in order to
estimate the rotation of a mobile robot. This method is superior
to odometry (wheel turn counting) because it will work with a
wide range of environments and robot configurations. In
particular, we have applied this method to a very simple
motorized base in order to get it to drive in straight lines. As
expected, this works far better than ballistic control. We present
quantitative results of several experiments to bolster this
conclusion.

Keywords-robot navigation, vision, landmarks, optical flow

I. INTRODUCTION
Robotic navigation can be divided into two components, a

tactical component that handles particular environmental
conditions such as obstacle avoidance and doorway traversal,
and a strategic component that provides overall route guidance
[1]. Our concern here is just the strategic component; there are
many well-known, specific solutions to the tactical problems.
The question then becomes how does the robot know where it
is in relation to something like the floor plan of a building or, at
least, how does it know it is correctly following some
externally specified path?

For path following, there are a number of solutions that
explicitly lay down robot-perceptible guide lines such as tape
stripes or RF emitting wires embedded in the floor [2]. Other
approaches require the installation of active beacons or at least
passive markers (like barcodes) at known locations [3]. The
environmental modifications required for these approaches is
undesirable due to the cost and labor involved in establishing
such an embedded coordinate system. It is also clearly not
applicable to novel environments which have not been suitably
engineered yet.

For overall positioning there are solutions such as GPS or
Glonass. Unfortunately the positional uncertainty is relatively
high compared to the size of a typically robot (although this

ca
in
sim
W
fa
le
re
ba
di
sti
A
ar
is

Fig
wi

od
(o
ge
or
lo
sy
de
sli

ure 1. Our robot, “Gander”, has a dual-wheel differential drive and a
de-angle video camera. It is designed to carry items in a basket on its back.
n be decreased using differential GPS) and they rarely works
doors due to signal blockage. While there are starting to be

ilar indoors systems based on received signal strength of
iFi concentrator nodes [4], the positional uncertainty is still
irly high and the location to signal strengths mapping must be
arned (and sometimes relearned if the furniture is
arranged). Another solution is to use an inertial navigation
sed on gyros and/or accelerometers to integrate incremental
splacements from a known starting pose. Such systems are
ll relatively expensive and most experience drift over time.
lso, there are arguably certain environments for which they
e inappropriate, such as aboard an aircraft carrier which itself
moving.

One of the most popular forms of position estimation is
ometry. This is typically based on counting wheel rotations
r, equivalently, gear or motor rotations) and then using the
ometry of the drive train to infer overall displacement and
ientation of the whole robot with respect to the original
cation. On flat, smooth floors the performance of these
stems can be quite good. However, their performance
teriorates rapidly on rough or bumpy surfaces like bricks,
ppery surfaces such as sand, rounded or crowned surfaces

1

such as roads, or when they encounter small obstacles like
cables or door sills. They are also unsuitable in non-contact
environments such as undersea or with aerial vehicles.

Another approach compares current sensor readings to
learned or pre-programmed representations of the target
environment. There is a long history of systems which compare
building floor plans to radial sonar range measurements or,
more recently, distance profiles from scanning laser
rangefinders [5]. A related approach compares camera
snapshots (sometimes very wide-angle) to a series of pre-stored
views to find the best match and hence the robot's position
within an environment [6]. For all of these approaches,
however, not only must the layout of the environment be
known -- which paths lead where -- but details of the geometry
or appearance of the environment must also be learned (or
programmed in).

There are a variety of approaches that exploit various types
of landmarks in the environment. The landmarks can be

manually installed beacons as described above, specific objects
like a particular piece of furniture or overhead lights [7], or pre-
existing environmental feature such as posts, convex corners,
or doorways [8]. Another class of algorithms relies on
landmarks, such as Moravec interest points or contour
curvature maxima, which are not directly associated with
distinct physical structures [9]. Once the landmarks are found,
the robot's positions is determined by triangulation based on the
known real-world positions of the landmarks. For such systems
to work properly, it is obviously important that the deployment
environment actually contains these types of items and that
there is some sort of table listing their positions.

