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Abstract

Ongoing advancements in technology lead to ever-
increasingstoragecapacities.In spiteof this,optimizing
storageusagecanstill provide rich dividends. Several
techniquesbasedon delta-encoding andduplicateblock
suppressionhave beenshown to reduce storageover-
heads,with varying requirementsfor resourcessuchas
computationandmemory. Weproposeanew schemefor
storagereduction that reduces datasizeswith an effec-
tivenesscomparable to the moreexpensive techniques,
but at a costcomparableto the fasterbut lesseffective
ones.Thescheme,calledRedundancyEliminationat the
Block Level (REBL), leveragesthe benefits of compres-
sion, duplicate block suppression,and delta-encoding
to eliminatea broad spectrum of redundant data in a
scalableand efficient manner. REBL also usessuper-
fingerprints, a technique thatreducesthedataneededto
identify similar blocks andtherefore the computational
requirementsof this process. As a result, REBL en-
codesmorecompactly thancompressionandduplicate
suppressionwhile executing fasterthan generic delta-
encoding. For the datasetsanalyzed, REBL improved
on thespacereduction of othertechniquesby factorsof
4-23in thebestcase.

1 Intr oduction
Despiteever-increasingcapacities,significant benefits
can still be realizedby reducing the number of bytes
neededto represent an objectwhenit is storedor sent.
The benefits can be especiallygreat for mobile de-
viceswith limited storageor bandwidth, reference data
(data that are saved permanently, and accessedinfre-
quently), electronic mail, in which large bytesequences
arecommonly repeated, anddatatransferred over low-
bandwidth or congestedlinks.

Reducingbytesgenerally equatesto eliminatingun-
neededdata,andtherearenumeroustechniquesfor re-
ducing redundancy whenobjects arestoredor sent.The
most longstandingexample is data compression[11],
which eliminatesredundancy internal to an objectand
generally reducestextual databy factorsof two to six.

Duplicate suppressioneliminatesredundancy causedby
identical objectswhich can be detectedefficiently by
comparing hashesof the objects’ content [9]. Delta-
encoding eliminatesredundancy of oneobjectrelativeto
another, oftenanearlierversionof theobjectby thesame
name[14]. Delta-encoding canin somecaseseliminate
anobject almostentirely, but theavailability of basever-
sionsagainstwhich to compute a deltacanbeproblem-
atic.

Recently, muchwork hasbeenperformedonapplying
thesetechniquesto piecesof individualobjects.This in-
cludessuppressingduplicatepiecesof files [5, 6, 15, 17]
andweb pages[19]. Delta encoding hasalsobeenex-
tendedto pairs of files that do not sharean explicit
versioning relationship. [4, 7, 16]. Thereare also ap-
proachesthatcombinemultipletechniques;for instance,
the vcdiff program not only encodesdifferencesbe-
tweena “version” file and a “reference” file, it com-
pressesredundancy within the version file [10]. Delta-
encoding that simultaneously compressesis sometimes
called“deltacompression”[1].

In fact,no singletechnique canbeexpectedto work
bestacrossawidevarietyof datasets.Therearenumer-
ous trade-offs betweenthe effectivenessof datareduc-
tion andtheresourcesrequired to achieve it, i.e. its effi-
ciency. Therelative importanceof thesemetrics,effec-
tivenessversusefficiency, dependson the environment
in whichtechniquesareapplied. Executiontime,for ex-
ample,which is relatedto efficiency, tendsto be more
important in interactive contexts than in asynchronous
ones. In this paper, we describea new data reduc-
tion technique thatachieves comparableeffectivenessto
current delta-encodingtechniques,but with greater ef-
ficiency, andbettereffectivenessthancurrent duplicate
suppressiontechniquesat marginally highercost. It is
gearedprimarily towardenvironments,suchasreference
datastorage, in which thewillingnessto tradeprocess-
ing for storageis greatest.

We argue that performing comparisonsat the gran-
ularity of files can miss opportunities for redundancy
elimination, ascantechniquesthatrely onlargecontigu-
ouspiecesof files to be identical. Instead,we consider



whathappensif someof theabovetechniquesarefurther
combined. Specifically, we describe a systemthatsup-
portstheunion of threetechniques:compression, elim-
ination of identical content-definedchunks, anddelta-
compressionof similar chunks. We refer to this tech-
nique as Redundancy Elimination at the Block Level
(REBL). The key insight of this work is the ability to
achievemoreeffectivedatareduction by exploiting rela-
tionshipsamongsimilar blocks,ratherthanonly among
identicalblocks,whilekeepingcomputationalandmem-
oryoverheadscomparableto techniquesthatperformre-
dundancy detectionwith coarsergranularity.

Wecompareournew approachwith anumberof base-
line techniques,summarizedhereanddescribedin detail
in thenext section:

Whole-file compression.With whole-file compression
(WFC), eachfile is compressedindividually. This
approachgainsno benefit from redundancy across
files, but it scaleswell with largenumbersof files
andis applicable to storageandtransferof individ-
ualfiles.

TAR+COM PRESS. Joining a collection of files into a
singleobjectwhich is thencompressedhasthepo-
tentialto detectredundancy bothwithin andacross
files. Thisapproachtendstofindredundancy across
files only whenthefiles arerelatively closeto one
another in theobject.

Block-level duplicate detection. There are a number
of approachesto identifying identicalpiecesof data
acrossfiles more generally. These include us-
ing fixed-size blocks [17], fixed-size blocks with
rolling checksums[6, 20, 25], andcontent-defined
(andtherefore variable-sized)chunks [5, 15].

Delta-encoding using resemblancedetection.
Resemblancedetection techniques[2] canbeused
to find similarfiles,with deltacompressionusedto
encode themeffectively [7, 16].

Therearecasesin which it is essentialto combine fea-
turesof multiple techniques,suchas adding compres-
sionto block-level or chunk-level duplicationdetection.

The remainder of this paper is organizedasfollows:
Section2 describescurrent techniquesandtheir limita-
tions. Details of the REBL technique are presented in
Section3. Section4 describesthedatasetsandmethod-
ologyusedto evaluateREBL. Section5 presents anem-
pirical evaluation of REBL andseveralothertechniques.
Section6 concludes.

2 Background and RelatedWork

We discusscurrenttechniquesin Section2.1andelabo-
rateon their limitationsin Section2.2.

