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Line Search Filter Methods for Nonlinear Programming:

Motivation and Global Convergence

Andreas Wächter∗ and Lorenz T. Biegler†

April 17, 2003

Abstract

Line search methods are proposed for nonlinear programming using Fletcher and Leyffer’s
filter method, which replaces the traditional merit function. Their global convergence properties
are analyzed. The presented framework is applied to active set SQP and barrier interior point
algorithms. Under mild assumptions it is shown that every limit point of the sequence of iterates
generated by the algorithm is feasible, and that there exists at least one limit point that is a
stationary point for the problem under consideration. A new alternative filter approach employ-
ing the Lagrangian function instead of the objective function with identical global convergence
properties is briefly discussed.

Keywords: nonlinear programming – nonconvex constrained optimization – filter method –
line search – SQP – interior point – barrier method – global convergence

1 Introduction

Recently, Fletcher and Leyffer [8] have proposed filter methods, offering an alternative to merit
functions, as a tool to guarantee global convergence in algorithms for nonlinear programming (NLP).
The underlying concept is that trial points are accepted if they improve the objective function or
improve the constraint violation instead of a combination of those two measures defined by a merit
function. The practical results reported for the filter trust region sequential quadratic programming
(SQP) method in [8] are encouraging, and subsequently global convergence results for related
algorithms were established [6, 9]. Other researchers have also proposed global convergence results
for different trust region based filter methods, such as for an interior point (IP) approach [20], a
bundle method for non-smooth optimization [7], and a pattern search algorithm for derivative-free
optimization [1].

In this paper we propose and analyze a filter method framework based on line search which
can be applied to active set SQP methods as well as barrier IP methods. The motivation given by
Fletcher and Leyffer for the development of the filter method [8] is to avoid the necessity to deter-
mine a suitable value of the penalty parameter in the merit function. In addition, assuming that
Newton directions are usually “good” directions (in particular if exact second derivative informa-
tion is used) filter methods have the potential to be more efficient than algorithms based on merit
functions, as they generally accept larger steps. However, in the context of a line search method,
the filter approach offers another important advantage regarding robustness. It has been known
for some time that line search methods can converge to “spurious solutions”, infeasible points that
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are not even critical points for a measure of infeasibility, if the gradients of the constraints become
linearly dependent at non-feasible points. In [17], Powell gives an example for this behavior. More
recently, the authors demonstrated another global convergence problem for many line search IP
methods on a simple well-posed example [24]. Here, the affected methods generate search direc-
tions that point outside of the region I defined by the inequality constraints because they are
forced to satisfy the linearization of the equality constraints. Consequently, an increasingly smaller
fraction of the proposed step can be taken, and the iterates eventually converge to an infeasible
point at the boundary of I, which once again is not even a stationary point for any measure of
infeasibility (see also [14] for a detailed discussion of “feasibility control”). Using a filter approach
within a line search algorithm helps to overcome these problems. If the trial step size becomes
too small in order to guarantee sufficient progress towards a solution of the problem, the proposed
filter method reverts to a feasibility restoration phase, whose goal is to deliver a new iterate that
is at least sufficiently less infeasible. As a consequence, the global convergence problems described
above cannot occur.

This paper is organized as follows. For easy comprehension of the derivation and analysis of
the proposed line search filter methods, the main part of the paper will consider the particular case
of solving nonlinear optimization problems without inequality constraints. At the end of the paper
we will show how the presented techniques can be applied to general NLPs using active set SQP
methods and a barrier approach.

In Section 2 we will motivate and state the algorithm for the solution of the equality constrained
problem. The method is motivated by the trust region SQP method proposed by Fletcher et. al.
[6]. An important difference, however, lies in the condition that determines when to switch between
certain sufficient decrease criteria; this modification allows us to show fast local convergence of the
proposed line search filter method in the companion paper [26]. We will then show in Section 3
that every limit point of the sequence of iterates generated by the algorithm is feasible, and that
there is at least one limit point that satisfies the first order optimality conditions for the problem.

In Section 4.1 we propose an alternative measure for the filter acceptance criteria. Here, a trial
point is accepted if it reduces the infeasibility or the value of the Lagrangian function (instead of
the objective function). The global convergence results still hold for this modification. Having
presented the line search filter framework on the simple case of problems with equality constraints
only, we will show in Section 4.2 how it can be applied to SQP methods handling inequality
constraints, preserving the same global convergence properties. Finally, Section 4.3 shows how the
presented line search filter method can be applied in a barrier interior point framework.

Notation. We will denote the i-th component of a vector v ∈ Rn by v(i). Norms ‖ · ‖ will
denote a fixed vector norm and its compatible matrix norm unless otherwise noted. For brevity,
we will use the convention (x, λ) = (xT , λT )T for vectors x, λ. For a matrix A, we will denote
by σmin(A) the smallest singular value of A, and for a symmetric, positive definite matrix A we
call the smallest eigenvalue λmin(A). Given two vectors v,w ∈ Rn, we define the convex segment
[v,w] := {v + t(w − v) : t ∈ [0, 1]}. Finally, we will denote by O(tk) a sequence {vk} satisfying
‖vk‖ ≤ β tk for some constant β > 0 independent of k, and by o(tk) a sequence {vk} satisfying
‖vk‖ ≤ βktk for some positive sequence {βk} with limk βk = 0.

2 A Line Search Filter Approach

For simplicity, we will first describe and analyze the line search filter method for NLPs with equality
constraints only, i.e. we assume that the problem to be solved is stated as

min
x∈�n

f(x) (1a)
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s.t. c(x) = 0 (1b)

where the objective function f : Rn −→ R and the equality constraints c : Rn −→ Rm with m < n
are sufficiently smooth. We will show later, how this approach can be used in an active set SQP
(Section 4.2) and an interior point (Section 4.3) framework in order to tackle general NLPs.

The first order optimality conditions, or Karush-Kuhn-Tucker (KKT) conditions, (see e.g. [16])
for the NLP (1) are

g(x) + A(x)λ = 0 (2a)
c(x) = 0. (2b)

where we denote with A(x) := ∇c(x) the transpose of the Jacobian of the constraints c, and with
g(x) := ∇f(x) the gradient of the objective function. The vector λ corresponds to the Lagrange
multipliers for the equality constraints (1b). Given an initial estimate x0, the line search algorithm
proposed in this section generates a sequence of improved estimates xk of the solution for the NLP
(1). For this purpose in each iteration k a search direction dk is computed from the linearization
of the KKT conditions (2),

[
Hk Ak

AT
k 0

](
dk

λ+
k

)
= −
(

gk

ck

)
. (3)

Here, Ak := A(xk), gk := g(xk), ck := c(xk), and Hk denotes the Hessian ∇2
xxL(xk, λk) of the

Lagrangian
L(x, λ) := f(x) + c(x)T λ (4)

of the NLP (1), or an approximation to it, where λk is some estimate of the optimal multipliers
corresponding to the equality constraints (1b). λ+

k in (3) can be used to determine a new estimate
λk+1 for the next iteration. As is common for most line search methods, we will assume that
the projection of the Hessian approximation Hk onto the null space of the constraint Jacobian is
sufficiently positive definite.

After a search direction dk has been computed, a step size αk ∈ (0, 1] is determined in order to
obtain the next iterate

xk+1 := xk + αkdk. (5)

We want to guarantee that ideally the sequence {xk} of iterates converges to a solution of the
NLP (1). In this paper we consider a backtracking line search procedure, where a decreasing
sequence of step sizes αk,l ∈ (0, 1] (l = 0, 1, 2, . . .) is tried until some acceptance criterion is satisfied.
Traditionally, a trial step size αk,l is accepted if the corresponding trial point

xk(αk,l) := xk + αk,ldk (6)

provides sufficient reduction of a merit function, such as the exact penalty function [13]

φρ(x) = f(x) + ρ θ(x) (7)

where we define the infeasibility measure θ(x) by

θ(x) = ‖c(x)‖ .

Under certain regularity assumptions it can be shown that a strict local minimum of the exact
penalty function coincides with a local solution of the NLP (1) if the value of the penalty parameter
ρ > 0 is chosen sufficiently large [13].
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In order to avoid the determination of an appropriate value of the penalty parameter ρ, Fletcher
and Leyffer [8] proposed the concept of a filter method in the context of a trust region SQP
algorithm. In the remainder of this section we will describe how this concept can be applied to the
line search framework outlined above.

The underlying idea is to interpret the NLP (1) as a bi-objective optimization problem with
two goals: minimizing the constraint violation θ(x) and minimizing the objective function f(x). A
certain emphasis is placed on the first measure, since a point has to be feasible in order to be an
optimal solution of the NLP. Here, we do not require that a trial point xk(αk,l) provides progress in
a merit function such as (7), which combines these two goals as a linear combination into one single
measure. Instead, following Fletcher and Leyffer’s original idea, the trial point xk(αk,l) is accepted
if it improves feasibility, i.e. if θ(xk(αk,l)) < θ(xk), or if it improves the objective function, i.e. if
f(xk(αk,l)) < f(xk). Note, that this criterion is less demanding than the enforcement of decrease
in the penalty function (7) and will in general allow larger steps.