(a)

(d)(b)

(c)(a)

(d)(b)

(c)

Figure 2. Landmarks are the end points of horizontal (a) and vertical (b) edges in the image. In (c) the detected landmarks are overlaid on the original image
(after lens dewarping). Panel (d) shows the directed edge fragments for each landmark overlaid on the gray scale image from which the edges were extracted.

Finally, there are other systems that are like odometry or
inertial guidance that determine the robot's position based on
integrating optical flow [10]. Unfortunately, optical flow can be
computationally intensive and small errors can compound
quickly over a sequence of video frames. Our system is a
combination of the interest point approach, which makes it
applicable to a variety of environments, with this flow

 2

integration approach, which means no geometric pre-mapping
is needed. However, we choose to track the motions of a small
numbers of points, which is generally faster than computing
optical flow, and we use discrete points matched over long
intervals of time, which slows down the drift due to
compounded errors.

II.

III.

Figure 3. The initial pixel value in a run must be 255., while continuing
values must be 128 or 255. A line terminates when the three pixels next to
the end have a value of 0. Each run must be at least 9 pixels long.

FINDING LANDMARKS
After trying a number of different detection approaches, we

decided to use the ending of horizontal and vertical lines as our
landmarks. There are many of these in man-made environment
and even natural outdoors scenes tend to have a lot of verticals.
Since we are interested in straight lines (and later the overall
geometry of the scene), we start be undoing the radial lens
distortion in our camera. Figure 2c shows the dewarping
applied to the original color image. Notice that the edges of the
door and wall are fairly straight, and that the floor tiles appear
square. A two term correction was necessary because we use a
wide angle lens. This was implemented using a fixed sampling
table and bilinear interpolation.

x’ = x + sc2 * r2 + sc4 * r4

We actually convert the image to monochrome (Figure 2d)
by averaging the R, G, and B components before dewarping to
save time. Separate horizontal and vertical Sobel edge masks
are then applied to the monochrome image to yield edge
strength maps. These are subjected to a dual thresholding
scheme where pixels above the primary threshold are marked
as white, while those above a secondary threshold (half the
primary) are marked in green. All other pixels are black, as
shown in Figure 2a and 2b. The dual thresholding is used to
combat the phenomenon of streaking, where a portion of some
line temporarily falls below the primary threshold and would
otherwise give rise to a spurious landmark.

Next, we scan the horizontal Sobel edges from left to right
along the image scan lines. We start a "run" on a white pixel,
continue it through other white and green pixels, and terminate
it when we encounter a black pixel. This process is depicted in
Figure 3. When such a termination is reached, we first check
that the edge has been tracked for some minimum length (9
pixels), then we make sure that the pixels directly above and
below the ending black pixel are also black (i.e. that the line is
truly ending, not bending). If all these conditions are met we
generate a new "right ending" landmark. We repeat this
procedure scanning backwards, from right-to-left, in the
horizontal edge image to find "left ending" landmarks. A
similar pair of scans, this time vertically along the image
columns, is performed on the vertical edge image to generate
"bottom endings" and "top endings". The detected endings are
shown as red boxes in Figure 2a, and blue boxes in Figure 2b.

Once all the candidate landmarks have been found, there is
a merging and pruning process. Landmarks close to each other
with exactly opposite directions are assumed to be either short
nuisance segments or small gaps in longer lines. In either case,
both candidates are removed. Other landmarks that are close to
each other are merged into composite landmarks, like "top left
corners", and given slightly adjusted coordinates. Due to the
nature of edge detection at corners, during merging the position
of horizontal endings is assumed to be flexible in x, and the

position of vertical endings is flexible in y. The final landmarks
are shown in magenta in Figure 2c overlaid on the original
image. Figure 2d shows more clearly the edge fragments
(and/or corners) that contributed to each landmark. Note that,
because the edges tend to be 2-3 pixels wide and we require a
minimum run of 9 pixels, we only mark the ends of lines that
are within about +/- 10 degrees of horizontal or vertical in the
image.

To make sure there are sufficient landmarks to provide a
rotation estimate, we automatically servo the edged detection
threshold. Based on the number N of final landmarks found in
the current image and a target count (typically 50), we either
raise or lower the primary detection threshold for the next
image. Generally, we change the threshold some fraction of the
way toward a computed target value as detailed below.