2.1 Curr ent Techniques
A commonapproachto storingacollection of filescom-
pactly, is to combine thefiles into asingleobject,which
is thencompressedon-the-fly. In Windows™,this func-
tion is served by the family of zip programs, and in
UNIX™, files canbecombinedusingtar with theout-
put compressedusinggzipor anothercompressionpro-
gram. However, TAR+COMPRESS doesnot scalewell
to extremely large file sets. Accessto a single file in
thesetcanpotentially require theentirecollectionto be
uncompressed.Furthermore,traditional compressional-
gorithmsmaintainalimitedamount of stateinformation.
This cancausethemto miss redundancy betweensec-
tionsof anobject thataredistantfrom oneanotherthus
reducing theireffectiveness.

There are two generalmethods for compressinga
collection of files with greatereffectivenessand scal-
ability than TAR+COMPRESS. One involves finding
identical chunks of datawithin and acrossfiles. The
otherinvolveseffectiveencoding of differencesbetween
chunks. We now describeeachof theseapproachesin
turn.

2.1.1 Duplicate Elimination
Finding identical files in a self-contained collection is
straightforwardthroughtheuseof stronghashesof their
content. In a distributedenvironment,Kelly andMogul
havedescribedamethodfor computing checksumsover
web resources(HTML pages,images,etc.) andelim-
inating retrieval of identical resources,even when ac-
cessedvia differentURIs [9].

Suppressingredundancy within a file is also impor-
tant.Onesimpleapproachis to dividethefile into fixed-
lengthblocksandcompute achecksum for each.Identi-
cal blocks aredetectedby searching for repeatedcheck-
sums.Thechecksumalgorithmmustbe“strong”enough
to decreasetheprobability of acollision to annegligible
value. SHA-1 [22] (“SHA”) is commonly usedfor this
purpose,althoughtheuseof cryptographicchecksumsto
detectidentical blocks in extremely largesetsof stored
datahasrecentlybeencalledinto question[8].

Venti [17] is anetwork-basedstoragesystemintended
primarily for archival purposes.Eachstoredfile is bro-
ken into fixed-sizedblocks, which are represented by
theirSHA hashes.As files areincrementally stored,du-
plicate blocks, indicatedby identical SHA values,are
storedonly once. Eachfile is representedas a list of
SHA hasheswhich index blocks in thestoragesystem.

Another algorithm usedto minimize the bandwidth
requiredto propagateupdatesto a file is rsync[20, 25].
With rsync, the receiver divides its presumably out-of-
datecopy of a file into fixed-length blocks, calculates
two checksumsfor eachblock (a weak 32-bit check-
sumandastrong128-bit MD4 checksum), andtransmits
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thechecksums to thesender. This basicallyinforms the
senderwhich blocksthereceiver possesses.Thesender
calculatesa 32-bit checksumalonga fixed-length win-
dow that it slides throughout the sentfile. If the 32-
bit checksummatchesa valuesentby the receiver, the
sendersuspectsthereceiveralreadypossessesthecorre-
sponding blockandconfirmsor refutesthisusinga128-
bit checksum. The rsyncalgorithm is typically applied
to apairof sourceanddestinationfiles thatareexpected
to besimilar becausethey sharethesamename.Useof
a rolling checksum over fixed-sizedblocks hasrecently
beenextended to largecollectionsof files regardlessof
name[6]. We refer to this as the SLIDINGBLOCK ap-
proach, which is oneof thetechniquesagainstwhichwe
compareREBL laterin this paper.

Onecanmaintaina large replicatedcollectionof files
in adistributedenvironment usinga techniquesimilar to
SLIDINGBLOCK [23]. The authors point out two main
parametersfor rsyncperformance, block sizeandloca-
tion of changes within the file. To enhance the perfor-
manceof rsync, theauthors proposea multi-phasepro-
tocol in which theserver sendshashesto theclient and
client returns a bitmapindicating the blocks it already
has,similar to rsync. In this approach,the server uses
thebitmapof existingblocksto createa setof reference
blocksusedto encodeall blocksnotpresentattheclient.
Thedeltasentto theclient by theserver is usedin con-
junctionwith blocksin the bitmapto recreatethe orig-
inal file. This technique hassomesimilarity to Spring
andWetherall’s approach to finding redundantdataon
a network link by caching “interesting” fingerprints of
shinglesandthenfinding the fingerprints in a cacheof
pasttransmissions[21].

TheLow-BandwidthFile System(LBFS) [15] is anet-
work file systemdesigned to minimizebandwidth con-
sumption. With LBFS, files are divided into content-
definedchunks using “Rabin Fingerprints” [18]. Fin-
gerprints are computed over a sliding window; a sub-
setof possiblefingerprint valuesdenoteschunk bound-
aries. LBFS computesandstoresanSHA hashfor each
content-definedchunk stored. Beforea file is sent,the
SHA valuesof eachchunk in thefile aresentfirst. The
receiver looks up eachhashvaluein a databaseof val-
ues for all chunks it possesses.Only chunks not al-
readyavailableat the receiver aresent;chunks that are
sentarecompressed.Content-definedchunks have also
beenusedusedin theweb[19] andbackup systems[5].
We refer to the overall technique of eliminatingdupli-
catecontent-definedchunksandcompressingremaining
chunks as CDC, andwe compareREBL with this com-
binedtechnique in theevaluationsectionbelow.

2.1.2 Delta-encoding and File Resem-
blance

A secondgeneral approachtocompressingmultiple data
objectsis delta-encoding. This approachhasbeenused
in many applications, including sourcecontrol [24],
backup [1], and Web retrieval [13, 14]. Delta encod-
ing hasalsobeenusedon web pagesidentifiedby the
similarity of theirURIs [4].

Effective delta-encodingrelieson theability to detect
similarfiles. Name-basedfile pairingworksonly in very
limited cases.With largefile sets,thebestway to detect
similarfiles is to examine thefile contents. Manber[12]
discussesa basicapproach to finding similar files in a
largecollection of files. His technique summarizeseach
file bycomputingasetof polynomial-basedfingerprints;
the similarity betweentwo files is proportional to the
fraction of fingerprints common betweenthem. Rabin
fingerprintshavebeenusedfor thispurposein numerous
studies.Broderdevelopedasimilarapproach[2], which
heextendedwith anheuristic to summarizemultiplefin-
gerprintsassuper-fingerprints. Useof super-fingerprints
allowssimilarity detectionto scaleto very large file sets
andhasbeenusedto eliminatenearly-identicalresultsin
websearchengines[3].

