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Line Search Filter Methods for Nonlinear Programming:

Local Convergence

Andreas Wächter∗ and Lorenz T. Biegler†

April 17, 2003

Abstract
A line search method is proposed for nonlinear programming using Fletcher and Leyffer’s

filter method, which replaces the traditional merit function. Global convergence properties of
this method was analyzed in a companion paper. Here a simple modification of the method
introducing second order correction steps is presented. It is shown that the proposed method
does not suffer from the Maratos effect, so that fast local convergence to strict local solutions is
achieved.

Keywords: nonlinear programming – nonconvex constrained optimization – filter method –
line search – local convergence – Maratos effect – second order correction

1 Introduction

In this paper we discuss the local convergence properties of the filter algorithm proposed in the
companion paper [11]. As mentioned by Fletcher and Leyffer [6], the filter approach can still suffer
from the so-called Maratos effect [8], even though it is usually less restrictive in terms of accepting
steps than a penalty function approach. The Maratos effect occurs if, even arbitrarily close to a
strict local solution of the NLP (1), a full Newton step increases both the objective function and the
constraint violation, and therefore leads to insufficient progress with respect to the current iterate
and is rejected, even though it could be a very good step towards the solution. This can result in
poor local convergence behavior. As a remedy, Fletcher and Leyffer propose to improve the search
direction, if the full step has been rejected, by means of a second order correction which aims to
further reduce infeasibility. In this paper we will show that second order correction steps are indeed
able to prevent the Maratos effect.

Recently, Ulbrich has presented a trust region filter method using the Lagrangian function
(instead of the objective function) as one of the measures in the filter similar to what we proposed
in our companion paper [11], and was able to show fast local convergence without second order
correction steps.

Section 2 states the filter line search algorithm with a second order correction step, and the local
convergence analysis is presented in Section 3. In Section 4 we briefly discuss how this approach
can also be applied to the trust region filter SQP method proposed in [5].

Notation. Norms ‖ · ‖ will denote a fixed vector norm and its compatible matrix norm. We
will denote by O(tk) a sequence {vk} satisfying ‖vk‖ ≤ β tk for some constant β > 0 independent
of k, and by o(tk) a sequence {vk} satisfying ‖vk‖ ≤ βktk for some positive sequence {βk} with
limk βk = 0.

∗IBM T.J. Watson Research Center, Yorktown Heights, NY; E-mail: andreasw@watson.ibm.com
†Carnegie Mellon University, Pittsburgh, PA; E-mail: lb01@andrew.cmu.edu
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2 Second Order Correction Steps in a Line Search Filter Method

The presented algorithm is a filter line search algorithm for solving nonlinear optimization problems
of the form

min
x∈�n

f(x) (1a)

s.t. c(x) = 0 (1b)

where the objective function f : R
n −→ R and the equality constraints c : R

n −→ R
m with m < n

are sufficiently smooth. The first order optimality (or KKT) conditions of this problem are given
by

g(x) + A(x)λ = 0 (2a)
c(x) = 0. (2b)

with the Lagrangian multipliers λ (see e.g. [10]). The motivation and details of the filter line search
can be found in the companion paper [11]. Here, we only restate the formal algorithm, augmented
by second order correction steps, which generates the sequence of iterates {xk}. We will make use
of the following definitions:

θ(x) := ‖c(x)‖, gk := ∇f(xk), ck := c(xk), Ak := ∇c(xk),

and Hk will be (an approximation of) the Hessian of the Lagrangian function

L(x, λ) := f(x) + c(x)T λ (3)

associated with (1) at xk, assumed to be positive definite in the null space of the constraint Jacobian
AT

k .

Algorithm SOC

Given: Starting point x0; constants θmax ∈ (θ(x0),∞]; γθ, γf ∈ (0, 1); δ > 0; γα ∈ (0, 1]; sθ > 1;
sf > 2sθ; 0 < τ1 ≤ τ2 < 1.

1. Initialize. Initialize the filter F0 := {(θ, f) ∈ R
2 : θ ≥ θmax} and the iteration counter k ← 0.

2. Check convergence. Stop, if xk is a local solution (or at least stationary point) of the NLP (1),
i.e. if it satisfies the KKT conditions (2) for some λ ∈ R

m.

3. Compute search direction. Compute the search direction dk from the linear system
[

Hk Ak

AT
k 0

](
dk

λ+
k

)
= −

(
gk

ck

)
. (4)

If this system is (almost) singular, go to feasibility restoration phase in Step 8.