T' = T + 0.2 * T * (1 - N / 50)

For increments with absolute magnitudes of less than one,
we force the threshold to change by one in the proper direction.
We also impose upper and lower "sanity" bounds on the
threshold (such as 150 and 10) to prevent disastrous
interpretations and stuck states.

MATCHING LANDMARKS
To find the correspondence between landmarks in different

images, we first determine each landmark's angular position
based on its image location and the focal length of the lens. We
then try all possible shifts within a certain range of pan and tilt
angular offsets. We typically run with a step size of about 0.25
degrees, and a search range of +/- 20 steps horizontally and +/-
10 steps vertically (i.e. +/- 5 degs pan and +/- 2.5 degs tilt). For
each potential angular shift combination we determine how
many landmarks can be put into correspondence. Landmarks
are considered to match when they have at least one direction
in common and are within a small distance of each other (after
the overall shift). To speed up this calculation, the landmarks
are sorted into bins based on their horizontal angle so that only
a few neighboring bins have to be search for each landmark
comparison. The shift with the most landmarks matched is
considered to be the best estimate of rotation. Sometimes,
however, there are ties between two different estimates. To
resolve these we also compute the residual for each shift as
detailed below, and prefer the shift with the lower residual.

 3

2 2 2

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 4. Tracked landmarks. (a) Shows the previous frame while (b) shows the current frame. The landmarks that match between the frames are superimposed
in magenta. The landmarks that were found but not matched in each frame can be seen in (c) and (d), where the yellow squares represent tracked ones, and the
blue squares represent the untracked. Note the shift of the yellow constellation.
R = [Σ(x0 - x1)] + [Σ(y0 - y1)]

Figure 4c and 4d show the landmarks extracted from the
images in Figure 4a and 4b, respectively. The matched
landmarks for each image are shown in yellow, while the extra,
unmatched landmarks are drawn in blue. Just looking at Figure
4c and 4d it is clear that the cluster of yellow (matched)
landmarks has shift to the left and hence the robot has turned in
that direction. To prove that this makes sense, the matched
landmarks are re-plotted in the original images as magenta
boxes. As can be seen, the robot is essentially tracking a table
and set of chairs in the kitchen without, however,
understanding that these are chairs or even individual objects.

We originally matched each frame against the successive
one to obtain an instantaneous rotational velocity which was
then integrated to obtain orientation. Unfortunately, there is a
problem with small estimation errors compounding quickly.
Moreover, sometimes a persistent mismatch of landmarks can
cause the robots heading to persistently drift in one direction
even though the robot is obviously stationary. To ameliorate

these problems, we establish an initial "anchor" reference
image and compare successive image to this one. We maintain
the original anchor frame until we find two frames in a row that
match poorly (less than 20 landmarks in correspondence). At
this point, we take the current image frame (and associated
landmark list) to be the new anchor frame.

We have now explained the complete process involved in
generating rotation estimates. These computations can be
performed in close to real-time on a modern Pentium 1.2GHz
laptop. The image acquisition takes 27ms, the dewarping takes
3ms, landmark finding takes 11ms, and the matching takes
10ms. This comes to a total of 51ms and so allows a frame rate
of up to 19 fps. This rate is important since, as part of our
experiments, we use the rotation estimate to attempt to servo
the robot in a straight path. We employ a simple proportional
controller that adjusts the differential power applied to the two
wheels. The faster we can compute these estimate, therefore,
the tighter the servo loop and the better the control achieved.

 4

IV. EXPERIMENTS

The robot we used (see Figure 1) had two 7 inch diameter
wheels driven by DC gearhead motors. The controller was able
to set the power level to each motor independently, but there
was no feedback loop based on tachometers, back EMF, or
current sensing. For sensing, the robot used an X-10
"WideEye" color camera mounted approximately 18 inches
above the floor with an 85 degree horizontal field of view. The
NTSC analog video signal from the camera was digitized by a
Belkin USB 1.1 Videobus adapter at 320 x 240 pixels using 24
bit RGB color. The focal length of the lens was determined to
be approximately 172 pixels (for SIF) after dewarping based on
the analysis of a number of images with objects at known
angular offsets.