While thesetechniquesallow similarfilesto beidenti-
fied,only recentlyhave they beencombinedwith delta-
encoding to save space. Douglis and Iyengar describe
“Delta-Encoding via ResemblanceDetection” (DERD),
asystemthatusesRabinfingerprintsanddelta-encoding
to compresssimilar files [7]. The similarity of files is
basedon a subsetof all fingerprints generatedfor each
file. Ouyang et al. alsostudytheuseof deltacompres-
sionto storea collectionof files [16]; their approachto
scalabilityis discussedin thenext subsection.

2.2 Limitations of Curr ent Techniques

Duplicate elimination exploits only files, blocks or
chunks thatareduplicatedexactly. Evenasinglebit dif-
ference in otherwiseidentical contentcanprevent any
similarity from beingrecognized. Thus,a versionof a
file that hasmany minor changes scatteredthroughout
seesno benefitfrom the CDC or SLIDINGBLOCK tech-
niques. Section5.1 includes graphs of the overlap of
fingerprints in CDC chunks that indicateshow common
this issuecanbe.

DERD usesdelta-encoding, which eliminatesredun-
dancy atfinegranularity whensimilarfilescanbeidenti-
fied. DERD’s performance,however, doesnot scalewell
with large datasets. Resemblance detectionusingRa-
bin fingerprints is moreefficient thanthebruteforceap-
proach of delta-encodingevery possiblepairof files. For
extremely largefile sets,however, runtimeis dominated
by the number of pairwisecomparisonsandcangrow
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quitelargeevenif thetimefor eachcomparisonis small.
A straightforwardapproachto identifying similarfiles is
to count thenumber of files thatshareevena singlefin-
gerprint with a given file. Repeatingthis for every fin-
gerprint of every file resultsin analgorithm with O(��� )
complexity in theworstcase,where � is thenumber of
files.�

Thecomputationalcomplexity of delta-encodingfile
sets motivates cluster-baseddelta compression [16].
With this approach,large file setsarefirst divided into
clusters. The intent is to group files expected to bear
someresemblance. This canbe achieved by grouping
files according to a varietyof criteria,includingnames,
sizes,or fingerprints. (Douglis andIyengarusedname-
basedclustersto make theprocessingof a large file set
tractablein termsof memory consumption [7], but sim-
ilar benefitsapply to processingtime.) Oncefiles are
clustered,thetechniquesdescribedabovecanbeusedto
identify good candidatepairsfor delta-encodingwithin
eachcluster. Clusteringreducesthesizeof any file setto
which the O(� � ) algorithm described above is applied.
Whenappliedover all clusters,the technique resultsin
an approximation to the optimal delta-encoding. How
closethis approximation is depends on the amount of
overlap acrossclustersandis therefore extremelydata-
dependent.

Another important issueis thatDERD doesnot detect
matchesbetweenanencodedobjectandpiecesof mul-
tiple otherobjects. Considerfor example, an objectA
that consistsof the concatenation of objectsB-Z. Each
objectB-Z couldbe encodedasa byte rangewithin A,
but DERD would likely notdetectany of theobjectsB-Z
asbeingsimilar to A. This is due,in part,to thedecision
to representeachfile by a fixednumber of fingerprints
regardlessof file size.BecauseRabinfingerprint values
areuniformlydistributed,theprobability of asmallfile’s
fingerprints intersectinga largecontaining file’s finger-
prints is proportional to the ratio of their sizes. In the
caseof 25files containedwithin asingle26thfile, if the
25 files areof equalsizebut containdifferentdata,each
will contribute about ���� of the fingerprints in the con-
tainer. Thismakesdetectionof overlap unlikely.

Theproblemarisesbecauseof thedistinctionbetween
resemblance and containment. Broder’s definition of
containmentof � in 	 is the ratio of the intersection
of the fingerprints of the two files to the fingerprints in� , i.e. 
��������
������
������ [2]. Whenthenumber of fingerprints
for a file is fixedregardlessof size,theestimatorof this
intersectionno longerapproximatesthefull set. On the
otherhand,decidingthat thereis a strongresemblance
betweenthetwo is reasonably accurate,becausefor two
documentsto resembleeachother, they needtobeasim-
ilar size.

Finally, extremely large datasetsdo not lend them-

selvesto “compare-by-hash”becauseof the possibility
of anundetectedcollision [8]. In a systemthatis decid-
ing whethertwo local objects areidentical,a hashcan
beusedto find thetwo objectsbefore expendingthead-
ditionaleffort to comparethetwo objectsexplicitly. Our
datasetsarenotof sufficient scalefor thattoposealikely
problem,sowedid not includethisextrastep.While we
choseto follow the protocols of pastsystems,explicit
comparisonscouldeasilybeadded.

3 REBL Overview
We have designed and implemented a new technique
that appliesaspectsof several othersin a novel way
to attainbenefitsin both effectivenessefficiency. This
technique,calledRedundancy Eliminationat theBlock
Level (REBL), includes featuresof CDC, DERD, and
compression. It divides objects into content-defined
chunks,whichareidentifiedusingSHA hashes.Resem-
blancedetectionis performedon eachremaining chunk
to identify chunks with sufficient redundancy to benefit
from delta-encoding. Chunks not handled by eitherre-
dundancy eliminationor resemblance detectionaresim-
ply compressed.

Key to REBL ’s ability to achieve efficiency compara-
ble to CDC, insteadof suffering thescalabilityproblems
of DERD, areoptimizations that allow resemblance de-
tectionto beusedmoreeffectively onchunksratherthan
wholefiles. Resemblancedetectionhasbeenoptimized,
for usein Internetsearchengines,to detectnearlyidenti-
calfiles. Theoptimization consistsof summarizing aset
of fingerprints into a smallerset of super-fingerprints,
possiblya single super-fingerprint. Objectsthat share
evenasinglesuper-fingerprintareextremely likely to be
nearlyidentical[3].

Optimizedresemblancedetection works well for In-
ternetsearchengineswherethe goal is to detectdocu-
mentsthat arenearly identical. Detectingobjects that
aremerelysimilar enough to benefitfrom deltaencod-
ing is harder. We hypothesizedthat applying super-
fingerprints to full files in DERD wouldsignificantly im-
provethetimeneededto identify similarfiles,but would
also dramatically reduce the number of files deemed
similar, resultingin muchlower savings thanthe brute
force technique that counts individual matching fin-
gerprints [7]. In practice,we found using the super-
fingerprint techniquewith wholefiles worksbetterthan
we anticipated,but is still not the most effective ap-
proach (seeSection5.1.4 for details).