4. Backtracking line search.

4.1. Initialize line search. Set αk,0 = 1 and l← 0.
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4.2. Compute new trial point. If the trial step size becomes too small, i.e. αk,l < αmin
k with

αmin
k := γα ·




min
{
γθ,

γf θ(xk)

−gT
k dk

, δ[θ(xk)]sθ

[−gT
k dk]

sf

}

if gT
k dk < 0

γθ otherwise,

(5)

go to the feasibility restoration phase in Step 8. Otherwise, compute the new trial point
xk(αk,l) := xk + αk,ldk.

4.3. Check acceptability to the filter. If xk(αk,l) ∈ Fk, reject the trial step size and go to Step 4.5.

4.4. Check sufficient decrease with respect to current iterate.

4.4.1. Case I. The switching condition

gT
k dk < 0 and αk,l [−gT

k dk]sϕ > δ [θ(xk)]
sθ (6)

holds: If the Armijo condition for the objective function

f(xk(αk,l)) ≤ f(xk) + ηf αk,l gT
k dk, (7)

holds, accept the trial step xk+1 := xk(αk,l) and go to Step 5. Otherwise, go to
Step 4.5.

4.4.2. Case II. The switching condition (6) is not satisfied: If the sufficient decrease condi-
tions

θ(xk(αk,l)) ≤ (1− γθ)θ(xk) (8a)
or f(xk(αk,l)) ≤ f(xk)− γfθ(xk). (8b)

hold, accept the trial step xk+1 := xk(αk,l) and go to Step 5. Otherwise, go to
Step 4.5.

4.5. Compute second order correction step. If l 	= 0, go to step 4.8. Otherwise, solve the linear
system [

Hsoc
k Asoc

k

(Asoc
k )T 0

](
dsoc

k

λsoc
k

)
= −

(
gsoc
k

c(xk + dk) + csoc
k

)
, (9)

(particular admissible choices of Hsoc
k , Asoc

k , gsoc
k , csoc

k are discussed below) to obtain the
second order correction step dsoc

k and define

x̄k+1 := xk + dk + dsoc
k .

4.6. Check acceptability to the filter. If x̄k+1 ∈ Fk, reject the second order correction step and
go to Step 4.8.

4.7. Check sufficient decrease with respect to current iterate.

4.7.1. Case I. The switching condition (6) holds: If the Armijo condition for the objective
function

f(x̄k+1) ≤ f(xk) + ηf gT
k dk (10)

holds, accept xk+1 := x̄k+1 and go to Step 5. Otherwise, go to Step 4.8.
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4.7.2. Case II. The switching condition (6) is not satisfied: If

θ(x̄k+1) ≤ (1− γθ)θ(xk) (11a)
or f(x̄k+1) ≤ f(xk)− γfθ(xk) (11b)

hold, accept xk+1 := x̄k+1 and go to Step 5. Otherwise, go to Step 4.8.

4.8. Choose new trial step size. Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l ← l + 1, and go back to
Step 4.2.

5. Accept trial point. Set αk := αk,l.

6. Augment filter if necessary. If one of the conditions (6) or

f(xk+1) ≤ f(xk) + ηfαkg
T
k dk

does not hold, augment the filter according to

Fk+1 := Fk ∪
{

(θ, f) ∈ R
2 : θ ≥ (1− γθ)θ(xk) and f ≥ f(xk)− γfθ(xk)

}
; (12)

otherwise leave the filter unchanged, i.e. set Fk+1 := Fk.

7. Continue with next iteration. Increase the iteration counter k ← k + 1 and go back to Step 2.

8. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the infeasibility measure
θ, so that xk+1 satisfies the sufficient decrease conditions (8) and is acceptable to the filter, i.e.
(θ(xk+1), f(xk+1)) 	∈ Fk. Augment the filter according to (12) (for xk) and continue with the
regular iteration in Step 7.

It can be verified easily that this modification of Algorithm I in the companion paper [11] does not
affect the global convergence properties proven in [11].