Of course, this simple concept is not sufficient to guarantee global convergence. Several pre-
cautions have to be added as we will outline in the following; these are closely related to those
proposed in [6]. (The overall line search filter algorithm is formally stated on page 7.)

1. Sufficient Reduction. Line search methods that use a merit function ensure sufficient progress
towards the solution. For example, they may do so by enforcing an Armijo condition for the exact
penalty function (7) (see e.g. [16]). Here, we borrow the idea from [6, 9] and replace this condition
by requiring that the next iterate provides at least as much progress in one of the measures θ or f
that corresponds to a small fraction of the current constraint violation, θ(xk). More precisely, for
fixed constants γθ, γf ∈ (0, 1), we say that a trial step size αk,l provides sufficient reduction with
respect to the current iterate xk, if

θ(xk(αk,l)) ≤ (1− γθ)θ(xk) (8a)
or f(xk(αk,l)) ≤ f(xk)− γfθ(xk). (8b)

In a practical implementation, the constants γθ, γf typically are chosen to be small. However,
relying solely on this criterion would allow the acceptance of a sequence {xk} that always provides
sufficient reduction of the constraint violation (8a) alone, and not the objective function. This could
converge to a feasible, but non-optimal point. In order to prevent this, we change to a different
sufficient reduction criterion whenever for the current trial step size αk,l the switching condition

mk(αk,l) < 0 and [−mk(αk,l)]sϕ [αk,l]1−sϕ > δ [θ(xk)]
sθ (9)

holds with fixed constants δ > 0, sθ > 1, sϕ > 2sθ, where

mk(α) := αgT
k dk (10)

is the linear model of the objective function f into direction dk. We choose to formulate the
switching condition (9) in terms of a general model mk(α) as it will allow us later, in Section 4.1,
to define the algorithm for an alternative measure that replaces “f(x)”.

If the switching condition (9) holds, instead of insisting on (8), we require that an Armijo-type
condition for the objective function,

f(xk(αk,l)) ≤ f(xk) + ηfmk(αk,l), (11)

is satisfied (see [6]). Here, ηf ∈ (0, 1
2) is a fixed constant. It is possible that for several trial step

sizes αk,l with l = 1, . . . , l̃ condition (9), but not (11) is satisfied. In this case we note that for
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smaller step sizes the switching condition (9) may no longer be valid, so that the method reverts
to the acceptance criterion (8).

The switching condition (9) deserves some discussion. On the one hand, for global convergence
we need to ensure that close to a feasible but non-optimal point x̄ a new iterate indeed leads to
progress in the objective function (and not only the infeasibility measure). Lemma 2 below will show
that mk(α) ≤ −αε for some ε > 0 and all α ∈ (0, 1] for iterates xk in a neighborhood of x̄. Therefore,
the switching condition is satisfied, if αk,l > (δ/εsf )[θ(xk)]sθ . The fact that the right hand side is
o(θ(xk)) allows us to show in Lemma 10 that sufficient decrease in the objective function (11) is
indeed obtained by the new iterate close to x̄. On the other hand, in order to show that full steps
are taken in the neighborhood of a strict local solution x∗ we need to ensure that then the Armijo
condition (11) is only enforced (i.e. the switching condition is only true) if the progress predicted
by the linear model mk is large enough so that the full step, possibly improved by a second order
correction step, is accepted. This is shown in Lemma 4 in the companion paper [26], and it is crucial

for its proof that the switching condition with αk,0 = 1 implies θ(xk) = O(‖dk‖
sf
sθ ) = o(‖dk‖2).

Note that the switching conditions used in [6, 9] do not imply this latter relationship.

2. Filter as taboo-region. It is also necessary to avoid cycling. For example, this may occur
between two points that alternatingly improve one of the measures, θ and f , and worsen the other
one. For this purpose, Fletcher and Leyffer [8] propose to define a “taboo region” in the half-plane
{(θ, f) ∈ R2 : θ ≥ 0}. They maintain a list of (θ(xp), f(xp))-pairs (called filter) corresponding to
(some of) the previous iterates xp and require that a point, in order to be accepted, has to improve
at least one of the two measures compared to those previous iterates. In other words, a trial step
xk(αk,l) can only be accepted, if

θ(xk(αk,l)) < θ(xp)
or f(xk(αk,l)) < f(xp)

for all (θ(xp), f(xp)) in the current filter.
In contrast to the notation in [6, 8], for the sake of a simplified notation we will define the

filter in this paper not as a list but as a set Fk ⊆ [0,∞) × R containing all (θ, f)-pairs that are
“prohibited” in iteration k. We will say, that a trial point xk(αk,l) is acceptable to the filter if its
(θ, f)-pair does not lie in the taboo-region, i.e. if(

θ(xk(αk,l)), f(xk(αk,l))
)
	∈ Fk. (12)

During the optimization we will make sure that the current iterate xk is always acceptable to the
current filter Fk.

At the beginning of the optimization, the filter is initialized to be empty, F0 := ∅ , or — if one
wants to impose an explicit upper bound on the constraint violation — as F0 := {(θ, f) ∈ R2 : θ ≥
θmax} for some θmax > θ(x0). Throughout the optimization the filter is then augmented in some
iterations after the new iterate xk+1 has been accepted. For this, the updating formula

Fk+1 := Fk ∪
{
(θ, f) ∈ R2 : θ ≥ (1− γθ)θ(xk) and f ≥ f(xk)− γfθ(xk)

}
(13)

is used (see also [6]). If the filter is not augmented, it remains unchanged, i.e. Fk+1 := Fk. Note,
that then Fk ⊆ Fk+1 for all k. This ensures that all later iterates will have to provide sufficient
reduction with respect to xk as defined by criterion (8), if the filter has been augmented in iteration
k. Note, that for a practical implementation it is sufficient to store the “corner entries”(

(1− γθ)θ(xk), f(xk)− γfθ(xk)
)

(14)
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(see [6]).
It remains to decide which iterations should augment the filter. Since one motivation of the

filter method is to make it generally less conservative than a penalty function approach, we do not
want to augment the filter in every iteration. In addition, as we will see in the discussion of the
next safeguard below, it is important for the proposed method that we never include feasible points
in the filter. The following rule from [6] is motivated by these considerations.

We will always augment the filter if for the accepted trial step size αk,l the switching condition (9)
or the Armijo condition (11) do not hold. Otherwise, if the filter is not augmented, the value of
the objective function is strictly decreased (see Eq. (29) below). To see that this indeed prevents
cycling let us assume for a moment that the algorithms generates a cycle of length l

xK , xK+1, . . . , xK+l−1, xK+l = xK , xK+l+1 = xK+1, . . . (15)

Since a point xk can never be reached again if the filter is augmented in iteration k, the existence
of a cycle would imply that the filter is not augmented for all k ≥ K. However, this would imply
that f(xk) is a strictly decreasing sequence for k ≥ K, giving a contradiction, so that (15) cannot
be a cycle.

3. Feasibility restoration phase. If the linear system (3) is consistent, dk satisfies the linearization
of the constraints and we have θ(xk(αk,l)) < θ(xk) whenever αk,l > 0 is sufficiently small. It is
not guaranteed, however, that there exists a trial step size αk,l > 0 that indeed provides sufficient
reduction as defined by criterion (8).

In this situation, where no admissible step size can be found, the method switches to a feasibility
restoration phase, whose purpose is to find a new iterate xk+1 merely by decreasing the constraint
violation θ, so that xk+1 satisfies (8) and is also acceptable to the current filter. In this paper,
we do not specify the particular procedure for this feasibility restoration phase. It could be any
iterative algorithm for decreasing θ, possibly ignoring the objective function, and different methods
could even be used at different stages of the optimization procedure.

Since we will make sure that a feasible iterate is never included in the filter, the algorithm for
the feasibility restoration phase usually should be able to find a new acceptable iterate unless it
converges to a stationary point of θ. The latter case may be important information for the user, as
it indicates that the problem seems (at least locally) infeasible. If the feasibility restoration phase
terminates successfully by delivering a new admissible iterate, the filter is augmented according to
(13) to avoid cycling back to the problematic point xk.

In order to detect the situation where no admissible step size can be found and the restoration
phase has to be invoked, we propose the following rule. Consider the case when the current trial
step size αk,l is still large enough so that the switching condition (9) holds for some α ≤ αk,l. In
this case, we will not switch to the feasibility restoration phase, since there is still the chance that
a shorter step length might be accepted by the Armijo condition (11). Therefore, we can see from
the switching condition (9) and the definition of mk (10) that we do not want to revert to the
feasibility restoration phase if gT

k dk < 0 and

αk,l >
δ[θ(xk)]sθ

[−gT
k dk]sf

.