In contrast,REBL canbenefit from the optimized re-
semblancedetectionbecauseit dividesfiles into chunks
andlooks for nearduplicatesof eachchunkseparately.
Thistechniquecanpotentially sacrificesome“marginal”
deltasthatwouldsavesomespace.Wequantify thissac-
rifice by comparingthesuper-fingerprint approachwith
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the DERD technique that enumeratesthe bestmatches
from exactfingerprints.

WehaveimplementedREBL andtestedit onanumber
of datasets.In thebestcase,it improvedupon CDC by
a factorof 10.8, SLIDINGBLOCK by 4.11, simpleobject
compressionby 23.0andTAR+COMPRESS by 21.6.

3.1 Parameterizing REBL

REBL ’s performancedepends on several important pa-
rameters.We describethe parametersandtheir default
valueshereand provide a sensitivity analysis in Sec-
tion 5.

Average chunk size. Smaller chunks detectmore du-
plicates,but compresslesseffectively; they require
additional overheadto trackonehashvalueandnu-
merous fingerprints per chunk; and they increase
the number of comparisonsand delta-encodings
performed. We found 1 KB to bea reasonable de-
fault, though 4 KB improves efficiency for very
largedatasetswith largefiles. .

Number of fingerprints per chunk. The more finger-
prints associatedwith a chunk, the more accurate
the resemblancedetectionbut the higher the stor-
ageandcomputationalcosts.Douglis andIyengar
used30 fingerprints, finding no substantialdiffer-
encefrom increasingthatto 100[7].

Number of fingerprints per super-fingerprint. With
super-fingerprints, a given number of base fin-
gerprints are distilled into a smaller number of
super-fingerprints. We use 84 fingerprints, and
examine a range of values for the number of
fingerprints persuper-fingerprint including2, 3, 4,
6, 7, 12,14,etc.

Similarity thr eshold. How many fingerprints or super-
fingerprintsmustmatchto declare two chunkssim-
ilar? If the thresholdis fixed, how important is it
to find the “best” matchratherthanany adequate
match? Ouyang, et al., addressedthis by finding
adequate matchesrather than best matches[16];
DouglisandIyengardid amoreexpensivebut more
precisedetermination[7]. Wetakeamiddleground
by approximatingthe“best” matchmoreefficiently
via super-fingerprints. A key resultof our work is
thatusingasufficiently largenumberof fingerprints
persuper-fingerprintallowsany matching chunkto
be usedrather than having to searchfor a good
match.Thisresultsin nearlythesameeffectiveness
but with substantiallybetter efficiency (seeSec-
tion 5.1.2).

Baseminimization. Usingthebestbaseagainstwhich
todeltaencodeachunkcanresultin half thechunks
servingas reference blocks.� Allowing approxi-
matematchescansubstantiallyincreasethe num-
berof versionblocks encoded against a singleref-

erenceblock, thereby improving overall effective-
ness(seeSection5.3.2).

Shinglesize. Rabin fingerprints are computed over a
sliding window or shingleand usedfor two pur-
poses. First, CDC usesspecific valuesof Rabin
fingerprints to denotea chunk boundary. Second,
DERD usesthem to associatefeatures with each
chunk. A shingleshouldbe large enough to gen-
eratemany possiblesubstrings,which minimizes
spurious matches,but it shouldbesmallenough to
keepsmall changes from affectingmany shingles.
Commonvaluesin pastDERD studieshave ranged
fromfour to twentybytes[7, 16]. Weusedadefault
of twelve bytesbut foundno consistenttrendother
than a negative effect from sizesof four or eight
bytes(seeSection5.3.3).

4 Data Setsand Methodology
We usedseveral datasetsto test REBL ’s effectiveness
andefficiency. Table1 lists thedifferentdatasets,giv-
ing their size, the number of files, and the number of
content-definedchunks with thetargetedaverage block-
sizesetto 1 KB and4 KB.

TheSlashdot andYahoo datasetsareWebpages
thatweredownloadedandsaved,asasystemsuchasthe
Internet Archive might archive Webpages.Slashdot
represents multiple pagesdownloadedover a periodof
about a day, wherein different pages tend to have nu-
merous smallchangescorresponding mostlyto updated
counts of usercomments. (While the Internet Archive
would not currently save pageswith suchgranularity,
an archival systemmight if it could do so efficiently.)
Yahoo represents a number of different pagesdown-
loadedrecursively atasinglepoint in time.Emacs con-
tains the sourcetreesfor GNU Emacs20.6 and 20.7.
Becausetherearenumerouscommon andsimilar files
acrossthetwo releases,thereareopportunitiesfor vari-
oustypesof compression.TheMH datasetrefersto indi-
vidual files consistingof entiremail messages.Finally,
users is thecontents of onepartitionof a sharedstor-
agesystemwithin IBM, containing datafrom 33 users
totalingnearly7 GB. Theusers datasetis anorderof
magnitude larger thanthe next-largestdataset,contain-
ing many largefiles, so the REBL analysisof it is done
with an average chunk sizeof 4 KB ratherthan1 KB.
This cuts down the number of chunks handledby the
systemby abouta factorof four.

4.1 REBL Evaluation
To evaluateREBL, we first readeachfile in thedataset
sequentially, break it into content-definedchunks and
generate the Rabin fingerprints and SHA hashvalues
for eachchunk. Chunks with thesameSHA hashvalue
asearlierchunks require no additional processing,be-
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Dataset Size # files # chunks
(MB) 1 KB 4 KB

Slashdot 38.37 885 21,991 11,629
Yahoo 27.77 3,850 28,542 8,632
Emacs 106.60 5,490 70,640 24,960
MH 602.10 93,867 421,501 203,518
Users 6625.43 185,722 3,949,780 1,367,619

Table1: Detailsof datasetsusedin our experiments.1KB and4KB arethetargetedaveragechunksizes.For 1KB averages,the
minimumchunk sizeis setto 512bytes;for 4KB averages,it is setto 1KB. Themaximumis 64KB.

causethey aresuppressedby the CDC duplicatedetec-
tion mechanism. We next compute super-fingerprints
from the fingerprints, given a specific ratio of finger-
prints per super-fingerprint. At this point, we have the
optionof FirstFit or BestFit.