Second order correction steps of the form (9) are discussed by Conn, Gould, and Toint in [3,
Section 15.3.2.3]. Here we assume that Hsoc

k is uniformly positive definite on the null space of
(Asoc

k )T , and that in a neighborhood of a strict local solution we have

gsoc
k = o(‖dk‖), Ak −Asoc

k = O(‖dk‖), csoc
k = o(‖dk‖2). (13)

In [3], the analysis is made for the particular choices csoc
k = 0, Asoc

k = A(xk + pk) for some pk =
O(‖dk‖), and Hk = ∇2

xxLµ(xk, λk) in (4) for multiplier estimates λk. However, the careful reader
will be able to verify that the results that we will use from [3] still hold as long as

(Wk −Hk)dk = o(‖dk‖), (14)

if xk converges to a strict local solution x∗ of the NLP with corresponding multipliers λ∗, where

Wk = ∇2
xxL(xk, λ∗)

(3)
= ∇2f(xk) +

m∑
i=1

(λ∗)(i)∇2c(i)(xk). (15)

Popular choices for the quantities in the computation of the second order correction step in (9)
that satisfy (13) are the following.

(a) Hsoc
k = I, gsoc

k = 0, csoc
k = 0, and Asoc

k = Ak or Asoc
k = A(xk + dk), which corresponds to a

least-square step for the constraints.
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(b) Hsoc
k = Hk, gsoc

k = 0, csoc
k = 0, and Asoc

k = Ak, which is very inexpensive since this choice allows
to reuse the factorization of the linear system (4).

(c) Hsoc
k being the Hessian approximation corresponding to xk + dk, gsoc

k = g(xk + dk) + A(xk +
dk)T λ+

k , csoc
k = 0, and Asoc

k = A(xk + dk) which corresponds to the step in the next iteration,
supposing that xk +dk has been accepted. This choice has the flavor of the watchdog technique
[2].

(d) If dsoc
k is a second order correction step, and d̄soc

k is an additional second order correction step
(i.e. with “c(xk +dk)” replaced by “c(xk +dk +dsoc

k )” in (9)), then dsoc
k + d̄soc

k can be understood
as a single second order correction step for dk (in that case with csoc

k 	= 0). Similarly, several
consecutive correction steps can be considered as a single one.

3 Local Convergence Analysis

We start the analysis by stating the necessary assumptions.

Assumptions L. Assume that {xk} converges to a local solution x∗ of the NLP (1) and that the
following holds.

(L1) The functions f and c are twice continuously differentiable in a neighborhood of x∗.

(L2) x∗ satisfies the following sufficient second order optimality conditions.

• x∗ is feasible, i.e. θ(x∗) = 0,

• there exists λ∗ ∈ R
m so that the KKT conditions (2) are satisfied for (x∗, λ∗),

• the constraint Jacobian A(x∗)T has full rank, and

• the Hessian of the Lagrangian W∗ = ∇2
xxL(x∗, λ∗) is positive definite on the null space

of A(x∗)T .

(L3) In (4), Hk is uniformly positive definite on the null space of (Ak)T , as well as bounded.

(L4) In (9), Hsoc
k is uniformly positive definite on the null space of (Asoc

k )T , and (13) holds.

(L5) The Hessian approximations Hk in (4) satisfy (14).

The assumption xk → x∗ has been discussed in Remark 6 in the companion paper [11] and can be
considered to be reasonable. Assumption (L5) is reminiscent of the Dennis-Moré characterization
of superlinear convergence [4]. However, this assumption is stronger than necessary for superlinear
convergence [1] which requires only that ZT

k (Wk−Hk)dk = o(‖dk‖), where Zk is a null space matrix
for AT

k .
Note, that the above assumptions imply Assumptions G in the companion paper [11] in a

neighborhood of the solution, and therefore the results from [11] remain valid. In particular, from
Lemma 1 in [11] we have, that λ+

k from (4) is uniformly bounded, and Lemma 4 in [11] implies

θ(xk) = 0 =⇒ gT
k dk < 0 and (16)

Θk := min{θ : (θ, f) ∈ Fk} > 0 (17)

for all k.