In the first experiment we manually rotated the robot a
specified amount while recording video at 15 frames per
second. This video was then later played back through the
analysis system to derive a rotation estimate that could be
compared with the known ground truth. The rotation speed was
about one degree between frames (15 degs/sec absolute). The
heading of the robot was determined by consulting a simple
mechanical compass affixed to its head. Care was taken to keep
the robot away from large steel objects or under-floor power
lines that could skew the readings. For each sequence of
rotations the robot was pointed to a specific compass heading,
then it was lifted slightly and rotated to a new compass
heading. The precision in human alignment of the compass
needle was about +/- 2 degrees, so the overall rotation of the
robot could have been off by as much as +/- 4 degrees overall
since two readings were taken (i.e. a canonical 90 degree
rotation might really be from 86 to 94 degrees).

Figure 5 shows the combined results from four different
environments: a kitchen, an outdoors deck, a driveway, and a
narrow hallway. These environments differed both in the
quantity of man-made objects as well as the ratio of man-made
to natural objects (which have fewer straight lines in general).

For each environment the robot was passively rotated once 30,
60, 90, and 120 degrees to the left, and then once 30, 60, 90,
and 120 degrees to the right. This yields a total of 32 data
points in the plot, with error bars for the 4 degree uncertainty
(the robot's estimates had a much lower quantization of 0.25
degrees). We then performed an overall least squares line fit to
this data, forcing the intercept to be zero. As can be seen, the fit
is excellent (it overestimates by about 0.14% on average).

y = 1.0014x

-150

0

150

-150 0 150
turn (degrees)

m
ea

su
re

d
(d

eg
re

es
)

Figure 5. The turn estimates closely match the true turn angles over a wide
range of rotations. The data in this graph was collected in four different visual
environments.

TABLE 1: ROTATION ESTIMATION PERFORMANCE

turn (degs) +/- 30 +/- 60 +/- 90 +/- 120

avg. pan error 1.5 2.0 2.2 4.6

avg. tilt error 0.7 1.3 1.7 2.5

new anchors 0.8 2.0 3.8 4.8

Table 1 further explores this data. Here we have taken the
absolute error in rotation (pan) for each experiment, and then
averaged them across all four environments for each of the
forced angles. As can be seen, the error does grow slightly as
the rotation angle increases. However, we believe this is due
more to the length of the video sequence rather than the angle
itself. As a check, we also computed the error of the tilt
estimates for each pan angle. Since, in all cases, the robot was
on a locally flat surface, the tilt angle should remain zero. As
can be seen from the second row of the table, there is similar
growth in uncertainty for this estimate, even though the
magnitude of the (non) rotation remained constant. Finally, the
last row of the table shows the number of new "anchor" frames
acquired during each rotation (beyond the initial anchor). As
expected, larger rotations causes the system to acquire more
anchor frames. On average, a single anchor is valid for a one
way offset of about 30 degrees (i.e. +/- 30 degrees from the
initial orientation).

In the second experiment we investigated the robot's ability
to follow a specific heading using visual information. The robot
was positioned at one end of a narrow hallway (see Figure 6)
and aimed (optically) at the far end. It was then allowed to
travel for a fixed amount of time corresponding to an
approximate travel distance of 10, 20, or 30 feet. This was
repeated 5 times for each specified distance. At the beginning
of each run the robot was centered in the hallway. At the end of
each run its lateral offset from the centerline was measured and
recorded. The speed of the robot was about 10 inches per
second. The laptop computer used to control the robot in real-
time was a slower Pentium 450MHz model and hence the
visual servo rate was about 7 fps (so about 1.4 inches of travel
between processed frames). On average, the robot acquired a
new anchor frame every 2 feet.

