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Abstract

This note is concerned with the pitfalls of modelling demand as a normal random variable when the
coefficient of variation is high. We show that this can lead to considerable under or overestimation of
optimal base-stock levels. We propose the lognormal as an alternative model for lead time demands
and show that optimal base stock levels asymptotically decrease with the standard deviation. We also
present a distribution-free upper bound for optimal base-stock levels, and show that this upper bound
first grows linearly with the standard deviation and then remains constant.

1 Problem Statement

We are concerned with the management of inventories in situations where there is a significant uncertainty

about demand. Demand uncertainty is often measured by the coefficient of variation cv (defined as the

ratio of the standard deviation to the mean). In semiconductor manufacturing, for example, it is common

to find parts with cv > 2, and it is not unusual to see parts with cv > 3.1 Inventory managers often use

the formula µ + zσ = µ(1 + zcv) with z ' 2. This formula is based on the normal distribution and results

in very high base stock levels, e.g., five times the mean demand, for large cvs. The use of the normal

approximation may be even more widespread than intended, as several commercial inventory management

packages make the implicit assumption that demand is normal even when the coefficient of variation is large

and decisions involve millions of dollars. Some managers defend the normal assumption by stating that they

only care about the right tail of the distribution. They feel that the normal distribution is robust against

other non-negative distributions with the same mean and variance. Such faith in the normal distribution

may be misplaced when dealing with large cvs.
1In practice, there is often no elaborate use of demand distribution, just guess estimates of the mean and of the forecast

error are all one has to calculate safety stocks.
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Figure 1 shows actual weekly demand data for a semiconductor product with unit cost $5.00, selling price

$10.00 and salvage value $3.00. The empirical distribution coefficient of variation is equal to 2.22, resulting

in a sample mean of 207, and a sample standard deviation equal to 459. Although close to three quarters

of the demand observations were for fewer than 100 units, there is a chance of receiving a demand for over

1000 units. The Newsvendor solution based on the empirical cdf is Q∗ = 100 resulting in an expected profit

of $63. If we assume demand is normally distributed with the moments calculated based on sample demand

data, then the profit maximizing solution will be 467 units resulting in an expected loss of $291 (based on

the empirical distribution). To satisfy demand with probability 95%, management would have to order 1,400

units and incur a loss of $1,583.

This example illustrates the danger of using the normal distribution when the coefficient of variation is

high. This is consistent with the findings of other authors. See Bookbinder and Lordahl [2] and Lordahl

and Bookbinder [3] for examples where alternative methods for calculating inventory policies perform better

than solutions based on the normality assumption. Moreover, empirical studies, see Agrawal and Simth [1],

suggest that skewed distributions, such as the Negative Binomial, may provide a better fit than the normal

for situations where unmet demand is lost.

The Gamma distribution is the continuous counterpart of the Negative Binomial distribution; the scale

and location parameters of the Gamma admit all possible non-negative means and positive standard de-

viations. Unfortunately, while it is possible to write partial expectation of the Gamma in terms of the

incomplete Gamma function, the need to integrate the incomplete Gamma function makes it numerically

expensive to perform computations, particularly for large coefficient of variations.

In this note we propose the lognormal as an alternative to the normal to manage high risk items. The

reasons for selecting the lognormal are based on observed skewed plots, the ease of computing base stock

levels and the corresponding expected costs. As we shall see, the lognormal leads to more conservative base

stock levels for large cvs. We envision that our results will be useful, not only to suggest sensible policies for

high risk items when the distributional assumptions are justified, but also for answering what if questions

related to the financial impact of changes in distributional parameters. We believe that in the absence of

detailed distributional information the lognormal provides a good option as a default demand model for high

risk items. We finalize this note by providing an upper bound on the base stock levels for all non-negative

distributions with a given mean and variance.
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2 Inventory Models Minimizing Costs

Most of the issues concerning large cvs, e.g., large inventory at risk, are more serious for products with short

life cycles. To simplify the presentation of the relevant issues, we model the case where there is a single

opportunity to order and demand occurs over a single period. We assume that demand D is a non-negative

random variable with mean µ and variance σ2. To simplify the exposition we will also assume that we start

with zero inventories. Extensions to positive initial inventories and multi-period models with positive lead

times are straightforward. See Veinott [7] and references therein.