However, if the switching condition (9) is not satisfied for the current trial step size αk,l and all
shorter trial step sizes, then the decision whether to switch to the feasibility restoration phase is
based on the linear approximations

θ(xk + αdk) = θ(xk)− αθ(xk) + O(α2) (since AT
k dk + c(xk) = 0) (16a)

f(xk + αdk) = f(xk) + αgT
k dk + O(α2) (16b)
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of the two measures. This predicts that the sufficient decrease condition for the infeasibility mea-
sure (8a) may not be satisfied for step sizes satisfying αk,l ≤ γθ. Similarly, in case gT

k dk < 0,
the sufficient decrease criterion for the objective function (8b) may not be satisfied for step sizes
satisfying

αk,l ≤
γfθ(xk)
−gT

k dk
.

We can summarize this in the following formula for a minimal trial step size

αmin
k := γα ·




min
{

γθ,
γf θ(xk)

−gT
k dk

, δ[θ(xk)]sθ

[−gT
k dk]

sf

}

if gT
k dk < 0

γθ otherwise

(17)

and switch to the feasibility restoration phase when αk,l becomes smaller than αmin
k . Here, γα ∈

(0, 1] is a safety-factor that might be useful in a practical implementation in order to compensate
for the neglected higher order terms in the linearization (16) and to avoid invoking the feasibility
restoration phase unnecessarily.

It is possible, however, to employ more sophisticated rules to decide when to switch to the
feasibility restoration phase while still maintaining the convergence properties. These rules could,
for example, be based on higher order approximations of θ and/or f . We only need to ensure that
the algorithm does not switch to the feasibility restoration phase as long as (9) holds for a step size
α ≤ αk,l where αk,l is the current trial step size, and that the backtracking line search procedure
is finite, i.e. it eventually either delivers a new iterate xk+1 or reverts to the feasibility restoration
phase.

The proposed method also allows to switch to the feasibility restoration phase in any iteration,
in which the infeasibility θ(xk) is not too small. For example, this might be necessary, when the
Jacobian of the constraints AT

k is (nearly) rank-deficient, so that the linear system (3) is (nearly)
singular and no search direction can be computed.

We are now ready to formally state the overall algorithm for solving the equality constrained
NLP (1).

Algorithm I

Given: Starting point x0; constants θmax ∈ (θ(x0),∞]; γθ, γf ∈ (0, 1); δ > 0; γα ∈ (0, 1]; sθ > 1;
sf > 2sθ; 0 < τ1 ≤ τ2 < 1.

1. Initialize. Initialize the filter F0 := {(θ, ϕ) ∈ R2 : θ ≥ θmax} and the iteration counter k ← 0.

2. Check convergence. Stop, if xk is a local solution (or at least stationary point) of the NLP (1),
i.e. if it satisfies the KKT conditions (2) for some λ ∈ Rm.

3. Compute search direction. Compute the search direction dk from the linear system (3). If this
system is (almost) singular, go to feasibility restoration phase in Step 8.

4. Backtracking line search.

4.1. Initialize line search. Set αk,0 = 1 and l← 0.

4.2. Compute new trial point. If the trial step size becomes too small, i.e. αk,l < αmin
k with αmin

k

defined by (17), go to the feasibility restoration phase in Step 8. Otherwise, compute the
new trial point xk(αk,l) = xk + αk,ldk.
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4.3. Check acceptability to the filter. If xk(αk,l) ∈ Fk, reject the trial step size and go to Step 4.5.

4.4. Check sufficient decrease with respect to current iterate.

4.4.1. Case I. The switching condition (9) holds: If the Armijo condition for the objective
function (11) holds, accept the trial step and go to Step 5.
Otherwise, go to Step 4.5.

4.4.2. Case II. The switching condition (9) is not satisfied: If (8) holds, accept the trial
step and go to Step 5.
Otherwise, go to Step 4.5.

4.5. Choose new trial step size. Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l ← l + 1, and go back to
Step 4.2.

5. Accept trial point. Set αk := αk,l and xk+1 := xk(αk).

6. Augment filter if necessary. If one of the conditions (9) or (11) does not hold, augment the filter
according to (13); otherwise leave the filter unchanged, i.e. set Fk+1 := Fk.

(Note, that Step 4.3 and Step 4.4.2 ensure, that (θ(xk+1), f(xk+1)) 	∈ Fk+1.)

7. Continue with next iteration. Increase the iteration counter k ← k + 1 and go back to Step 2.

8. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the infeasibility measure
θ, so that xk+1 satisfies the sufficient decrease conditions (8) and is acceptable to the filter, i.e.
(θ(xk+1), f(xk+1)) 	∈ Fk. Augment the filter according to (13) (for xk) and continue with the
regular iteration in Step 7.

Remark 1 From Step 4.5 it is clear that liml αk,l = 0. In the case that θ(xk) > 0 it can be seen
from (17) that αmin

k > 0. Therefore, the algorithm will either accept a new iterate in Step 4.4, or
switch to the feasibility restoration phase. If on the other hand θ(xk) = 0 and the algorithm does
not stop in Step 2 at a KKT point, then the positive definiteness of Hk on the null space of Ak

implies that gT
k dk < 0 (see e.g. Lemma 4). Therefore, αmin

k = 0, and the Armijo condition (11)
is satisfied for a sufficiently small step size αk,l, i.e. a new iterate will be accepted in Step 4.4.1.
Overall, we see that the inner loop in Step 4 will always terminate after a finite number of trial
steps, and the algorithm is well-defined.

Remark 2 The mechanisms of the filter ensure that (θ(xk), f(xk)) 	∈ Fk for all k. Furthermore,
the initialization of the filter in Step 1 and the update rule (13) imply that for all k the filter has
the following property.

(θ̄, f̄) 	∈ Fk =⇒ (θ, f) 	∈ Fk if θ ≤ θ̄ and f ≤ f̄ . (18)

Remark 3 For practical purposes, it might not be efficient to restrict the step size by enforcing
an Armijo-type decrease (11) in the objective function, if the current constraint violation is not
small. It is possible to change the switching rule (i.e. Step 4.4) so that (11) only has to be satisfied
whenever θ(xk) ≤ θsml for some θsml > 0 without affecting the convergence properties of the method
[23].

Remark 4 The proposed method has many similarities with the trust region filter SQP method
proposed and analyzed in [6]. As pointed out above, we chose a modified switching rule (9) in order
to be able to show fast local convergence in the companion paper [26]. Further differences result
from the fact, that the proposed method follows a line search approach, so that in contrast to [6]
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the actual step taken does not necessarily satisfy the linearization of the constraints, i.e. we might
have AT

k (xk − xk+1) 	= c(xk) in some iterations. As a related consequence, the condition when to
switch to the feasibility restoration phase in Step 4.2 could not be chosen to be the detection of
infeasibility of the trust region QP, but had to be defined by means of a minimal step size (17). Due
to these differences, the global convergence analysis presented in [6] does not apply to the proposed
line search filter method.

Notation. In the remainder of this paper we will denote the set of indices of those iterations, in
which the filter has been augmented according to (13), by A ⊆ N; i.e.

Fk � Fk+1 ⇐⇒ k ∈ A.

The set R ⊆ N will be defined as the set of all iteration indices in which the feasibility restoration
phase is invoked. Since Step 8 makes sure that the filter is augmented in every iteration in which
the restoration phase is invoked, we have R ⊆ A. We will denote with Rinc ⊆ R the set of
those iteration counters, in which the linear system (3) is too ill-conditioned or singular, so that
the restoration phase is invoked from Step 3. For the active set SQP approach discussed later in
Section 4.2 these iterates will correspond to those where the QP is not (sufficiently) consistent.

3 Global Convergence

3.1 Assumptions and Preliminary Results

Let us now state the assumptions necessary for the global convergence analysis of Algorithm I. We
first state these assumptions in technical terms, and will discuss afterwards their practical relevance.

Assumptions G. Let {xk} be the sequence generated by Algorithm I, where we assume that the
feasibility restoration phase in Step 8 always terminates successfully and that the algorithm does
not stop in Step 2 at a first-order optimal point.

(G1) There exists an open set C ⊆ Rn with [xk, xk + dk] ⊆ C for all k 	∈ Rinc, so that f and c are
differentiable on C, and their function values, as well as their first derivatives, are bounded
and Lipschitz-continuous over C.

(G2) The matrices Hk approximating the Hessian of the Lagrangian in (3) are uniformly bounded
for all k 	∈ Rinc.

(G3) There exists a constant θinc, so that k 	∈ Rinc whenever θ(xk) ≤ θinc, i.e. the linear system
(3) is “sufficiently consistent” and the restoration phase is not invoked from Step 3 close to
feasible points.

(G4) There exists a constant MA > 0, so that for all k 	∈ Rinc we have

σmin(Ak) ≥MA.

(G5) The Hessian approximations Hk are uniformly positive definite on the null space of the Ja-
cobian AT

k . In other words, there exists a constant MH > 0, so that for all k 	∈ Rinc

λmin

(
ZT

k HkZk

) ≥MH , (19)

where the columns of Zk ∈ Rn×(n−m) form an orthonormal basis matrix of the null space of
AT

k .