First we summarize some preliminary results.
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Lemma 1 Suppose Assumptions L hold. Then there exists a neighborhood U1 of x∗, so that for all
xk ∈ U1 we have

dsoc
k = o(‖dk‖) (18a)

c(xk + dk + dsoc
k ) = o(‖dk‖2) (18b)

Proof. From continuity and full rank of AT∗ , as well as Assumption (L4), we have that the matrix
in (9) has a uniformly bounded inverse in the neighborhood of x∗. Hence, since the right hand side
is o(‖dk‖), claim (18a) follows. Furthermore, from

c(xk + dk + dsoc
k ) = c(xk + dk) + A(xk + dk)T dsoc

k + O(‖dsoc
k ‖2)

(9)
= −csoc

k − (Asoc
k )T dsoc

k + (Ak + O(‖dk‖))T dsoc
k

+ O(‖dsoc
k ‖2)

(13)
= o(‖dk‖2) + O(‖dk‖‖dsoc

k ‖) + O(‖dsoc
k ‖2)

(18a)
= o(‖dk‖2)

for xk close to x∗ the claim (18b) follows. �

In order to prove our local convergence result we will make use of two results established in [3]
regarding the effect of second order correction steps on the exact penalty function

φρ(x) = f(x) + ρ θ(x). (19)

Note, that we will employ the exact penalty function only as a technical device, but the algorithm
never refers to it. We will also use the following model of the penalty function

qρ(xk, d) = f(xk) + gT
k d +

1
2
dT Hkd + ρ

∥∥AT
k d + ck

∥∥ . (20)

The first result follows from Theorem 15.3.7 in [3].

Lemma 2 Suppose Assumptions L hold. Let φρ be the exact penalty function (19) and qρ defined
by (20) with ρ > ‖λ∗‖D, where ‖ · ‖D is the dual norm to ‖ · ‖. Then,

lim
k→∞

φρ(xk)− φρ(xk + dk + dsoc
k )

qρ(xk, 0) − qρ(xk, dk)
= 1. (21)

The next result follows from Theorem 15.3.2 in [3].

Lemma 3 Suppose Assumptions L hold. Let (dk, λ
+
k ) be a solution of the linear system (4), and

let ρ > ‖λ+
k ‖D. Then

qρ(xk, 0)− qρ(xk, dk) ≥ 0. (22)

The next lemma shows that in a neighborhood of x∗ Step 4.7.1 of Algorithm SOC will be successful
if the switching condition (6) holds.

Lemma 4 Suppose Assumptions L hold. Then there exists a neighborhood U2 ⊆ U1 of x∗ so that
whenever the switching condition (6) holds, the Armijo condition (10) is satisfied.
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Proof. Choose U1 to be the neighborhood from Lemma 1. It then follows that for xk ∈ U1

satisfying (6) that

θ(xk) < δ
− 1

sθ [−gT
k dk]

sf
sθ =O(‖dk‖

sf
sθ ) = o(‖dk‖2), (23)

since sf

sθ
> 2 and gk is uniformly bounded in U1.

Since ηf < 1
2 , Lemma 2 and (22) imply that there exists K ∈ N such that for all k ≥ K we have

for some constant ρ > 0 with ρ > ‖λ+
k ‖D independent of k that

φρ(xk)− φρ(xk + dk + dsoc
k ) ≥

(
1
2

+ ηf

)
(qρ(xk, 0)− qρ(xk, dk)) . (24)

We then have

f(xk)− f(xk + dk + dsoc
k )

(19)
= φρ(xk)− φρ(xk + dk + dsoc

k )− ρ (θ(xk)− θ(xk + dk + dsoc
k ))

(24),(18b),(23)

≥
(

1
2

+ ηf

)
(qρ(xk, 0)− qρ(xk, dk)) + o(‖dk‖2)

(20),(23)
= −

(
1
2

+ ηf

)(
gT
k dk +

1
2
dT

k Hkdk

)
+ o(‖dk‖2).

Before continuing, we recall the decomposition from the companion paper [11]

dk = qk + pk, (25a)
qk := Yk q̄k and pk := Zkp̄k, (25b)

q̄k := − [
AT

k Yk

]−1
ck (25c)

p̄k := − [
ZT

k HkZk

]−1
ZT

k (gk + Hkqk) (25d)

where Zk ∈ R
n×(n−m) and Yk ∈ R

n×m are matrices so that the columns of [Zk Yk] form an orthonor-
mal basis of R

n, and the columns of Zk are a basis of the null space of AT
k . Since Assumptions L

guarantee that the quantities (25), as well as λ+
k , are bounded, we can conclude

f(xk) + ηfgT
k dk − f(xk + dk + dsoc

k )