Let c be the unit cost, p > c the unit selling price, and s < c the unit salvage price. In addition, let g be

a goodwill cost per unit of unsatisfied demand. If we decide to be in business, the expected profit of ordering

y > 0 units is given by π(y) = (p− c)µ−G(y), where G(y) = HE(y −D)+ + BE(D − y)+, H = c− s and

B = p−c+g. Thus, maximizing the expected profit is equivalent to minimizing G(y), over y > 0. Minimizing

G is a Newsvendor problem with overage cost H and underage cost B.2 Under well known conditions, G

exists, is convex, and has a finite minimizer y∗, e.g., the smallest y such that P (D ≤ y) ≥ β ≡ B/(B + H),

so y∗ satisfies all the demand with probability at least 100β%. Because the Newsvendor problem is often

cast as a cost minimization problem, the analysis usually stops after y∗ is found. However, π(y∗) may be

negative when the Newsvendor costs G(y∗) is larger than the profit contribution (p − c)µ. This can only

happen if g > 0. Since it is reasonable to assume that goodwill costs do not accrue if we are not in business,

the expected profit and the optimal policy should be modified so that no order is placed if ordering leads

to an expected loss. In our experience, the sign of π(y∗) is seldom checked because the possibility is not

included in some commercial inventory packages and more often because a service model is used instead of

a cost model.

2.1 The Normal Approximation

Under the normal approximation, y∗ = µ+σzβ where zβ = Φ−1(β). Then π(y∗) = (p−c)µ−(H+B)σ φ(zβ).

2.2 The Maximal Approximation

The maximal approximation minimizes cost against the worst non-negative distribution with a given mean

and a given variance. See Scarf [5] and Gallego and Moon [4]. The base stock level under the maximal

approximation is given by y∗ = µ + 1
2σ

(√
B
H −

√
H
B

)
if cv <

√
B/H resulting in the expected profit

lower bound π(y∗) = (p − c)µ − σ
√

HB. If cv >
√

B/H, it is optimal not to order under the maximal

2H and B are also known as the holding and backorder cost rates when dealing with multi-period problems.

3



approximation.

2.3 The Lognormal Approximation

A random variable D is said to have the lognormal distribution, with parameters ν and τ , if ln(D) has

the normal distribution with mean ν and standard deviation τ ≥ 0. The lognormal distribution is often

used to model non-negative random variables such as lifetimes and total returns. It is well known that

E(Xn) = exp(nν + n2τ2/2). Thus, µ = exp(ν + τ2/2) and σ2 = µ2(exp(τ2)− 1), so ν = ln µ− ln
√

1 + cv2

and τ =
√

ln(1 + cv2).

The following Proposition gives the base-stock level and the expected profit for the lognormal distribution.

Proposition: 1 y∗ = exp (v + τzβ) and π(y∗) = (p− c)µ− (H + B)µΦ(τ − zβ) + Hµ.

Proof of Proposition 1

If D is lognormal then Pr(D ≤ y∗) = Pr(ln(D) ≤ ln(y∗)) = Pr(ν + τZ ≤ ν + τzβ) = Φ(zβ) = β. Now,

using the fact that E(D − y∗)+ = µΦ(τ − zβ)− y∗Φ(−zβ) and Φ(−zβ) = H/(H + B) we see that

G(y∗) = H(y∗ − µ) + (H + B)E(D − y∗)+

= H(y∗ − µ) + (H + B)µΦ(τ − zβ)− (H + B)y∗Φ(−zβ)

= (H + B)µΦ(τ − zβ)−Hµ.

2.4 Profit Comparison

We now compare the performance of base-stock levels set by the normal, maximal and the lognormal formulas

in terms of the expected profit. Managers who use the normal model to compute base stock levels intend to

use the resulting base stock levels against a non-negative distribution with the same mean and variance. For

this reason, we test these base-stock levels against the worst case, the lognormal and the gamma distributions.

The shape and scale parameters of the gamma distributions are selected to match the first two moments of

the distribution. For comparison purposes, we also test the performance against the normal distribution.