9



Assumptions (G1) and (G2) merely establish smoothness and boundedness of the problem data. As
we will see later in Lemma 2, Assumption (G5) ensures a certain descent property and it is similar
to common assumptions on the reduced Hessian in SQP line search methods (see e.g. [16]). To
guarantee this requirement in a practical implementation, one could compute a QR-factorization
of Ak to obtain matrices Zk ∈ Rn×(n−m) and Yk ∈ Rn×m so that the columns of [Zk Yk] form an
orthonormal basis of Rn, and the columns of Zk are a basis of the null space of AT

k (see e.g. [10]).
Then, the overall scaled search direction can be decomposed into two orthogonal components,

dk = qk + pk, where (20a)
qk := Ykq̄k and pk := Zkp̄k, (20b)

with

q̄k := − [AT
k Yk

]−1
ck (21a)

p̄k := − [ZT
k HkZk

]−1
ZT

k (gk + Hkqk) (21b)

(see e.g. [16]). The eigenvalues for the reduced scaled Hessian in (21b) (the term in square brackets)
could be monitored and modified if necessary. However, this procedure is prohibitive for large-
scale problems, and in those cases one instead might employ heuristics to ensure at least positive
definiteness of the reduced Hessian, for example, by monitoring and possibly modifying the inertia
of the iteration matrix in (3) (see e.g. [22]). Note, on the other hand, that (19) holds in the
neighborhood of a local solution x∗ satisfying the sufficient second order optimality conditions (see
e.g. [16]), if Hk approaches the exact Hessian of the Lagrangian of the NLP (1). Then, close to x∗,
no eigenvalue correction will be necessary and fast local convergence can be expected, assuming
that full steps will be taken close to x∗.

The regularity requirement (G4) ensures that, whenever the gradients of the constraints become
(nearly) linearly dependent, the method has to switch to the feasibility restoration phase in Step 3.
In practice one could monitor the singular values of Y T

k Ak in (21a), which are identical to the
singular values of Ak, as a criterion when to switch to the restoration phase in Step 3.

We can replace Assumptions (G3) and (G4) by the following assumption.

(G4∗) At all feasible points x the gradients of the constraints Ak are linearly independent.

If (G4∗) holds, there exists constants b1, b2 > 0, so that

θ(xk) ≤ b1 =⇒ σmin(Ak) ≥ b2

due to the continuity of σmin(A(x)) as a function of x and the boundedness of the iterates. If we
now decide to invoke the feasibility restoration phase in Step 3 whenever σmin(Ak) ≤ b3θ(xk) for
some fixed constant b3 > 0, then Assumptions (G3) and (G4) hold.

Similar to the analysis in [6], we will make use of a first order criticality measure χ(xk) ∈ [0,∞]
with the property that, if a subsequence {xki

} of iterates with χ(xki
) → 0 converges to a feasible

limit point x∗, then x∗ corresponds to a first order optimal solution. In the case of the Algorithm I
this means that there exist λ∗, so that the KKT conditions (2) are satisfied for (x∗, λ∗).

For the convergence analysis of the filter method we will define the criticality measure for
iterations k 	∈ Rinc as

χ(xk) := ‖p̄k‖2 , (22)

with p̄k from (21b). Note that this definition is unique, since pk in (20a) is unique due to the orthog-
onality of Yk and Zk, and since ‖p̄k‖2 = ‖pk‖2 due to the orthonormality of Zk. For completeness,
we may define χ(xk) :=∞ for k ∈ Rinc.
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In order to see that χ(xk) defined in this way is indeed a criticality measure under Assump-
tions G, let us consider a subsequence of iterates {xki

} with limi χ(xki
) = 0 and limi xki

= x∗ for
some feasible limit point x∗. From Assumption (G3) we then have ki 	∈ Rinc for i sufficiently large.
Furthermore, from Assumption (G4) and (21a) we have limi q̄ki

= 0, and then from limi χ(xki
) = 0,

(22), (21b), and Assumption (G5) we have that limi→∞ ‖ZT
ki

gki
‖ = 0, which is a well-known opti-

mality measure (see e.g. [16]).

Before we begin the global convergence analysis, let us state some preliminary results.

Lemma 1 Suppose Assumptions G hold. Then there exist constants Md, Mλ, Mm > 0, such that

‖dk‖ ≤Md, ‖λ+
k ‖ ≤Mλ, |mk(α)| ≤Mmα (23)

for all k 	∈ Rinc and α ∈ (0, 1].

Proof. From (G1) we have that the right hand side of (3) is uniformly bounded. Additionally,
Assumptions (G2), (G4), and (G5) guarantee that the inverse of the matrix in (3) exists and
is uniformly bounded for all k 	∈ Rinc. Consequently, the solution of (3), (dk, λ

+
k ), is uniformly

bounded, and therefore also mk(α)/α = gT
k dk. �

The following result shows that the search direction is a direction of sufficient descent for the
objective function at points that are sufficiently close to feasible and non-optimal.

Lemma 2 Suppose Assumptions G hold. Then the following statement is true:

If {xki
} is a subset of iterates for which χ(xki

) ≥ ε with a
constant ε > 0 independent of i then there exist constants
ε1, ε2 > 0, such that

θ(xki
) ≤ ε1 =⇒ mki

(α) ≤ −ε2α.

for all i and α ∈ (0, 1].

Proof. Consider a subset {xki
} of iterates with χ(xki

) = ‖p̄ki
‖2 ≥ ε. Then, by Assumption (G3),

for all xki
with θ(xki

) ≤ θinc we have ki 	∈ Rinc. Furthermore, with qki
= O(‖c(xki

)‖) (from (21a)
and Assumption (G4)) it follows that for ki 	∈ Rinc

mki
(α)/α = gT

ki
dki

(20)
= gT

ki
Zki

p̄ki
+ gT

ki
qki

(21b)
= −p̄T

ki

[
ZT

ki
Hki

Zki

]
p̄ki
− p̄T

ki
ZT

ki
Hki

qki
+ gT

ki
qki

(24)
(G2),(G5)

≤ −c1 ‖p̄ki
‖22 + c2 ‖p̄ki

‖2 ‖cki
‖+ c3‖cki

‖
≤ χ(xki

)
(
−ε c1 + c2θ(xki

) +
c3

ε
θ(xki

)
)

for some constants c1, c2, c3 > 0, where we used χ(xki
) ≥ ε in the last inequality. If we now define

ε1 := min
{

θinc,
ε2 c1

2(c2 ε + c3)

}
,

it follows for all xki
with θ(xki

) ≤ ε1 that

mki
(α) ≤ −α

ε c1

2
χ(xki

) ≤ −α
ε2 c1

2
=: −αε2.

�
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Lemma 3 Suppose Assumption (G1) holds. Then there exist constants Cθ, Cf > 0, so that for all
k 	∈ Rinc and α ≤ 1

|θ(xk + αdk)− (1− α)θ(xk)| ≤ Cθα
2 ‖dk‖2 (25a)

|f(xk + αdk)− f(xk)−mk(α)| ≤ Cfα2‖dk‖2. (25b)

These inequalities follow directly from second order Taylor expansions and (3).

Finally, we show that Step 8 (feasibility restoration phase) of Algorithm I is well-defined. Unless
the feasibility restoration phase terminates at a stationary point of the constraint violation it is
essential that reducing the infeasibility measure θ(x) eventually leads to a point that is acceptable to
the filter. This is guaranteed by the following lemma which shows that no (θ, f)-pair corresponding
to a feasible point is ever included in the filter.

Lemma 4 Suppose Assumptions G hold. Then

θ(xk) = 0 =⇒ mk(α) < 0 and (26)

Θk := min{θ : (θ, f) ∈ Fk} > 0 (27)

for all k and α ∈ (0, 1].

Proof. If θ(xk) = 0, we have from Assumption (G3) that k 	∈ Rinc. In addition, it then fol-
lows χ(xk) > 0 because Algorithm I would have terminated otherwise in Step 2, in contrast to
Assumptions G. Considering the decomposition (20), it follows as in (24) that

mk(α)/α = gT
k dk ≤ −c1χ(xk)2 < 0,

i.e. (26) holds.
The proof of (27) is by induction. It is clear from Step 1 of Algorithm I, that the claim is valid

for k = 0 since θmax > 0. Suppose the claim is true for k. Then, if θ(xk) > 0 and the filter is
augmented in iteration k, it is clear from the update rule (13), that Θk+1 > 0, since γθ ∈ (0, 1). If
on the other hand θ(xk) = 0, Lemma 2 applied to the singleton {xk} implies that mk(α) < 0 for
all α ∈ (0, 1], so that the switching condition (9) is true for all trial step sizes. Therefore, Step 4.4
considers always “Case I”, and the reason for αk having been accepted must have been that αk

satisfies (11). Consequently, the filter is not augmented in Step 6. Hence, Θk+1 = Θk > 0. �

3.2 Feasibility

In this section we will show that under Assumptions G the sequence θ(xk) converges to zero, i.e.
all limit points of {xk} are feasible.