≥ −1
2
gT
k dk −

(
1
4

+
ηf

2

)
dT

k Hkdk + o(‖dk‖2)
(4)
=

1
2

(
dT

k Hkdk + dT
k Akλ

+
k

)−
(

1
4

+
ηf

2

)
dT

k Hkdk + o(‖dk‖2)
(4)
=

(
1
4
− ηf

2

)
dT

k Hkdk − 1
2
c(xk)T λ+

k + o(‖dk‖2)
(23)
=

(
1
4
− ηf

2

)
dT

k Hkdk + o(‖dk‖2)
(25)
=

(
1
4
− ηf

2

)
p̄T

k ZT
k HkZkp̄k + O(‖qk‖) + o(‖dk‖2). (26)

Finally, using repeatedly the orthonormality of [Zk Yk], we have

qk = O(q̄k)
(25c)
= O(θ(xk))

(23)
= o(‖dk‖2)

(25a)
= o(pT

k pk + qT
k qk)

(25b)
= o(‖p̄k‖2) + o(‖qk‖2)
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and therefore qk = o(‖p̄k‖2), as well as

dk
(25a)
= O(‖qk‖) + O(‖pk‖) (25b)

= o(‖p̄k‖) + O(‖p̄k‖) = O(‖p̄k‖).

Hence, (10) is implied by (26), Assumption (L3) and ηf < 1
2 , if xk is sufficiently close to x∗. �

It remains to show that also the filter and the sufficient reduction criterion (8) do not interfere
with the acceptance of full steps close to x∗. The following technical lemmas address this issue and
prepare the proof of the main local convergence theorem.

Lemma 5 Suppose Assumptions L hold. Then there exists a neighborhood U3 ⊆ U2 (with U2 from
Lemma 4) and constants ρ1, ρ2, ρ3 > 0 with

ρ3 = (1− γθ)ρ2 − γf (27a)
2γθρ2 < (1 + γθ)(ρ2 − ρ1)− 2γf (27b)

2ρ3 ≥ (1 + γθ)ρ1 + (1− γθ)ρ2, (27c)

so that for all xk ∈ U3 we have ‖λ+
k ‖D < ρi for i = 1, 2, 3. Furthermore, for all xk ∈ U3 we have

φρi(xk)− φρi(xk + dk + d̄soc
k ) ≥ 1 + γθ

2
(qρi(xk, 0) − qρi(xk, dk))

(22)

≥ 0 (28)

for i = 2, 3 and all choices

d̄soc
k = dsoc

k , (29a)
d̄soc

k = σkd
soc
k + dk+1 + σk+1d

soc
k+1, (29b)

d̄soc
k = σkd

soc
k + dk+1 + σk+1d

soc
k+1 + dk+2 + σk+2d

soc
k+2, (29c)

or d̄soc
k = σkd

soc
k + dk+1 + σk+1d

soc
k+1 + dk+2 + σk+2d

soc
k+2

+dk+3 + σk+3d
soc
k+3, (29d)

with σk, σk+1, σk+2, σk+3 ∈ {0, 1}, as long as xl+1 = xl + dl + σld
soc
k for l ∈ {k, . . . , k + j} with

j ∈ {−1, 0, 1, 2}, respectively.

Proof. Since λ+
k is uniformly bounded for all k with xk ∈ U2, we can find ρ1 > ‖λ∗‖D with

ρ1 > ‖λ+
k ‖D (30)

for all k with xk ∈ U2. Defining now

ρ2 :=
1 + γθ

1− γθ
ρ1 +

3γf

1− γθ

and ρ3 by (27a), it is then easy to verify that ρ2, ρ3 ≥ ρ1 > ‖λ+
k ‖D and that (27b) and (27c) hold.

Since (1 + γθ) < 2, Lemma 2 implies that there exists a neighborhood U3 ⊆ U2 of x∗, so that
(28) holds for xk ∈ U3, since according to (c) and (d) on page 5 all choices of d̄soc

k in (29) can be
understood as second order correction steps to dk. �

Before proceeding we will give a short graphical motivation of the remainder of the proof and
introduce some more notation.
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FK1

FK2

U3

xA

xB

xC

f(x)

θ(x)(0
,f

(x
∗)

)

L

φρ(x) ≤ φρ(x∗) + κ

φρ(x) ≤ φρ(x∗) + κ− ε

Figure 1: Basic idea of proof

Let U3 and ρi be the neighborhood and constants from Lemma 5. Since limk xk = x∗, we can
find K1 ∈ N so that xk ∈ U3 for all k ≥ K1. In Figure 1 we see the (θ, f) half-plane with the
current filter FK1. Let us now define the level set

L := {x ∈ U3 : φρ3(x) ≤ φρ3(x∗) + κ} , (31)

where κ > 0 is chosen so that for all x ∈ L we have (θ(x), f(x)) 	∈ FK1 . This is possible, since
ΘK1 > 0 from (17), and since max{θ(x) : x ∈ L} converges to zero as κ→ 0, because x∗ is a strict
local minimizer of φρ3 [7]. Obviously, x∗ ∈ L.