• To doFirstFit, wepick acandidatereferencechunk
and encodeall other chunks that sharea super-
fingerprint with it; anassociativearraymakespair-
wise matching efficient. (We useGNU C++ with
the StandardTemplateLibrary.) We then iterate
over theremainingcandidatereferencechunks,per-
forming the sameoperation, ignoring any chunks
thathave alreadybeenencodedor usedasa refer-
ence.

• To do BestFit, we sort thechunks according to the
greatestnumber of matchingfingerprints with any
other chunk. Each candidate referencechunk is
thenprocessedto determinewhich otherpotential
versionchunks have at leasta threshold numberof
super-fingerprints in common with it. The thresh-
old is a specifiedfractionof the bestmatchfound
for that chunk (seeSection5.3.2). Again, each
chunk is usedaseithera reference, against which
oneor moreversion chunks are encoded, or as a
version. BestFit suffers from quadraticcomplexity
in processingtime, asa function of thenumberof
chunks,aswell assubstantiallygreatermemory us-
age� thanFirstFit.

Finally, each of the files in the data set is com-
pressedto determine if compressingthe entire file is
more effective than eliminating duplicateblocks and
delta-encodingsimilarblocks.If so,theWFC sizeis used
instead.We found that CDC in theabsenceof WFC was
muchlesseffective thanthecombinationof thetwo, but
adding WFC to REBL usuallymadeonly a small differ-
encebecausemostchunksalreadybenefittedfrom delta-
encoding.

5 Empirical Results

This sectionprovidesanempiricalevaluation of several
datareduction techniques,with an emphasison REBL.

For REBL, we studytheeffect of parameterssuchasthe
averagechunk size,thenumberof super-fingerprints,the
similarity thresholdabove which delta-encoding is ap-
plied,andtheshinglesize.Thetechniquesarecompared
along primarily two-dimensions: effectiveness (space
savings)andefficiency(run-time costs).

The techniquesevaluatedin at leastonescenarioin-
clude:

• TAR+COMPRESS

• whole-filecompression(WFC)
• per-block compression(PBC)
• CDC with PBC

• CDC with WFC

• SLIDINGBLOCK

• REBL with WFC

• DERD.

In caseswhereWFC is usedin conjunctionwith another
technique, this meansthat WFC is usedinsteadof the
othertechnique if it is foundto bemoreeffective.

Our experimentswere performed on an unmodified
RedHat Linux 2.4.18-10 kernel running on an IBM
eServerxSeries360with dual1.60 MHz PentiumXeon
processors,6 GB RAM ( ����� GB plus ����� GB),
andthree36 GB 10k-RPM SCSIdisksconnectedto an
IBM Netfinity ServeRAID™ 5 controller. All datasets
residedin an untuned ext3 file systemon local disks.
Although an SMP kernel wasused,our testswerenot
optimizedto utilize bothprocessors.All timesreported
are the sumsof userand systemtime as reported by
getrusage.

5.1 REBL Hypotheses
This sectionpresentsempirical results to support the
rationalebehind the combination of chunk-level delta-
encoding andsuper-fingerprints.

5.1.1 Chunk Similarity
As discussedin Section 2.1, CDC systemssuch as
LBFS [15] compute SHA hashesof content-defined
chunks andusethe hashvalue to detectduplicates. A
potential limitation of this approachis thatchunks with
slight differencesget no benefitfrom the overlap. For
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Figure 1: Cumulative distribution of thefractionof similar chunksor files with at leasta givennumberof maximallymatching
fingerprints.Theright-mostpoint in eachgraphcorresponds to identicalchunks.

REBL tobemoreeffectivethanCDC, theremustbeasub-
stantialnumberof chunks thataresimilarbut not identi-
cal.

Figure1 plotsacumulativedistribution of thefraction
of chunks that matchanotherchunkin a given number
of fingerprints. Thegraphshowsresultsfor theSlash-
dot andYahoo datasetswith 84fingerprintsperchunk
andshows curves correspondingto average chunk sizes
of 1 KB, 4 KB, and whole files. Whole files corre-
spondto an infinitely large averagechunk size,which
is similar to DERD. All chunks matchanother chunkin
at least0 fingerprints, so eachcurve meetsthe 0 value
on the � -axis at  "!#� . The rightmost points on the
graph(depictedas � =85) show the fraction of chunks
thatareduplicated;smallerchunks leadto greatereffec-
tivenessfor CDC, becausethey allow duplicate content
to bedetectedwith finer granularity. Betweentheseex-
tremes,moreof thesmallestchunksmatchotherchunks
in thegreatestnumberof features.However, any chunks
thatarenotexactduplicatesbut matchmany fingerprints
are“missed”by CDC, but they arepotentially usableby
REBL for delta-encoding and result in improved space
savings. A good heuristic for expecting improvement
from delta-encodingis to matchat leasthalf thefinger-
prints[7].

5.1.2 Benefits of Super-fingerprints

Next we look at the useof a smallernumber of super-
fingerprints to approximate a larger number of finger-
prints. As discussedin Section3, super-fingerprints are
generatedby combining fingerprints. For instance,84
fingerprints canbeclusteredinto groupsof 6 to form 14

super-fingerprints. To generatesuper-fingerprints, REBL

concatenatesfingerprintsandcalculatesthecorrespond-
ing MD5 valueof theresultingstring.$

Figure5 plotsthecumulativedistribution of thenum-
berof chunks thatmatchanotherin at leasta threshold
fraction of fingerprints or super-fingerprints. The data
setsusedareSlashdot andMH, with 84 fingerprints
and21, 14, 6 and4 super-fingerprints per chunk. The
resultsindicatethat lowering the threshold for similar-
ity betweenchunks resultsin more chunks beingcon-
sidered“similar.” Theresultsfor super-fingerprints fol-
low a similar trendas for regular fingerprints. A use-
ful observation from both datasetsis that we can se-
lect a thresholdvalue for super-fingerprints that cor-
responds to a highernumber of matching fingerprints.
For example, in Figure5(a), a threshold of 1 out of 4
(25%)super-fingerprints is approximatelyequivalent to
a threshold of 73 out of 84 (87%) fingerprints. Chunks
with many matching fingerprints are good candidates
for delta-encoding; thesechunks canbefound by using
smaller thresholds on the super-fingerprints. This de-
creasesREBL ’s execution time by reducing thenumber
of comparisons(seeSection5.1.3).