Lemma 5 Suppose that Assumptions G hold, and that the filter is augmented only a finite number
of times, i.e. |A| <∞. Then

lim
k→∞

θ(xk) = 0. (28)

Proof. Choose K, so that for all iterations k ≥ K the filter is not augmented in iteration k; in
particular, k 	∈ Rinc ⊆ A for k ≥ K. From Step 6 in Algorithm I we then have, that for all k ≥ K
both conditions (9) and (11) are satisfied for αk. From (9) it follows with Mm from Lemma 1 that

δ[θ(xk)]sθ < [−mk(αk)]sf [αk]1−sf ≤M
sf
m αk

12



and hence (since 1− 1/sf > 0)

c4[θ(xk)]
sθ− sθ

sf < [αk]
1− 1

sf with c4 :=
(

δ

M
sf
m

)1− 1
sf

,

which implies

f(xk+1)− f(xk)
(11)

≤ ηfmk(αk)
(9)
< −ηfδ

1
sf [αk]

1− 1
sf [θ(xk)]

sθ
sf

< −ηfδ
1

sf c4[θ(xk)]sθ . (29)

Hence, for all i = 1, 2, . . .,

f(xK+i) = f(xK) +
K+i−1∑
k=K

(f(xk+1)− f(xk))

< f(xK)− ηf δ
1

sf c4

K+i−1∑
k=K

[θ(xk)]sθ .

Since f(xK+i) is bounded below, the series on the right hand side in the last line is bounded, which
in turn implies (28). �

Note that this result could be obtained with a simpler proof if the model mk(α) has the particular
form (10), but the above version also holds for the model (50) in Section 4.1.

The following lemma considers a subsequence {xki
} with ki ∈ A for all i. Its proof can be found

in [6, Lemma 3.3].

Lemma 6 Let {xki
} be a subsequence of iterates generated by Algorithm I, so that the filter is

augmented in iteration ki, i.e. ki ∈ A for all i. Furthermore assume that there exist constants
cf ∈ R and Cθ > 0, so that

f(xki
) ≥ cf and θ(xki

) ≤ Cθ

for all i (for example, if Assumptions (G1) holds). It then follows that

lim
i→∞

θ(xki
) = 0.

The previous two lemmas prepare the proof of the following theorem.

Theorem 1 Suppose Assumptions G hold. Then

lim
k→∞

θ(xk) = 0.

Proof. In the case, that the filter is augmented only a finite number of times, Lemma 5 implies
the claim. If in the other extreme there exists some K ∈ N, so that the filter is updated by (13) in
all iterations k ≥ K, then the claim follows from Lemma 6. It remains to consider the case, where
for all K ∈ N there exist k1, k2 ≥ K with k1 ∈ A and k2 	∈ A.

The proof is by contradiction. Suppose, lim supk θ(xk) = M > 0. Now construct two subse-
quences {xki

} and {xli} of {xk} in the following way.
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1. Set i← 0 and k−1 = −1.

2. Pick ki > ki−1 with
θ(xki

) ≥M/2 (30)

and ki 	∈ A. (Note that Lemma 6 ensures the existence of ki 	∈ A since otherwise θ(xki
)→ 0.)

3. Choose li := min{l ∈ A : l > ki}, i.e. li is the first iteration after ki in which the filter is
augmented.

4. Set i← i + 1 and go back to Step 2.

Thus, every xki
satisfies (30), and for each xki

the iterate xli is the first iterate after xki
for which

(θ(xli), f(xli)) is included in the filter.
Since (29) holds for all k = ki, . . . , li − 1 	∈ A, we obtain for all i

f(xli) ≤ f(x(ki+1)) < f(xki
)− ηfδ

1
sf c4[M/2]sθ . (31)

This ensures that for all K ∈ N there exists some i ≥ K with f(xk(i+1)
) ≥ f(xli) because otherwise

(31) would imply

f(xk(i+1)
) < f(xli) < f(xki

)− ηf δ
1

sf c4[M/2]sθ

for all i and consequently limi f(xki
) = −∞ in contradiction to the fact that {f(xk)} is bounded

below. Thus, there exists a subsequence {ij} of {i} so that

f(xk(ij+1)
) ≥ f(xlij

). (32)

Since xk(ij+1)
	∈ Fk(ij+1)

⊇ Flij
and lij ∈ A, it follows from (32) and the filter update rule (13), that

θ(xk(ij+1)
) ≤ (1− γθ)θ(xlij

). (33)

Since lij ∈ A for all j, Lemma 6 yields limj θ(xlij
) = 0, so that from (33) we obtain limj θ(xkij

) = 0
in contradiction to (30). �

Remark 5 It is easy to verify that the previous theorem is also valid if we do not assume that
{f(xk)} is bounded above. This will be important for the discussion of the interior point method in
Section 4.3.

3.3 Optimality

In this section we will show that Assumptions G guarantee that the optimality measure χ(xk) is
not bounded away from zero, i.e. if {xk} is bounded, at least one limit point is a first order optimal
point for the NLP (1).

The first lemma shows conditions under which it can be guaranteed that there exists a step length
bounded away from zero so that the Armijo condition (11) for the objective function is satisfied.

Lemma 7 Suppose Assumptions G hold. Let {xki
} be a subsequence with ki 	∈ Rinc and mki

(α) ≤
−αε2 for a constant ε2 > 0 independent of ki and for all α ∈ (0, 1]. Then there exists some constant
ᾱ > 0, so that for all ki and α ≤ ᾱ

f(xki
+ αdki

)− f(xki
) ≤ ηfmki

(α). (34)
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Proof. Let Md and Cf be the constants from Lemma 1 and Lemma 3. It then follows for all α ≤ ᾱ

with ᾱ := (1−ηf )ε2
Cf M2

d
that

f(xki
+ αdki

)− f(xki
)−mki

(α)
(25b)

≤ Cfα2‖dki
‖2 ≤ α(1 − ηf )ε2

≤ −(1− ηf )mki
(α),

which implies (34). �

Let us again first consider the “easy” case, in which the filter is augmented only a finite number of
times.

Lemma 8 Suppose that Assumptions G hold and that the filter is augmented only a finite number
of times, i.e. |A| <∞. Then

lim
k→∞

χ(xk) = 0.

Proof. Since |A| <∞, there exists K ∈ N so that k 	∈ A for all k ≥ K. Suppose, the claim is not
true, i.e. there exists a subsequence {xki

} and a constant ε > 0, so that χ(xki
) ≥ ε for all i. From

(28) and Lemma 2 there exist ε1, ε2 > 0 and K̃ ≥ K, so that for all ki ≥ K̃ we have θ(xki
) ≤ ε1

and
mki

(α) ≤ −αε2 for all α ∈ (0, 1]. (35)

It then follows from (11) that for ki ≥ K̃

f(xki+1)− f(xki
) ≤ ηfmki

(αki
) ≤ −αki

ηf ε2.

Reasoning similarly as in proof of Lemma 5, one can conclude that limi αki
= 0, since f(xki

) is
bounded below and since f(xk) is monotonically decreasing (from (29)) for all k ≥ K̃. We can
now assume without loss of generality that K̃ is sufficiently large, so that αki

< 1. This means
that for ki ≥ K̃ the first trial step αk,0 = 1 has not been accepted. The last rejected trial step size
αki,li ∈ [αki

/τ2, αki
/τ1] during the backtracking line search procedure then satisfies (9) since ki 	∈ A

and αki,li > αki
. Thus, it must have been rejected because it violates (11), i.e. it satisfies

f(xki
+ αki,lidki

)− f(xki
) > ηfmki

(αki,li), (36)

or it has been rejected because it is not acceptable to the current filter, i.e.

(θ(xki
+ αki,lidki

), f(xki
+ αki,lidki

)) ∈ Fki
= FK . (37)

We will conclude the proof by showing that neither (36) nor (37) can be true for sufficiently large
ki.

To (36): Since limi αki
= 0, we also have limi αki,li = 0. In particular, for sufficiently large ki

we have αki,li ≤ ᾱ with ᾱ from Lemma 7, i.e. (36) cannot be satisfied for those ki.
To (37): Let ΘK := min{θ : (θ, f) ∈ FK}. From Lemma 4 we have ΘK > 0. Using Lemma 1

and Lemma 3, we then see that

θ(xki
+ αki,lidki

) ≤ (1− αki,li)θ(xki
) + CθM

2
d [αki,li ]

2.

Since limi αki,li = 0 and from Theorem 1 also limi θ(xki
) = 0, it follows that for ki sufficiently large

we have θ(xki
+ αki,lidki

) < ΘK which contradicts (37). �

The next lemma establishes conditions under which a step size can be found that is acceptable to
the current filter (see (12)).
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Lemma 9 Suppose Assumptions G hold. Let {xki
} be a subsequence with ki 	∈ Rinc and mki

(α) ≤
−αε2 for a constant ε2 > 0 independent of ki and for all α ∈ (0, 1]. Then there exist constants
c5, c6 > 0 so that

(θ(xki
+ αdki

), f(xki
+ αdki

)) 	∈ Fki

for all ki and α ≤ min{c5, c6θ(xki
)}.