Let now K2 be the first iteration K2 ≥ K1 with xK2 ∈ L. This means, that no iterate after K1

and before K2 will have been in L, and therefore also the filter FK2 will only overlap with the region
L corresponding to L in the (θ, f) graph by small corners of size γθθ(xl) × γfθ(xl). (θ, f)-pairs
with constant value of the exact penalty function (19) correspond to straight (dashed) lines in the
diagram, whose slope is determined by the penalty parameter ρ. The main trick of the proof will be
to understand those straight lines as frontiers approaching (0, f(x∗)), so that the filter will always
lie to the upper right side (except for small blocks coming from the sufficient decrease condition
(12) in the filter update rule) of the lines, and at least every other iterate will lie on the lower left
side (see (28)). For technical reasons we have to consider three of those frontiers corresponding to
different values of the penalty parameter (in order to deal with sufficient descent with respect to
the old filter entries, the current iterate (8), and new filter entries).

Let us finally define for k ∈ N the filter building blocks

Gk :=
{
(θ, f) : θ ≥ (1− γθ)θ(xk) and f ≥ f(xk)− γfθ(xk)

}

9



and index sets Ik2
k1

:= {l = k1, . . . , k2− 1 : l ∈ A} for k1 ≤ k2. Then it follows from the filter update
rule (12) and the definition of A that for k1 ≤ k2

Fk2 = Fk1 ∪
⋃

l∈I
k2
k1

Gl. (32)

Also note, that l ∈ Ik2
k1
⊆ A implies θ(xl) > 0. Otherwise, we would have from (16) that gT

k dk < 0,
so that (6) holds for all trial step sizes α, and the step must have been accepted in Step 4.4.1 or
Step 4.7.1, hence satisfying (7) or (10). This would contradict the filter update condition in Step 6,
respectively.

The last lemma will enable us to show in the main theorem of this section that, once the iterates
have reached the level set L, the full step will always be acceptable to the current filter.

Lemma 6 Suppose Assumptions L hold and let l ≥ K1 with θ(xl) > 0. Then the following state-
ments hold.

If φρ2(xl)− φρ2(x) ≥ 1+γθ
2 (qρ2(xl, 0)− qρ2(xl, dl)),

then (θ(x), f(x)) 	∈ Gl.

}
(33)

If x ∈ L and φρ2(xK2)− φρ2(x) ≥ 1+γθ
2 (qρ2(xK2 , 0)− qρ2(xK2 , dK2)),

then (θ(x), f(x)) 	∈ FK2 .

}
(34)

Proof. To (33): Since ρ1 > ‖λ+
l ‖D we have from Lemma 3 that qρ1(xl, 0) − qρ1(xl, dl) ≥ 0, and

hence using definition for qρ (20) and AT
l dl + cl = 0 (from (4)) that

φρ2(xl)− φρ2(x) ≥ 1 + γθ

2
(qρ2(xl, 0) − qρ2(xl, dl))

=
1 + γθ

2
(qρ1(xl, 0) − qρ1(xl, dl) + (ρ2 − ρ1)θ(xl))

≥ 1 + γθ

2
(ρ2 − ρ1)θ(xl). (35)

If f(x) < f(xl) − γfθ(xl), the claim follows immediately. Otherwise, suppose that f(x) ≥ f(xl)−
γfθ(xl). In that case, we have together with θ(xl) > 0 that

θ(xl)− θ(x)
(35),(19)

≥ 1 + γθ

2ρ2
(ρ2 − ρ1)θ(xl) +

1
ρ2

(f(x)− f(xl))

≥ 1 + γθ

2ρ2
(ρ2 − ρ1)θ(xl)− γf

ρ2
θ(xl)

(27b)
> γθθ(xl),

so that (θ(x), f(x)) 	∈ Gl.
To (34): Since x ∈ L, it follows by the choice of κ that (θ(x), f(x)) 	∈ FK1 . Thus, according to