These results from the plain visual servo tests are plotted to
scale on the left half of Figure 7. Note that in no case did the
robot crash into a wall; all runs were completed successfully.
This is in stark contrast to the ballistic (no visual servo) case
where a collision typically occurs within the first 5 feet (since
this particular base has a tendency to pull to the left). The
average of the absolute offset (sometimes it was to the left, and
sometimes to the right) of the robot's position from the hall

 5

centerline for each travel distance is listed in the first row of
Table 2. Notice that it is fairly constant, largely independent of
the travel distance. This is especially good given that the robot
was just trying to maintain a constant angular heading; it had
no real conception of the geometry of the hallway.

TABLE 2: VISUAL SERVO PERFORMANCE

distance (ft) 10 20 30

normal – avg. offset (in) 5.3 4.3 4.8

torture – avg. offset (in) 3.2 4.5 3.3

We then made the environment more difficult as shown in
Figure 6. We constructed a "torture track" by zig-zagging a 1/4
nylon rope back and forth across the hallway. There were 2
traverses in the first 10 feet, 5 in the first 20 feet, and 7 in the
complete 30 foot path. The right half of Figure 7 shows the
ending lateral offsets for various travel distances under visual
servo control. As before, the system was run 5 times for each
distance. Just qualitatively, it can be seen that the results are
comparable to the case of the "clean" (no rope) hallway. This is
borne out by looking at the second row of Table 2. The average
lateral offsets are similar to those recorded in the simpler
environment. So the system works equally well irrespective of
the surface smoothness. Note that the multiple rope traversal
would be enough to totally disorient most odometric wheel-
revolution counting systems.

The biggest limitation of the current system is the
occasional paucity of landmarks in man-made environments.
This can happen, for instance, when the robot is turning in a
hall with very bare walls. In such cases we have tried to extract
subliminal landmarks with a variety of techniques -- histogram

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

-28 0 28

offset (in)

tr
av

el
 (f

t)

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

-28 0 28

offset (in)

tr
av

el
 (f

t)

Figure 7. The robot was sent down a narrow hall under visual servo control.
The marks show its lateral displacement from the centerline after runs of
varying distance. The data on the left was obtained under normal conditions,
while the data on the right was obtained from the bumpy “torture track”. As
can be seen, surface irregularities make little difference.

F
t
h

r
c
O
n
u
w

igure 6. This is the hallway that was used in the experiments. The “torture
rack” was made by zig-zaging a ¼ inch nylon rope diagonally across the
allway. This would defeat most wheel turn-counting odometry systems.
equalization, local automatic gain control, relative contrast
edge finders, and statistical normalization of texture -- but with
little success so far.

V. DISCUSSION
We have shown how landmarks can be tracked to give

easonably accurate rotation estimates, and how these estimates
an be used to make a robot successfully follow a straight line.
ur approach is not as accurate as odometry on a flat surface
or is it completely drift-free. However our approach can be
sed in odometrically less-friendly environments, and on robots
ith unknown or changing mechanical properties.

We have also been concerned with false matches of
landmarks when there are many clustered together. In practice,
this turns out not to be much of a problem but we are wary
nevertheless. We have tried enforcing minimum separations
between landmarks by making sure they only unambiguously
match themselves, and have tried suppressing edges whose

 6

 7

magnitude, or alternatively ratiometric contrast, are below the
average local energy level. None of these variations seem to
have much effect.

We have noticed that there are sometimes transient
landmarks in an area caused by a fragment of an edge falling
below the hysteric threshold, or by slight rotation of the camera
causing the minimum length criterion to intermittently fail for
oblique edges. To counteract this we have investigated
weighted matching where landmarks that have been matched
previously are considered more "stable" and given more
influence over the shift magnitude when they are matched
again. Again, this seems to make little difference and
occasionally forces the capture of an extra anchor frame since
the old "stable" landmarks bias the system to a less than
optimal match (as based on total number of landmarks in
correspondence).

There is clearly room for improvement in the hallway
traversal system as the trajectories appear underdamped. First,
a faster laptop computer could be used to give a more frequent
update rate. Second, the gain of the servo loop could be
adjusted more carefully. Third, a derivative term could be
added to the controller to help damp the oscillations. Fourth,
even though we do not have a true velocity estimate, we could
assume a roughly constant velocity. This would then let us
integrate the small displacement vectors between frames to
compute a real 2D offset from the desired path. We could then
use a projection pursuit style controller to regain the centerline
of the hall.