Proof. Let Md, Cθ, and Cf be the constants from Lemma 1 and Lemma 3. Define c5 :=
min{1, ε2/(M2

d Cf )} and c6 := 1/(M2
d Cθ).

Now choose an iterate xki
. The mechanisms of Algorithm I ensure (see comment in Step 6),

that
(θ(xki

), f(xki
)) 	∈ Fki

. (38)

For α ≤ c5 we have α2 ≤ αε2
M2

d Cf
≤ −mki

(α)

Cf‖dki
‖2 , or equivalently

mki
(α) + Cfα2‖dki

‖2 ≤ 0,

and it follows with (25b) that
f(xki

+ αdki
) ≤ f(xki

). (39)

Similarly, for α ≤ c6θ(xki
) ≤ θ(xki

)

‖dki
‖2 Cθ

, we have −αθ(xki
) + Cθα

2‖dki
‖2 ≤ 0 and thus from (25a)

θ(xki
+ αdki

) ≤ θ(xki
). (40)

The claim then follows from (38), (39) and (40) using (18). �

The last lemma in this section shows that in iterations corresponding to a subsequence with only
non-optimal limit points the filter is eventually not augmented. This result will be used in the
proof of the main global convergence theorem to yield a contradiction.

Lemma 10 Suppose Assumptions G hold. Let {xki
} be a subsequence with χ(xki

) ≥ ε for a con-
stant ε > 0 independent of ki. Then there exists K ∈ N, so that for all ki ≥ K the filter is not
augmented in iteration ki, i.e. ki 	∈ A.

Proof. Since by Theorem 1 we have limi θ(xki
) = 0, it follows from Lemma 2 that there exist

constants ε1, ε2 > 0, so that

θ(xki
) ≤ ε1 and mki

(α) ≤ −αε2 (41)

for ki sufficiently large and α ∈ (0, 1]; without loss of generality we can assume that (41) is valid
for all ki. We can now apply Lemma 7 and Lemma 9 to obtain the constants ᾱ, c5, c6 > 0. Choose
K ∈ N, so that for all ki ≥ K

θ(xki
) < min


θinc,

ᾱ

c6
,
c5

c6
,

[
τ1c6ε

sf

2

δ

] 1
sθ−1


 (42)

with τ1 from Step 4.5. For all ki ≥ K with θ(xki
) = 0 we can argue as in the proof of Lemma 4

that both (9) and (11) hold in iteration ki, so that ki 	∈ A.
For the remaining iterations ki ≥ K with θ(xki

) > 0 we note that this implies that ki 	∈ Rinc,

δ [θ(xki
)]sθ

ε
sf

2

< τ1c6θ(xki
) (43)
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(since sθ > 1), as well as
c6θ(xki

) < min{ᾱ, c5}. (44)

Now choose an arbitrary ki ≥ K with θ(xki
) > 0 and define

βki
:= c6θ(xki

)
(44)
= min{ᾱ, c5, c6θ(xki

)}. (45)

Lemma 7 and Lemma 9 then imply, that a trial step size αki,l ≤ βki
will satisfy both

f(xki
(αki,l)) ≤ f(xki

) + ηfmki
(αki,l) (46)

and (
θ(xki

(αki,l)), f(xki
(αki,l))

)
	∈ Fki

. (47)

If we now denote with αki,L the first trial step size satisfying both (46) and (47), the backtracking
line search procedure in Step 4.5 then implies that for α ≥ αki,L

α ≥ τ1βki

(45)
= τ1c6θ(xki

)
(43)
>

δ[θ(xki
)]sθ

ε
sf

2

and therefore for α ≥ αki,L

δ[θ(xki
)]sθ < αε

sf

2 = [α]1−sf (αε2)sf
(41)

≤ [α]1−sf [−mki
(α)]sf .

This means, the switching condition (9) is satisfied for αki,L and all previous trial step sizes.
Consequently, for all trial step sizes αki,l ≥ αki,L, Case I is considered in Step 4.4. We also have
αki,l ≥ αmin

ki
, i.e. the method does not switch to the feasibility restoration phase in Step 4.2 for

those trial step sizes. Consequently, αki,L is indeed the accepted step size αki
. Since it satisfies

both (9) and (46), the filter is not augmented in iteration ki. �

We are now ready to prove the main global convergence result.

Theorem 2 Suppose Assumptions G hold. Then

lim
k→∞

θ(xk) = 0 (48a)

and lim inf
k→∞

χ(xk) = 0. (48b)

In other words, all limit points are feasible, and if {xk} is bounded, than there exists a limit point
x∗ of {xk} which is a first order optimal point for the equality constrained NLP (1).

Proof. (48a) follows from Theorem 1. In order to show (48b), we have to consider two cases:

i) The filter is augmented only a finite number of times. Then Lemma 8 proves the claim.

ii) There exists a subsequence {xki
}, so that ki ∈ A for all i. Now suppose, that lim supi χ(xki

) >
0. Then there exists a subsequence {xkij

} of {xki
} and a constant ε > 0, so that limj θ(xkij

) = 0
and χ(xkij

) > ε for all kij . Applying Lemma 10 to {xkij
}, we see that there is an iteration kij ,

in which the filter is not augmented, i.e. kij 	∈ A. This contradicts the choice of {xki
}, so that

limi χ(xki
) = 0, which proves (48b). �
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Remark 6 It is not possible to obtain a stronger result in Theorem 2, such as “limk χ(xk) = 0”.
The reason for this is that even arbitrarily close to a strict local solution the restoration phase
might be invoked even though the search direction is very good. This can happen if the current
filter contains “old historic information” corresponding to previous iterates that lie in a different
region of Rn but had values for θ and f similar to those for the current iterate. For example, if
for the current iterate (θ(xk), f(xk)) is very close to the current filter (e.g. there exists filter pairs
(θ̄, f̄) ∈ Fk with θ̄ < θ(xk) and f̄ ≈ f(xk)) and the objective function f has to be increased in
order to approach the optimal solution, the trial step sizes can be repeatedly rejected in Step 4.3 so
that finally αk,l becomes smaller than αmin

k and the restoration phase is triggered. Without making
additional assumptions on the restoration phase we only know that the next iterate xk+1 returned
from the restoration phase is less infeasible, but possibly far away from any KKT point.

In order to avoid that xk+1 diverts from a strict local solution x∗ (satisfying the usual second
order sufficient optimality conditions, see e.g. [16]), we propose the following procedure. If the
restoration phase is invoked at points where the KKT error (the norm of the left hand side of
(2)) is small, continue to take steps into the usual search directions dk from (3) (now within the
restoration phase), as long as the KKT error is decreased by a fixed fraction. If this is not possible,
we have to revert to a different algorithm for the feasibility restoration phase. If xk is sufficiently
close to x∗, the second order sufficient optimality conditions ensure that x∗ is a point of attraction
for Newton’s method, so that this procedure will be able to eventually deliver a new iterate xk+1

which is sufficiently close to feasibility in order to be accepted by the current filter and at the same
time approaches x∗, so that overall limk xk = x∗ is guaranteed.

4 Alternative Algorithms

4.1 Measures based on the augmented Lagrangian Function

The two measures f(x) and θ(x) can be considered as the two components of the exact penalty
function (7). Another popular choice for a merit function is the augmented Lagrangian function
(see e.g. [16])

�ρ(x, λ) := f(x) + λT c(x) +
ρ

2
c(x)T c(x), (49)

where λ are multiplier estimates corresponding to the equality constraints (1b). If λ∗ are the
multipliers corresponding to a strict local solution x∗ of the NLP (1), then there exists a penalty
parameter ρ > 0, so that x∗ is a strict local minimizer of �ρ(x, λ∗).

In the line search filter method described in Section 2 we can alternatively follow an approach
based on the augmented Lagrangian function rather than on the exact penalty function, by splitting
the augmented Lagrangian function (49) into its two components L(x, λ) (defined in (4)) and θ(x)
(or equivalently θ(x)2). In Algorithm I we then replace all occurrences of the measure “f(x)”
by “L(x, λ)”. In addition to the iterates xk we now also keep iterates λk as estimates of the
equality constraint multipliers, and compute in each iteration k a search direction dλ

k for those
variables. This search direction can be obtained, for example, with no additional computational
cost as dλ

k := λ+
k − λk with λ+

k from (3). Defining

λk(αk,l) := λk + αk,ld
λ
k ,

the sufficient reduction criteria (8b) and (11) are then replaced by

L(xk(αk,l), λk(αk,l)) ≤ L(xk, λk)− γfθ(xk) and
L(xk(αk,l), λk(αk,l)) ≤ L(xk, λk) + ηfmk(αk,l),
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respectively, where the model mk for L is now defined as

mk(α) := αgT
k dk − αλT

k ck + α(1 − α)cT
k dλ

k (50)
= L(xk + αdk, λk + αdλ

k)−L(xk, λk) + O(α2)

which is obtained by Taylor expansions of f(x) and c(x) around xk into direction dk and the use
of (3).