Test against the normal are only relevant for small coefficients of variations, e.g., cv ≤ 1/3. For large cv’s the

results are distorted by the mass assigned to negative values. For this study we use the following parameters:

c = 100, p = 200, s = 25, g = 10, µ = 100 and σ ∈ {30, 100, 200, 300}. Table 1 contains the results. As we

can see, using the normal can lead to significant losses. The lognormal on the other hand, performs better

against the gamma and the worst case distribution.
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c = 100, p = 200, s = 25, g = 10, µ = 100, σ = 30

True Distribution y∗ NORMAL Worst Case LOGNORMAL GAMMA

NORMAL IP 107 $7,848.41 $7,272.27 $7,827.67 $7,813.47
MAXIMAL IP 106 7,846.05 7,275.11 7,839.65 7,803.60
LOGNORMAL IP 103 7,824.76 7,261.54 7,850.32 7,824.11

c = 100, p = 200, s = 25, g = 10, µ = 100, σ = 100

True Distribution y∗ NORMAL Worst Case LOGNORMAL GAMMA

NORMAL IP 124 NOT REL. $907.58 $3,525.03 $2,901.95
MAXIMAL IP 119 NOT REL. 917.05 3,652.85 2,999.13
LOGNORMAL IP 86 NOT REL. 510.35 4,115.85 3,307.80

c = 100, p = 200, s = 25, g = 10, µ = 100, σ = 200

True Distribution y∗ NORMAL Worst Case LOGNORMAL GAMMA

NORMAL IP 148 NOT REL. -$6,619.29 -$473.82 -$2,656,02
MAXIMAL IP 0 NOT REL. 0 0 0
LOGNORMAL IP 61 NOT REL. -3,302.44 1,806.07 -$114.53

c = 100, p = 200, s = 25, g = 10, µ = 100, σ = 300

True Distribution y∗ NORMAL Worst Case LOGNORMAL GAMMA

NORMAL IP 172 NOT REL. -$10,707.50 -$3,318.67 -$3,477.10
MAXIMAL IP 0 NOT REL. 0 0 0
LOGNORMAL IP 45 NOT REL. -3,569.23 861.41 $127.34

Table 1: Expected Profit Comparison (IP- Inventory Policy)

2.5 Semiconductor Example Revisited

If we use lognormal distribution with the sample moments, the profit maximizing solution will be 181 units

giving us an expected profit of $29. The maximal distribution will abstain from ordering. Our purpose here

is not to test the fitness of lognormal but to illustrate how the lognormal ordering policy may result in a

more sensible solution in a real world example.

2.6 Skewness of Lognormal

We end this section with a result that explains the asymptotic behavior of the lognormal as σ increases. In

particular, in sharp contrast to the normal, it follows that base stock levels tend to zero when σ is large.

Theorem 1 If D is lognormal with mean µ and variance σ2 then for all x > 0,

Pr(D ≤ x) → 1 as σ →∞. (1)

Proof: Since ln(
√

1 + cv2)/
√

ln(1 + cv2) →∞ as σ2 →∞, it follows that

Pr(D ≤ x) = Φ

(
ln( x

µ ) + ln(
√

1 + cv2)√
ln(1 + cv2)

)
→ 1

for all x > 0.
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This result tells us that for fixed µ, the probability that a lifetime ends by time x, for any x > 0, becomes

certain as σ → ∞. In sharp contrast, for the normal distribution, the probability that a lifetime ends by

time x decreases with σ for all x > µ. The convergence of equation (1) is not monotone for values of x > µ.

Indeed, for x > µ, the probability P (D ≤ x) decreases and then increases with σ.

3 Inventory Models Minimizing Costs with Service Constraints

Managers often use service levels instead of a cost model to determine base-stock policies by selecting a

desired service level β. The normal prescribes a base stock level yn(β) = µ + σzβ to satisfy demand with

probability 100β%. In contrast, the lognormal model prescribes a base stock level yln(β) = exp (v + τzβ).

Notice that yln(β) → 0 as σ → ∞. It is easy to see that yln(β) is maximized when cv2 = exp(z2
β) − 1, so

yln(β) ≤ µ exp
(

1
2z2

β

)
.