(32) it remains to show that for all l ∈ IK2
K1

we have (θ(x), f(x)) 	∈ Gl. Choose l ∈ IK2
K1

. As in (35)
we can show that

φρ2(xK2)− φρ2(x) ≥ 1 + γθ

2
(ρ2 − ρ1)θ(xK2). (36)
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Since x ∈ L it follows from the definition of K2 (as the first iterate after K1 with xK2 ∈ L) and the
fact that l < K2 that

φρ3(xl)
(31)
> φρ3(xK2)

(19)
= φρ2(xK2) + (ρ3 − ρ2)θ(xK2)

(36)

≥ φρ2(x) +
(

ρ3 − 1 + γθ

2
ρ1 − 1− γθ

2
ρ2

)
θ(xK2)

(27c)

≥ φρ2(x). (37)

If f(x) < f(xl) − γfθ(xl), we immediately have (θ(x), f(x)) 	∈ Gl. Otherwise we have f(x) ≥
f(xl)− γfθ(xl) which yields

θ(x)
(37),(19)

<
1
ρ2

(f(xl) + ρ3θ(xl)− f(x))

≤ ρ3 + γf

ρ2
θ(xl)

(27a)
= (1− γθ)θ(xl),

so that (θ(x), f(x)) 	∈ Gl which concludes the proof of (34). �

After these preparations we are finally able to show the main local convergence theorem.

Theorem 1 Suppose Assumptions L hold. Then, for k sufficiently large full steps of the form
xk+1 = xk + dk or xk+1 = xk + dk + dsoc

k will be taken, and xk converges to x∗ superlinearly.

Proof. Recall that K2 ≥ K1 is the first iteration after K1 with xK2 ∈ L ⊆ U3. We now show by
induction that the following statements are true for k ≥ K2 + 2:

(ik) φρi(xl)− φρi(xk) ≥ 1 + γθ

2
(qρi(xl, 0) − qρi(xl, dl))

for i ∈ {2, 3} and K2 ≤ l ≤ k − 2
(iik) xk ∈ L

(iiik) xk = xk−1 + dk−1 + σk−1d
soc
k−1 with σk−1 ∈ {0, 1}.

We start by showing that these statements are true for k = K2 + 2.
Suppose, the point xK2 + dK2 is not accepted by the line search. In that case, define x̄K2+1 :=

xK2 + dK2 + dsoc
K2

. Then, from (28) with i = 3, k = K2, and (29a), we see from xK2 ∈ L and the
definition of L that x̄K2+1 ∈ L. After applying (28) again with i = 2 it follows from (34) that
(θ(x̄K2+1), f(x̄K2+1)) 	∈ FK2 , i.e. x̄K2+1 is not rejected in Step 4.6. Furthermore, if the switching
condition (6) holds, we see from Lemma 4 that the Armijo condition (10) with k = K2 is satisfied
for the point x̄K2+1. In the other case, i.e. if (6) is violated (note that then (16) and (6) imply
θ(xK2) > 0), we see from (28) for i = 2, k = K2, and (29a), together with (33) for l = K2, that (11)
holds. Hence, x̄K2+1 is also not rejected in Step 4.7 and accepted as next iterate. Summarizing the
discussion in this paragraph we can write xK2+1 = xK2 + dK2 + σK2d

soc
K2

with σK2 ∈ {0, 1}.
Let us now consider iteration K2 + 1. For σK2+1 ∈ {0, 1} we have from (28) for k = K2 and

(29b) that

φρi(xK2)− φρi(xK2+1 + dK2+1 + σK2+1d
soc
K2+1)

≥ 1 + γθ

2
(qρi(xK2 , 0)− qρi(xK2 , dK2)) (38)
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for i = 2, 3, which yields
xK2+1 + dK2+1 + σK2+1d

soc
K2+1 ∈ L. (39)

If xK2+1 + dK2+1 is accepted as next iterate xK2+2, we immediately obtain from (38) and (39) that
(iK2+2)–(iiiK2+2) hold. Otherwise, we consider the case σK2+1 = 1. From (38), (39), and (34) we
have for x̄K2+2 := xK2+1 + dK2+1 + dsoc