The switching condition (9) remains unchanged, but the definition of the minimum step size (17)
has to be changed accordingly. The only requirements for this change are again that it is guaranteed
that the method does not switch to the feasibility restoration phase in Step 4.2 as long as the
switching condition (9) is satisfied for a trial step size α ≤ αk,l, and that the backtracking line
search in Step 4 is finite.

One can verify that the global convergence analysis in Section 3 still holds with minor modifi-
cations [23]. Recently, Ulbrich [21] has discussed a similar approach using the Lagrangian function
in a trust region filter setting, including both global and local convergence results. Unlike the
extension we propose in the companion paper, this algorithm does not use second order corrections
for the local analysis.

4.2 Line Search Filter SQP Methods

In this section we show how Algorithm I can be applied to line search SQP methods for the solution
of nonlinear optimization problems with inequality constraints of the form

min
x∈�n

f(x) (51a)

s.t. cE(x) = 0 (51b)
cI(x) ≥ 0, (51c)

where the functions f and c := (cE , cI) have the smoothness properties of f and c in Assump-
tions (G1). A line search SQP method obtains search directions dk as the solution of the quadratic
program (QP)

min
d∈�n

gT
k d +

1
2
dT Hkd (52a)

s.t. (AE
k )T d + cE (xk) = 0 (52b)

(AI
k )T d + cI(xk) ≥ 0, (52c)

where gk := ∇f(xk), AE
k := ∇cE(xk), AI

k := ∇cI(xk), and Hk is (an approximation of the) Hessian
of the Lagrangian

L(x, λ, v) = f(x) + (cE (x))T λ− (cI(x))T v

of the NLP (51) with the Lagrange multipliers v ≥ 0 corresponding to the inequality constraints
(51c). We will denote the optimal QP multipliers corresponding to (52b) and (52c) with λ+

k and
v+
k ≥ 0, respectively.

We further define the infeasibility measure by

θ(x) :=
∥∥∥∥
(

cE (x)
cI(x)(−)

)∥∥∥∥ ,

where for a vector w the expression w(−) defines the vector with the components max{0,−w(i)}.
Algorithm I can then be used with the following modification:
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• The computation of the search direction in Step 3 is replaced by the solution of the QP (52).
The restoration phase is invoked in this step, if the QP (52) is infeasible or not “sufficiently
consistent” (see Assumption (G4∗∗) below).

In order to state the assumptions necessary for a global convergence analysis let us again consider
a decomposition of the search direction

dk = qk + pk (53)

where qk is now defined as the solution of the QP

min
q∈�n

qT q

s.t. (AE
k )T q + cE (xk) = 0

(AI
k )T q + cI(xk) ≥ 0,

i.e. qk is the shortest vector satisfying the constraints in the QP (52), and pk is simply defined as
dk − qk. With these definitions we can now replace Assumptions (G4) and (G5) by

(G4∗∗) There exist constants Md,Mλ,Mv,Mq > 0, so that for all k 	∈ Rinc we have

‖dk‖ ≤Md, ‖λ+
k ‖ ≤Mλ, ‖v+

k ‖ ≤Mv, ‖qk‖ ≤Mqθ(xk)

(G5∗∗) There exists a constant MH > 0, so that for all k 	∈ Rinc we have

dT
k Hkdk ≥MHdT

k dk. (54)

The last inequality in Assumption (G4∗∗) is similar to the assumption expressed by Eq. (2.10)
in [6]. Essentially, we assume that if the constraints of the QPs (52) become increasingly linearly
dependent, eventually the restoration phase will be triggered in Step 3. Together with Assump-
tion (G3) this assumption also means that we suppose that the QP (52) is sufficiently consistent
when feasible points are approached.

Assumption (G5∗∗) again ensures descent in the objective function at sufficiently feasible points.
This assumption has been made previously for global convergence proofs of SQP line search methods
(see e.g. [18]). However, this assumption can be rather strong since even close to a strict local
solution the exact Hessian might have to be modified in order to satisfy (54). In [23] an alternative
and more natural assumption is considered for an NLP formulation (56) which only allows bound
constraints as inequality constraints.

In order to see that the global convergence analysis in Section 3 still holds under the modified
Assumptions G, let us first define the criticality measure again as χ(xk) := ‖pk‖2 for k 	∈ Rinc, and
it is straight-forward to verify that the proofs are still valid. Only the proof of Lemma 2 deserves
special attention. From the optimality conditions for the QP (52) it follows in particular that

gk + Hkdk + AE
kλ+

k −AI
kv+

k = 0 (55a)(
(AI

k )T dk + cI(xk)
)T

v+
k = 0 (55b)

v+
k ≥ 0, (55c)
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so that for all k 	∈ Rinc

gT
k dk

(55a)
= −dT

k Hkdk − dT
k AE

kλ+
k + dT

k AI
kv+

k

(52b),(55b)
= −dT

k Hkdk + cE(xk)T λ+
k − cI(xk)T v+

k

(55c)

≤ −dT
k Hkdk + cE(xk)T λ+

k +
(
cI(xk)(−)

)T
v+
k

(53)

≤ −MH [χ(xk)]2 + O (χ(xk)θ(xk)) + O(θ(xk))

where we used Assumptions (G4∗∗) and (G5∗∗) in the last inequality. This corresponds to the
second last line in (24), and we can conclude the proof of Lemma 2 as before.

4.3 Line Search Filter Interior Point Methods

An alternative to active set methods for handling inequality constraints is offered by interior point
(IP) or barrier methods. In this section we will assume that the general NLP is stated as

min
x∈�n

f(x) (56a)

s.t. c(x) = 0 (56b)
x ≥ 0, (56c)

possibly after reformulating (51) using slack variables. The algorithm can be changed in an obvious
way if (56c) is generalized to lower and upper bound constraints on only some or all variables.

The barrier method presented here can be of the primal or primal-dual type, and differs from
the IP filter algorithm proposed by M. Ulbrich, S. Ulbrich, and Vicente [20] in that the barrier
parameter is kept constant for several iterations. This enables us to base the acceptance of trial
steps directly on the (barrier) objective function instead of only on the norm of the optimality
conditions. Therefore the presented method can be expected to be less likely to converge to saddle
points or maxima than the algorithm proposed in [20]. Recently, Benson, Shanno, and Vanderbei
[2] proposed several heuristics based on the idea of filter methods, for which improved efficiency
compared to their previous merit function approach are reported. Their approach is different
from the one proposed here in many aspects, and no global convergence analysis is given. Our
assumptions made for the analysis of the interior point method are less restrictive than those made
for previously proposed line search IP methods for NLP (e.g. [5, 27, 19]).

A barrier method solves a sequence of barrier problems

min
x∈�n

ϕµ(x) := f(x)− µ
n∑

i=1

ln(x(i)) (57a)

s.t. c(x) = 0 (57b)

for a decreasing sequence µl of barrier parameters with liml µl = 0. Local convergence of barrier
methods as µ→ 0 has been discussed in detail by other authors, in particular by Nash and Sofer [15]
for primal methods, and by Gould, Orban, Sartenaer, and Toint [11, 12] for primal-dual methods.
In those approaches, the barrier problem (57) is solved to a certain tolerance ε > 0 for a fixed value
of the barrier parameter µ. The parameter µ is then decreased and the tolerance ε is tightened for
the next barrier problem. It is shown that if the parameters µ and ε are updated in a particular
fashion, the new starting point, enhanced by an extrapolation step with the cost of one regular
iteration, will eventually solve the next barrier problem well enough in order to satisfy the new
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tolerance. Then the barrier parameter µ will be decreased again immediately (without taking an
additional step), leading to a superlinear convergence rate of the overall interior point algorithm
for solving the original NLP (1).

Consequently, the step acceptance criterion in the solution procedure for a fixed barrier param-
eter µ becomes irrelevant as soon as the (extrapolated) starting points are immediately accepted.
Until then, we can consider the (approximate) solution of the individual barrier problems as in-
dependent procedures (similar to the approach taken in [3] and [4]). The focus of this paper are
the properties of the line search filter approach, and we will therefore only address the convergence
properties of an algorithm for solving the barrier problem (57) for a fixed value of the barrier pa-
rameter µ, and only give some additional comments on the overall IP method in Remark 7 at the
end of this section.