It is instructive to compare how the base stock levels for the normal and the lognormal compare. At

low cvs, the lognormal may prescribe a higher base stock level than the normal distribution, but the normal

prescribes a larger base-stock level beyond the crossover point, defined as the largest cv, say cvβ , such that

yln(β) = yn(β). Table 2 gives the ratio y(β)/E[D] as a function of the coefficient of variation cv, for values

of β ∈ {.75, .9, .98}. It also provides the cv that maximizes the lognormal base stock level, and the crossover

point with the normal. Notice, for example, that for β = 0.75, the normal prescribes a base stock level that

is more than three times as large than the lognormal distribution when cv = 3.

z.75 = 0.674, yln(0.75) peaks at cv = 0.76; cv0.75 = 0.04

cv 1 2 3 4 5 10 25 50
yln(.75)

E[D]
1.24 1.05 0.88 0.75 0.66 0.42 0.22 0.13

yn(.75)
E[D]

1.67 2.35 3.02 3.70 4.37 7.74 17.86 34.72

z.90 = 1.28, yln(.90) peaks at cv = 2.04; cv.90 = 0.49

cv 1 2 3 4 5 10 25 50
yln(.90)

E[D]
2.06 2.27 2.21 2.10 1.98 1.56 1.03 0.72

yn(.90)
E[D]

2.28 3.56 4.84 6.13 7.41 13.82 33.04 65.08

z.98 = 2.05, yln(.98) peaks at cv = 8.12; cvβ = 2.98

cv 1 2 3 4 5 10 25 50
yln(.98)

E[D]
3.91 6.05 7.14 7.69 7.99 8.20 7.33 6.25

yn(.98)
E[D]

3.05 5.11 7.16 9.21 11.27 21.54 52.34 103.69

Table 2: Relative Base-Stock Levels
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3.1 Performance of Base Stock Levels Against other Distributions

We now compare the performance of base-stock levels set by the normal and the lognormal formulas. Table

3 shows the results for the case with lead time demand 100, cv = 2 for β ∈ {0.75, 0.90, 0.98}. It is clear that

the base-stock policy generated by the normal distribution grossly over-estimates optimal base-stock levels

for β = 0.75, slightly over-estimates optimal base-stock levels for β = 0.90, and underestimates optimal base-

stock levels for β = 0.98. On the other hand, the base-stock policy generated by the lognormal distribution

is on target relative to the gamma for β = 0.75 and β = 0.98, but underestimates the base stock for gamma

demand for β = 0.90. Table 4 provides the results for cv = 3. It is clear from the non-negative distribution

results from Tables 3 & 4 that the lognormal does not suffer from the overestimation of base stock policy

for low service levels, while also performing better than the normal for achieving high service levels.

β = 0.75; yn(.75) = 235, yln(.75) = 105.

Demand LogNormal Gamma

LognormalPolicy 75% 75%

NormalPolicy 90% 87%

β = 0.90; yn(0.90) = 356, yln(.90) = 227.

Demand LogNormal Gamma

LognormalPolicy 90% 86%

NormalPolicy 95% 92%

β = 0.98; yn(β) = 511, yln(.98) = 605.

Demand LogNormal Gamma

LognormalPolicy 98% 97%

NormalPolicy 96% 95%

Table 3: Performance of Policies for cv = 2

3.2 Non-Negative Distributions with Finite First and Second Moments

In this section we provide a tight upper bound on base stock levels for non-negative random variables with

mean µ and variance σ2. Let D be a non-negative random variables with mean µ and variance σ2 and let

y(β) be the smallest base stock level y such that P (D ≥ y) ≤ 1− β. Let

y+(β) =

{
µ +

√
β

1−β σ if σ < µ
√

β
1−β

µ
1−β otherwise.

Theorem 2
y(β) ≤ y+(β) (2)

Proof of Theorem 2
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β = 0.75; yn(.75) = 302, yln(.75) = 88.

Demand LogNormal Gamma

LognormalPolicy 75% 81%

NormalPolicy 93% 91%

β = 0.90; yn(0.90) = 484, yln(.90) = 221.

Demand LogNormal Gamma

LognormalPolicy 90% 88%

NormalPolicy 96% 94%

β = 0.98; yn(β) = 715, yln(.98) = 708.