The obvious next step for this system would be to
simultaneously estimate both rotation and translation for real. It
is well know that, in general, it is impossible to get a true
metric velocity from a visual flow field. However, with
additional constraints the scale ambiguity can be resolved. In
particular, we know the actual height of the robot's camera
above the floor. If we can find landmarks that we believe to
actually be on the floor -- like the lowest landmarks in the left
and right corners (the center often has reflections of overhead
lights), provided that they are below the image center -- we can
use the imaging geometry to directly determine the real-world
coordinates of these points. This can then be used to set the
scaling of the solution and hence to infer the true 2D
coordinates of all the other landmarks and, incidentally, the
actual translation of the robot base. Note that while this sketch
of an approach requires a locally flat floor, it does not require
that there be no bumps or that the floor remain flat for large
distances.

We also need to integrate this strategic navigation
component with various reactive tactical navigation routines.
For instance, we could use texture detector or a floor color
continuity method for collision avoidance. These should have
no impact on the current rotation estimation method. However,
if there are dynamic obstacles, like people walking around, this
could induce a false sense of rotation in the robot (if they filled
a large portion of the field of view). One possible approach to
overcoming this problem would be to let the robot do its best
rotation estimation, shift temporally adjacent images to negate
the perceived ego-motion, then look for residual motion energy
(i.e. things not moving with the bulk of the environment).

Portions of the image around these areas could then be declared
off limits for landmark extraction, leaving more stable areas
like the ceiling available. Note that, since we servo on the
number of valid landmarks produced, the system will simply
lower its threshold to obtain a sufficient number of landmarks
in the areas deemed safe.

A similar approach could be used in conjunction with
person-following in order to "teach" the robot new paths. We
currently have a motion-based following program but are
considering changing over to a color region tracker to handle
crowds better. Since we know where the target person is in the
camera image, we can blank out this whole region for the
landmark acquisition system, thus preventing it from relying on
landmarks associated with the trainer.

ACKNOWLEDGMENT
The authors would thank Dr. Robert Pavlica of Byram Hills

High School for useful comments, and Johuco Ltd. for help in
designing the robot.

REFERENCES
[1] J.H. Connell, “SSS: A Hybrid Architecture Applied to Robot

Navigation”, ICRA-92, 2719-2724, 1992.
[2] H.R. Everett, Sensors for Mobile Robots: Theory and Application, A.K.

Peters, 1995.
[3] D. Scharstein and A. Briggs, “Real-time Recognition of Self-similar

Landmarks”, Image and Vision Computing, 19(11), 763-772, 2001.
[4] "Ekahau Positioning Engine 2.1",

http://www.ekahau.com/products/positioningengine, 2003.
[5] S. Thrun et al., “Map Learning and High-Speed Navigation in RHINO”,

in Artificial Intelligence and Mobile Robots, D. Kortenkamp, R.P.
Bonasso, andR. Murphy (eds.), 21-52, MIT Press, 1998.

[6] J. Hong, X. Tan, B. Pinette, R. Weiss, E.M. Riseman, “Image-based
Homing”, ICRA-91, 620-625, 1991.

[7] F. Launay, A. Ohya, S. Yuta, “Autonomous Indoor Mobile Robot
Navigation by Detecting Fluorescent Tubes”, ICAR-01, 664-668, 2001.

[8] J.H. Lim and J.J Leonard, “Mobile Robot Relocation from Echolocation
Constraints”, IEEE PAMI, 22(9), 1035-1041, 2000.

[9] S. Se, D. Lowe, and J. Little, “Local and Global Localization for Mobile
Robots Using Visual Landmarks”, IROS-01, 414-420, 2001.

[10] N. Ancona and T. Poggio, “Optical Flow from 1D Correlation:
Application to a Simple Time-to-Crash Detector”, Int. Journal of
Computer Vision, 14(2), 209-214, 1995.

	Introduction
	Finding Landmarks
	Matching Landmarks
	Experiments
	Discussion
	
	
	
	Acknowledgment
	References