5.1.3 FirstFit and BestFit Variants

As discussedin Section4.1, REBL has two variants,
BestFit andFirstFit. In this section,we comparethem
by contrastingrelativeeffectivenessandefficiency.

Figure3(a) plots the relative sizesusingthe FirstFit
andBestFit variantswith 84 fingerprintsperchunkand
varying the number of super-fingerprints with an aver-
agechunk sizeof 1 KB on theMH andtheSlashdot
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Figure 2: Cumulative distribution of matchingfingerprintsor super-fingerprints,using1 KB chunks. Therelative shapeof the
curvesdemonstratethemuchgreatersimilarity in theSlashdot datasetthantheMH dataset.
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Figure3: ComparisonbetweentheBestFit andFirstFit variants.

datasets. As canbeenfrom Figure3(a), both FirstFit
andBestFit have comparableencoding sizesfor up to
a number of super-fingerprints (21 for thesetwo data
sets).After this point,BestFit performsbetter, asit tries
to pick the “best” chunk for delta-encodingandthe ef-
fect of missingsuchopportunitiesis pronouncedwith a
higher numberof super-fingerprints.

Figure3(b) plots the corresponding execution times.
As we increasethe number of super-fingerprints, the
number of comparisonsto detect similar chunks in-
creases,leadingto greaterexecution times for BestFit.

Theexecution timesusingFirstFit aremore or lesssta-
ble anddo not show thesamesharpincrease.In short,
using FirstFit allows a little spaceto be sacrificedin
exchangefor dramatically lower execution times. For
example, with Slashdot usingFirstFit and6 super-
fingerprints,REBL producesarelativesizeof 1.52%; the
bestBestFit number is 1.18% with 42super-fingerprints.
However, the corresponding absolute execution times
are8.1and173.5seconds respectively.

As mentioned in Section3.1, oneinterestingparam-
eter that canbe modifiedwhenusingBestFit is its ea-
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andREBL.

gerness to use the best, i.e. most similar, reference
chunk againstwhich to delta-encodea version chunk.
For instance,onemight naturally assumethatencoding
a chunk againstonethatmatchesit in 80/84fingerprints
would be preferableto encoding it against another that
matchesonly 70/84. However, considera casewhere
chunk A matches chunk B in 82 fingerprints, chunkC
in 75,andchunk D in 70; C andD resembleeachother
in 80/84. Encoding A againstB andC against D gen-
eratestwo small deltasand two referencechunks, but
encoding B, C, andD against A resultsin slightly larger
deltasbut only one unencoded chunk. As a result of
thiseagerness,FirstFit oftensurprisinglyencodedbetter
thanBestFit until we addedanapproximationmetric to
BestFit, which lets a givenchunk beencoded againsta
specificreference chunkif the latter chunk is within a
factor of the bestmatchingchunk. Empirically, allow-
ing matcheswithin 80-90% of thebestmatchimproved
overall effectiveness(seeSection5.3.2).

5.1.4 Benefits of Chunking

As discussed in Section 3, REBL applies super-
fingerprints to content-defined chunks. Super-
fingerprints could also be applied to entire files,
which would amount to a modification of theDERD ap-
proach. Previous studieshaveapplied super-fingerprints
to detect similar Web pages [3]. Super-fingerprints
reduce the number of comparisonsrelative to regular
fingerprints, but applying them to entire files can
potentially reducethenumber of files identifiedasbeing
similar.

Figure4(a)reports relativesizesfor DERD andREBL,

usingboththeFirstFit andBestFit variants,asafunction
of thenumber of super-fingerprints, for theSlashdot
andMH datasets. The experimentsuse84 fingerprints
per chunk or file; REBL usesan average chunk sizeof
1 KB. Figure 4(a) indicatesthat REBL is alwaysat least
aseffective asDERD for bothFirstFit andBestFit. For
smallernumbersof super-fingerprints, theeffectiveness
of FirstFit and BestFit are similar. As the number of
super-fingerprints is increased, BestFit becomes more
effective thanFirstFit.

Thecorresponding execution timesareplottedin Fig-
ure4(b). As expected,thegreatestexecution time is for
REBL with BestFit; breaking eachfile into chunks re-
sults in morecomparisonsas doesBestFit as opposed
to FirstFit: the lowestexecution timesarefor FirstFit,
andexecutiontimesfor BestFit increasesharplywith in-
creasingnumbersof super-fingerprints. Thebestoverall
resultsconsidering botheffectivenessandefficiency are
with theFirstFit variant of REBL usinga small number
of super-fingerprints.

Onemight askwhetherit is sufficient to simply use
somenumber (N) of fingerprints ratherthancombining
a larger number of fingerprints into the samenumber
(N) of super-fingerprints.In fact,with BestFit, usingas
few as14 fingerprints is nearly aseffective asusing84
fingerprints. However, even with only 14 fingerprints,
thecostof BestFit is substantiallygreaterthanFirstFit.
Figure6 reports relative sizesandexecution times for
the Slashdot data set as a function of the number
of fingerprints or super-fingerprints, using an average
chunk sizeof 4 KB. With super-fingerprints andFirst-
Fit, relative size increaseswith more features(super-
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Figure 5: Useof super-fingerprintsasapproximationsof exact fingerprints. The relative shapeof the curvesdemonstratethe
muchgreatersimilarity in theSlashdot dataset.
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Figure6: Comparingeffectof reducedfingerprintsperblock
andFirstFit with super-fingerprints.

fingerprints), while with fingerprints andBestFit. rela-
tivesizedecreaseswith morefeatures(fingerprints).On
the other hand, execution time with BestFit increases
sharplywith morefingerprints. The effectivenesswith
super-fingerprintsusingFirstFit is similar to thatusinga
larger numberof fingerprints andBestFit.

FirstFit with 7 super-fingerprintshasa relative size
of 1.64%; the best performanceusing fingerprints is
1.57% with 84 fingerprints perchunk. Thecorrespond-
ing relative execution times are1.4% and100%. The
relative execution time with 14 fingerprints and Best-
Fit, which givescomparableresultsto using84 finger-
prints, is 25.95%. Thus, lowering the number of fin-
gerprintsperchunk to reducecomparisons(andincrease

efficiency) maynot yield thebestencoding sizeandex-
ecutiontimes. In contrast,useof super-fingerprints and
the FirstFit variant of REBL is both effective andeffi-
cient.