K2+1 that (θ(x̄K2+2), f(x̄K2+2)) 	∈ FK2. If K2 	∈ IK2+1
K2

it
immediately follows from (32) that (θ(x̄K2+2), f(x̄K2+2)) 	∈ FK2+1. Otherwise, we have θ(xK2) > 0.
Then, (38) for i = 2 together with (33) implies (θ(x̄K2+2), f(x̄K2+2)) 	∈ GK2, and hence with (32) we
have (θ(x̄K2+2), f(x̄K2+2)) 	∈ FK2+1, so that x̄K2+2 is not rejected in Step 4.6. Arguing similarly as
in the previous paragraph we can conclude that x̄K2+2 is also not rejected in Step 4.7. Therefore,
xK2+2 = x̄K2+2. Together with (38) and (39) this proves (iK2+2)–(iiiK2+2) for the case σK2+1 = 1.

Now suppose that (il)–(iiil) are true for all K2 + 2 ≤ l ≤ k with some k ≥ K2 + 2. If xk + dk is
accepted by the line search, define σk := 0, otherwise σk := 1. Set x̄k+1 := xk + dk + σkd

soc
k . From

(28) for (29c) we then have for i = 2, 3

φρi(xk−1)− φρi(x̄k+1) ≥ 1 + γθ

2
(qρi(xk−1, 0) − qρi(xk−1, dk−1)) ≥ 0. (40)

Choose l with K2 ≤ l < k − 1 and consider two cases:
Case a): If k = K2 + 2, then l = K2, and it follows from (28) with (29d) that for i = 2, 3

φρi(xl)− φρi(x̄k+1) ≥ 1 + γθ

2
(qρi(xl, 0) − qρi(xl, dl)) ≥ 0. (41)

Case b): If k > K2 + 2, we have from (40) that φρi(x̄k+1) ≤ φρi(xk−1) and hence from (ik−1) it
follows that (41) also holds in this case.

In either case, (41) implies in particular that φρ3(x̄k+1) ≤ φρ3(xK2), and since xK2 ∈ L, we
obtain

x̄k+1 ∈ L. (42)

If xk + dk is accepted by the line search, (ik+1)–(iiik+1) follow from (41), (40) and (42). If xk + dk

is rejected, we see from (42), (41) for i = 2 and l = K2, and (34) that (θ(x̄k+1), f(x̄k+1)) 	∈ FK2 .
Furthermore, for l ∈ Ik

K2
we have from (40) and (41) with (33) that (θ(x̄k+1), f(x̄k+1)) 	∈ Gl, and

hence from (32) that x̄k+1 is not rejected in Step 4.6. We can again show as before that x̄k+1 is
not rejected in Step 4.7, so that xk+1 = x̄k+1 which implies (ik+1)–(iiik+1).

That {xk} converges to x∗ with a superlinear rate follows from (14) (see e.g. [9]). �

Remark 1 As can be expected, the convergence rate of xk towards x∗ is quadratic, if (14) is replaced
by

(Wk −Hk)dk = O(‖dk‖2)
(see e.g. [3])

4 Fast Local Convergence of a Trust Region Filter SQP Method

The switching rule used in the trust region SQP-filter algorithm proposed by Fletcher et. al. [5]
does not imply the relationship (23), and therefore the proof of Lemma 4 in our local convergence
analysis does not hold for that method. However, it is easy to see that the global convergence
analysis in [5] is still valid (in particular Lemma 3.7 and Lemma 3.10 in [5]), if the switching rule
Eq. (2.19) in [5] is modified in analogy to (6) and replaced by

[mk(dk)]sϕ∆1−sϕ

k ≥ κθθ
ϕ
k ,

12



where mk is now the change of the objective function predicted by a quadratic model of the
objective function, ∆k the current trust region radius, κθ, ϕ > 0 constants from [5] satisfying certain
relationships, and the new constant sϕ > 0 satisfies sϕ > 2ϕ. Then the local convergence analysis
in Section 3 is still valid (also for the quadratic model formulation), assuming that sufficiently close
to a strict local solution the trust region is inactive, the trust region radius ∆k is uniformly bounded
away from zero, the (approximate) SQP steps sk are computed sufficiently exactly, and a second
order correction as discussed in Section 2 is performed.

5 Conclusions

We have shown that second order correction steps are able to overcome the Maratos effect within
filter methods. Important for the success of our analysis is a particular switching rule (6), which
differs from previous filter methods, such as the one proposed by Fletcher et. al. [5]. Also this
method, however, can be adapted to overcome the Maratos effect.
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