The main idea is to apply the technique developed and analyzed in Sections 2 and 3 to solve
the barrier problem (57), which only has equality constraints, i.e. we replace all occurrences of f
in Algorithm I by ϕµ. However, there are two issues that we have to address:

1. The barrier objective function (57a) is only defined as long as all components of x are strictly
positive, i.e. x > 0;

2. The barrier objective function and its derivatives become unbounded as any of the components
of x approaches zero.

In order to handle the first point, we will enforce that all iterates xk are strictly positive. For
this purpose, we will assume, that the starting point satisfies x0 > 0, and we further define the
largest step size αmax

k ∈ (0, 1] that satisfies the fraction-to-the-boundary rule, that is

αmax
k := max {α ∈ (0, 1] : xk + αdk ≥ (1− τ)xk} (58)

for a fixed parameter τ ∈ (0, 1), usually chosen close to 1. With this, we will start the backtracking
line search in Step 4.1 of Algorithm I from αk,0 = αmax

k . For later reference, let us state that the
search directions in Step 3 are computed from

[
Wk + µX−2

k Ak

AT
k 0

](
dk

λ+
k

)
= −
( ∇f(xk)− µX−1

k e
ck

)
, (59)

where Xk := diag(xk), e is the vector of ones of appropriate dimension, and Wk is (an approximation
of) the Hessian of the Lagrangian for the original NLP (56). It will be easy to verify that the analysis
below also holds if the primal Hessian of the barrier “µX−2

k ” is replaced by the primal-dual Hessian
“Σk = X−1

k Vk” (with variables vk > 0), as long as there exists mΣ > 1 such that

1
mΣ

µ ≤ v
(i)
k x

(i)
k ≤ mΣµ

for all i and k.
Let us first state the assumptions necessary for the analysis of the barrier filter line search

method.

Assumptions B. Let {xk} be the sequence generated by Algorithm I (adapted to the solution of the
barrier problem), where we assume that the feasibility restoration phase in Step 8 always terminates
successfully and that the algorithm does not stop in Step 2 at a first-order optimal point.
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(B1) There exists an open set C ⊆ Rn with [xk, xk +αmax
k dk] ⊆ C, so that f and c are differentiable

on C, and their function values as well as their first derivatives are bounded and Lipschitz-
continuous over C.

(B2) The iterates {xk} are bounded.

(B3) The matrices Wk approximating the Hessian of the Lagrangian of the original NLP (56) in
(59) are uniformly bounded.

(B4) At all feasible points x̄ ∈ C, the gradients of the active constraints

∇c1(x̄), . . . ,∇cm(x̄), and ei for i ∈ {j : x̄(j) = 0} (60)

are linearly independent; ei being the i-th unit coordinate vector.

(B5) The matrices Wk + µX−2
k are uniformly positive definite on the null space of the Jacobian

AT
k .

(B6) There exist constants δ̃θ, δ̃x > 0, so that whenever the restoration phase is called in Step 8
in an iteration k ∈ R with θ(xk) ≤ δ̃θ, it returns a new iterate with x

(i)
k+1 ≥ x

(i)
k for all

components satisfying x
(i)
k ≤ δ̃x.

Assumption (B2) might seem somewhat strong since it explicitly excludes divergence of the
iterates. However, this assumption is necessary in order to guarantee that the barrier objective
function ϕµ(x) is bounded below.

Note that Assumption (B4) is considerably less restrictive than those made in the analysis of
[5, 20, 27, 28], where it is essentially required that the gradients of all equality constraints and
active inequality constraints (60) are linearly independent at all limit points, and not only at all
feasible limit points. The assumptions made in [19] are weaker than this, but still require at all
points linear independence of the gradients of all active equality and inequality constraints, also at
infeasible points. Also note that Assumption (B4) is satisfied in the problematic example presented
by the authors in [24], and that Assumption (B6) is reasonable in light of Assumption (B4).

Finally we remark that Assumption (B5) is weaker than the one we made in an earlier version
of this paper [25].

The remainder of this section deals the with proof of the following theorem:

Theorem 3 Suppose, Assumptions B hold. Then there exists a constant εx, so that xk ≥ εxe for
all k.

This means that the iterates generated by Algorithm I (for the barrier algorithm) will be bounded
away from the boundary of the region defined by the bound constraints (56c). Once this is es-
tablished, one can verify that then Assumptions B imply Assumptions G, and therefore the global
convergence results from Section 3 hold. We only remark that Lemma 1 together with (58) estab-
lishes that the starting step size in the backtracking line search αmax

k is uniformly bounded away
from zero, a property necessary in the proofs of Lemmas 7, 8, and 9 (for details see [23]).

In order to prove Theorem 3 we will make use of the following lemma.

Lemma 11 Suppose Assumptions (B1)-(B5) hold. Then, for a given subset of indices S ⊆ {1, . . . , n}
and a constant δl > 0, there exist δs, δθ > 0 so that d

(i)
k > 0 for i ∈ S whenever k 	∈ R and

xk ∈ L :=
{

x ≥ 0 : x(i) ≤ δs for i ∈ S, x(i) ≥ δl for i 	∈ S, θ(x) ≤ δθ

}
.
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Proof. Let us denote with xs
k the components of xk in S, and xl

k the remaining ones. Without
loss of generality we assume xk = [(xs

k) (xl
k)]; similarly we define As

k, Al
k etc.

From Assumptions (B1), (B2), and (B4) we know that there exists mσ > 0

σmin(Al
k) ≥ mσ (61)

for all xk ∈ L if δθ > 0 is chosen sufficiently small. Furthermore, from Assumption (B5) it also
follows that for all xk ∈ L the projection of W ll

k +µ(X l
k)

−2 into the null space of (Al
k)

T is uniformly
positive definite.

Let us now rewrite the linear system (59) by scaling the first rows and columns by Xs
k:


 Xs

kW ss
k Xs

k + µI Xs
kW sl

k Xs
kAs

k

W ls
k Xs

k W ll
k + µ(X l

k)
−2 Al

k

(As
k)

T Xs
k (Al

k)
T 0




 d̃s

k

dl
k

λ+
k


 = −


 Xs

kgs
k − µe

gl
k − µ(X l

k)
−1e

c(xk)


 (62)

where we defined d̃s
k := (Xs

k)−1ds
k. Using the boundedness assumptions and the comments in the

previous paragraph we see that this system satisfies (for xk ∈ L)



 µI 0 0

0 W ll
k + µ(X l

k)
−2 Al

k

0 (Al
k)T 0


+ O(δs)




 d̃s

k

dl
k

λ+
k


 = −


 −µe

gl
k − µ(X l

k)
−1e

c(xk)


+ O(δs),

where the inverse of the matrix in the square brackets, as well as the right hand side, are uniformly
bounded for δs sufficiently small. Therefore, for xk ∈ L, we have that d̃s

k = e + O(δs), and
consequently d̃s

k > 0, after possibly reducing δs even more. Recalling that ds
k = Xs

k d̃s
k proves the

claim. �

We finish with the proof of Theorem 3.
Proof. (of Theorem 3) We first show by contradiction, that there exist constants δx, δθ > 0,

so that d
(i)
k > 0 for all indices i with x

(i)
k ≤ δx whenever θ(xk) ≤ δθ and k 	∈ R.

Suppose this claim is not true, then there exist an index s and a subsequence {xkj
} of iterates

with kj 	∈ R, limj θ(xkj
) = 0 and limj x

(s)
kj

= 0, as well as d
(s)
kj
≤ 0 for all j. Let x̄ be a limit point

of {xkj
}, and define S := {i : x̄(i) = 0} and δl := min{x̄(i)/2 : i 	∈ S} > 0. Applying Lemma 11 we

can conclude that d
(s)
kj

> 0 (since s ∈ S) for j sufficiently large, in contradiction to the definition of
the subsequence.

Since the filter mechanisms ensure limk θ(xk) = 0 (even if the objective function is unbounded
above; see Remark 5), we can find K so that θ(xk) ≤ min{δθ, δ̃θ} for k ≥ K (recall the definition
of δ̃θ and δ̃x in Assumption (B6)). Define

εx := min
{

(1− τ)min{δx, δ̃x},min
i
{x(i)

k : k ≤ K}
}

> 0.

By definition it is clear that xk ≥ εxe for k ≤ K, which can be used as the anchor for a proof by
induction. Now suppose that xk ≥ εxe for some k ≥ K. Since d

(i)
k > 0 for x

(i)
k ≤ δx and (6) for

k 	∈ R, as well as Assumption (B6), we can only have x
(i)
k+1 < x

(i)
k for an index i if x

(i)
k ≥ min{δx, δ̃x}.

From the (58) we then obtain x
(i)
k+1 ≥ (1− τ)x(i)

k ≥ (1− τ)min{δx, δ̃x}, so that overall xk+1 ≥ εxe.
�
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Remark 7 For the overall barrier method as the barrier parameter µ is driven to zero, we may
simply re-start Algorithm I by deleting the current filter whenever the barrier parameter changes.
Alternatively, we may choose to store the values of the two terms f(xl) and

∑
i ln(x(i)

l ) in the
barrier function ϕµ(xl) separately for each corner entry (14) in the filter, which would allow one to
initialize the filter for the new barrier problem under consideration of already known information.
Details on such a procedure are beyond the scope of this paper.

5 Conclusions

A framework for line search filter methods that can be applied to barrier methods and active set
SQP methods has been presented. Global convergence has been shown under mild assumptions,
which are, in particular, less restrictive than those made previously for some line search IP methods.
The method also possesses favorable local convergence behavior, as we discuss in the companion
paper [26]. We also proposed an alternative measure for the filter, using the Lagrangian function
instead of the objective function, for which the global convergence properties still hold.

In a future paper we will present practical experience with the line search filter barrier method
proposed in this paper. So far, our numerical results are very promising [23].
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