5.2 Comparisonof Techniques
In this section, we compare a variety of techniques,
focusing on effectivenessand briefly discussingeffi-
ciency as indicatedby execution times. Table 2 re-
ports sizes compared to the original data set. The
techniques include: compressionof entire collections
(TAR+COMPRESS), individual files (WFC), and indi-
vidual blocksor chunks (PBC); SLIDINGBLOCK, CDC,
REBL with an averagechunk sizeof 1 KB; andDERD.
The relative sizeswith CDC are reported for average
chunk sizesof 1 KB (with andwithout WFC) and4 KB
(with WFC). REBL numbers includebothPBC andWFC.
While considering WFC, the encoding for a file, is the
minimum usingtheencoding techniqueor WFC. For the
experimentsusingthesedatasets,we strove for consis-
tency wheneverpossible.However, therearesomecases
wherevarying a parameteror applicationmadea huge
difference. In particular, gzip producesoutput that at
leastsomewhat smallerthanvcdiff for all our datasets
except Slashdot, for which it is nearly an order of
magnitude larger. We report the vcdiff number in that
case.

For bothREBL andDERD, thetablegivesnumbersfor
14super-fingerprintsusingFirstFit. Full comparisonsof
regular fingerprints generally gave a smallerencoding,
but at a disproportionately high processingcost,as the
experimentsabovedemonstrated.REBL hadthesmallest
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Dataset Tar + WFC PBC Sliding CDC REBL DERD

Compress Block (1K) (1K w/o WFC) (1K w/ WFC) (4K w/ WFC) 1K, 14FF 14FF
Slashdot 12.22 4.7 37.3 4.85 12.74 12.68 16.78 1.9 5.52
Yahoo 8.03 26.03 29.56 28.16 29.18 23.38 25.5 13.72 12.02
Emacs 27.02 29.27 35.64 26.9 24.96 18 21.9 15.31 14.64
MH 35.11 41.3 44.79 39.57 38.01 33.36 36.04 32.28 32.87
Users 41.67 42.2 45.99 34.96 49.94 31.49 33.98 29.68 [4k] 33.01

Table 2: Datasetsandtheir relative encoding sizes(in percent)ascomparedto theoriginal sizeusingdifferentencoding tech-
niques.Thebestencodingfor a datasetis in boldface. WFC standsfor whole–filecompressionandPBC is content-definedblock
level compression. REBL uses14 super-fingerprints,1 KB chunks (exceptfor theUsers dataset),andFirstFit.

encoding size in 3 out of the 5 datasetsabove. REBL

alwaysperformedbetterthanCDC andalsobetterthan
DERD exceptwith theYahoo andEmacs datasets.In
the bestcasewith the Slashdot dataset, REBL was
moreeffective thanCDC with anaverage chunk sizeof
1 KB by a factorof 6.7andDERD by a factorof 2.9.

Next, wegraphicallycomparethebestperformanceof
REBL using1 KB and4 KB chunksizesagainst DERD

and the other techniques. Figure 7 plots the relative
size for eachtechnique appliedto threedifferent data
sets. As seenfrom the figure, for thesedatasetsREBL

and DERD always do better than SLIDINGBLOCK and
CDC, which in turn perform betterthanWFC. REBL and
DERD provide similar effectiveness.In fact, REBL en-
codesSlashdot substantiallybetterthan DERD (the
relative sizesare �('��*),+ and �-' .-.�+ for averagechunk
sizesof 1 KB and4 KB for REBL, comparedto �/' )(�(+
with DERD).

In the bestcasewith theSlashdot dataset,REBL

with a1 KB chunksizeis 11.5%betterthanCDC with a
1 KB chunk sizeand15.4% betterthanCDC with 4 KB
chunk size.With thesmallerchunksize,REBL is 1.63%
better than DERD and 1.38% betterthan REBL with a
4 KB chunksize. With theYahoo dataset,DERD out-
performs REBL by a factor of 1.61% and 0.71% with
1 KB and4 KB chunk sizesrespectively. For the MH
dataset,DERD andREBL arealmostsimilar, with REBL

using4 KB chunks doingslightly better.

Thecostof REBL in termsof relativeexecution times
is reported in Figure8. Theabsoluteexecution timesare
normalizedwith the largestexecution time, i.e.: Best-
FitREBL with an averagechunksizeof 1 KB. The ex-
periment variesthenumber of super-fingerprintswith 84
fingerprints perchunk andusestheFirstFit andBestFit
variantswith averagechunk sizesof 1 KB and4 KB and
theentirefile. As expected, theexecution timesaremore
for larger numbers of super-fingerprints per chunk, as
morechunksarecompared.Execution timesof theBest-
Fit variantaregreaterthanFirstFit andthe differences
aresignificantwith largernumbersof super-fingerprints.
Even with small numbersof super-fingerprints,the ex-

000
000
0
111
111
1

232232232
232232232
232232232
232232232
232

444
444
444
444
4

555
555
555
555
555
555

666
666
666
666
666
666

737737838838 999
999
:::
::: ;3;;3;;3;

;3;;3;;3;
;3;;3;;3;
;3;;3;;3;
;3;;3;;3;
;3;

<3<<3<<3<
<3<<3<<3<
<3<<3<<3<
<3<<3<<3<
<3<<3<<3<
<3<

=3=> ???
???@@@
@@@

A3AA3AA3A
A3AA3AA3A
A3AA3AA3A
A3AA3AA3A
A3AA3AA3A
A3A

BBB
BBB
BBB
BBB
BBB
B

C3CD EE
EE
FF
FF

G3GG3G
G3GG3G
G3GG3G
G3GG3G

HH
HH
HH
HH

IIJ
J

K3KK3K
K3KK3K
K3KK3K
K3KK3K

L3LL3L
L3LL3L
L3LL3L
L3LL3L

M3MM3M
M3MM3M
M3MM3M
M3MM3M
M3MM3M
M3MM3M
M3MM3M

N3NN3N
N3NN3N
N3NN3N
N3NN3N
N3NN3N
N3NN3N
N3NN3N

OOOOOOO

PPPPPPP
Q3QQ3QQ3Q
RRR

SSSSSSSSS

TTTTTTTTT

U3U3UV3V
W3WW3WX3XX3X

Y3YZ3Z[3[3[\3\
]3]3]^3^
_3_3__3_3_`3``3`

 40

 50

 30

 20

 10

 0

Dataset

MHYahooSlashdot

WFC

REBL(1K)
REBL(4K)

DERD

SB(1K)

TGZ

R
el

at
iv

e 
si

ze
 (

%
)

CDC(1K)
CDC(4K)

Figure 7: Performanceof different encoding techniques
basedon therelative sizesof theencoded datasets.SB refers
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ecutiontimes of BestFit are about an orderof magni-
tudegreater thanFirstFit. For example,with 42 super-
fingerprints per chunk, the relative execution time of
FirstFit usinganaveragechunk sizeof 4 KB is ab'��*c-),+ ,
comparedto a relative time of �(' d-.�+ with BestFit. The
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REBL on theSlashdot dataset.

relativesizefor thetwo variantsare c,�/' .-./+ and c(ae'��gf,+
respectively.