Demand LogNormal Gamma

LognormalPolicy 98% 96%

NormalPolicy 98% 96%

Table 4: Performance of Policies for cv = 3

In this section we investigate the behavior of P (D < t) for fixed t > µ for a non-negative random variable

with mean µ and variance σ2. Part of the answer is given by Cantelli’s inequality:

Pr(D < t) ≥ (t− µ)2

σ2 + (t− µ)2
. (3)

It can be easily shown that Cantelli’s inequality, see Stoyan [6], is tight for non-negative distributions if and

only if t ≥ E[D2]/µ. When µ ≤ t < E[D2]/µ we can improve on Cantelli’s inequality by using the restriction

that D is non-negative. Markov’s inequality tells us that

Pr(D < t) ≥ t− µ

t
(4)

for all nonnegative random variables D with mean µ. Markov’s inequality is achieved by the two point

distribution with mass at 0 and t and probabilities (t − µ)/t and µ/t. This distribution has variance

(t − µ)µ < σ2 for all µ ≤ t < E[D2]/µ. Thus, although Markov’s inequality provides an improvement over

Cantelli’s inequality for µ ≤ t < E[D2]/µ, it is not clear whether a better bound can be found by restricting

to distributions with variance equal to σ2. Lemma 1 shows that this is not possible. In other words, Markov’s

inequality is tight over this region.

From Cantelli’s inequality, we have yc(β) = µ+σ
√

β/(1− β). For Markov’s inequality, we have ym(β) =

µ/(1 − β). Cantelli’s inequality is tight when σ ≤ µ
√

β/(1− β). Markov’s inequality is tight otherwise.

Combining the two bounds results in y+(β).

Lemma 1 Markov’s inequality (4) is tight for all non-negative random variables D with mean µ and variance
σ2 for µ ≤ t < E[D2]/µ.

Proof: Let t′ > t and let α(t′) = (t − µ)t′/(t′ − µ)t ∈ [0, 1). We will construct a three point distribution

with mass at 0, t, and t′ and respective weights (t− µ)/t, µᾱ(t′)/t and µα(t′)/t′, where ᾱ(t′) ≡ 1− α(t′). It
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is easy to see that this distribution has mean µ and P (D < t) = (t − µ)/t. Moreover, the variance of this

distribution,

σ2(t′) ≡ µ(t− µ)/t + α(t′)µ(t′ − µ) + ᾱ(t′)(t− µ)2µ/t

increases without bound as t′ increases. Therefore, there exists a t′ ≥ t such that σ2(t′) = σ2. We have

shown that there exists a nonnegative distribution with mean µ and variance σ2 that achieves Markov’s

lower bound. Thus, Markov’s lower bound is tight for distributions with σ2 ≥ (t− µ)µ.

2

Notice that for fixed µ and β, y+(β) initially increases linearly with σ, but is a constant for large σ. This

result can be used, for example, to curb the normal distribution from generating inappropriately large base

stock levels, by setting y(β) = min(y+(β), yn(β)).

Let F (x) = P (D ≤ x). For continuous distributions F (y(β)) = β, or equivalently F (x) = y−1(x). One

may question if there is a continuous distribution that achieves y+(β) for all β ∈ [0, 1). This is, indeed the

case, and the distribution is given by inverting y+(β). This results in F (x) = 0 for 0 ≤ x < µ, F (x) = 1−µ/x

for µ ≤ x < σ2+µ2

µ and F (x) = (x−µ)2

σ2+(x−µ)2 for x > σ2+µ2

µ . Notice, by integrating the tail of the distribution,

that this distribution does not have the prescribed moments.

4 Managerial Implications

Practical wisdom suggests that larger safety stocks are needed to protect against demand uncertainty when

the standard deviation of demand increases. A key message of this paper is that this is not always true.

Negative safety stocks, i.e., base stock levels below the mean, can result in high service levels. In these

cases, it may be enormously expensive and unnecessary to insist on a base stock level of the form µ + zσ

as suggested by the normal distribution. In addition, there is a threshold above which the base stock level

becomes insensitive to changes in the standard deviation. This follows from our bound on base stock levels

that first grows with σ and then remains constant. Curbing base stock levels using this upper bound may

avoid excessively large orders suggested by the use of inappropriate distributions.
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Weekly Demand Data (A Semiconductor Product)
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Figure 1: Weekly Demand Data for A Semiconductor Product (Mean=207, Stdev=459.) 
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