Comparing across different numbers of super-
fingerprints, more super-fingerprints result in better
approximations to the regular fingerprints, but only
marginally. In all the datasets,a threshold of 1 out 4
super-fingerprints is equivalent to most of the benefits
providedby regular fingerprints.Thus,in practice,afew
super-fingerprints with a small threshold canbeusedto
obtainsimilar benefits to usingregular fingerprints.

5.3 Additional Considerations
Thissubsectiondescribesthesensitivity of REBL to var-
iousexecutionparameters thattry to optimizeits behav-
ior.

5.3.1 Effect of AverageChunk Size
Another potentially important parameter for REBL is
the average chunk size. As discussedin Section5.1.1,
smaller chunk sizesprovide more opportunity to find
similar chunks for delta-encoding. Figure9 reports re-
sultsof experimentswith varying average chunksizes.
The average chunk sizesusedwere 512, 1024, 2048,
4098 and 8192 bytes, with the Slashdot data set
and 84 fingerprints per chunk. As can be seenfrom
the figure, in the caseof Slashdot, for both First-
Fit and BestFit, increasingthe average chunk size re-
sultsin larger encoding sizes.Thesmallestrelative size
is obtainedwith the 512 byte chunksize, in both vari-
antsof REBL. Choosing a smallerchunksizeprovides
moreopportunitiesfor delta-encodingand,asresult,bet-
ter spacesavings,but maynot benecessarilyapplicable
for all datasets. While the experiment doesnot repre-
senta principle for choosingan average chunk size, it
demonstratesthattheaveragechunksizeis animportant
parameterfor REBL andmustbechosencarefully.
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Figure10: Effectof varyingtheBestFit thresholdonrelative
sizeusingREBL on theSlashdot dataset.

5.3.2 ApproximateMatching for BestFit

Another parameter we evaluated is thethreshold for ap-
proximate matchingof BestFit chunks. Without this
threshold, usingBestFit, a chunkis encodedagainst an-
otherwith which it hasthe mostmatchingfingerprints
or super-fingerprints. For a given referencechunk, the
“BestFit Threshold” determines how loose this match
can be, permitting the encoding of any chunks within
the specifiedfraction of the bestmatch. A very small
fraction(low threshold) canapproximatetheFirstFit ap-
proach.

Figure 10 shows the effect of varying the BestFit
Threshold on the Slashdot datasetusing 84 finger-
printsperchunk andanaveragechunk sizeof 1 KB. The
graphindicatesthatasthethreshold increases,effective-
nessincreases,upto about90%.A threshold of 1 corre-
sponds to themostprecisematch,but it actuallymisses
opportunitiesfor delta-encoding, resultingin increased
encoding size.A thresholdbetween0.7to 0.9yieldsthe
smallestencoding sizeswith regular fingerprints for the
Slashdot dataset;otherdatasetsshow similar trends.
As expected, the figure also shows increasingrelative
timesasthethreshold increases.

5.3.3 Effect of ShingleSize

A shinglespecifiesthesizeof a window thatslidesover
theentirefile advancingonebyteatime,producingaRa-
bin fingerprint valuefor eachfixed-sizesetof bytes.The
Rabinfingerprintsareusedto flagcontent-definedchunk
boundariesandto generatefeaturesfor eachchunk that
canbeusedto identify similarones.We vary thesizeof
a shingleto studyits effectonencoding size.

ThisexperimentusestheSlashdot datasetwith 84
fingerprints perchunk, 14 super-fingerprints,andanav-
eragechunk size of 4 KB. The relative encoding size
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on theSlashdot dataset.

with FirstFit andBestFit with varying shingle-sizeval-
uesis plotted in Figure 11. Shingles of four or eight
bytesgetmuchlessbenefitfrom REBL thanlargersizes,
but otherwise the analysisis noisy andseveral disjoint
valuesgive similar results.We concludethatpastwork
that usedfour-byte shingles [16] may have found their
resemblance detectionsystemto be noisier than nec-
essary, but sizesof twelve bytesor moreareprobably
equallyarguable.

6 Conclusionsand Futur e Work
In this paper, we introduced a new encoding scheme
for large datasets,thosethat are too large to encode
monolithically. REBL usestechniques from compres-
sion, duplicateblock suppression,delta-encoding, and
super-fingerprints for resemblance detection. We have
implemented REBL and testedit on a number of data
sets. In the bestcase,it improved uponCDC by a fac-
tor of 10.8,SLIDINGBLOCK by 4.11, simpleobjectcom-
pressionby 23.0andTAR+COMPRESS by 21.6.

We have compared two variantsfor similarity detec-
tion among blocks, FirstFit and BestFit, and demon-
stratedthat FirstFit with super-fingerprints producesa
good combination of spacereduction and execution
overhead. Super-fingerprints aregoodapproximations
of regular fingerprints in all the data sets we exper-
imented with. A low threshold of matching super-
fingerprints usually results in similar effectivenessto
that obtained using regular fingerprints, and a higher
threshold for similarity detection,at a higher execution
cost.

The effectivenessof REBL in our experimentsis al-
ways betterthan WFC and CDC. However, this is be-
causeit incorporatesthe technology of compressionat
the file and block level, and the suppressionof dupli-
cateblocks, before adding delta-encoding. In fact, the

inclusionof WFC in any sortof CDC or SLIDINGBLOCK

systemseemsan essentialoptimizationunlessthe rate
of duplication is substantiallyhigherthanwe have seen
in thesedatasets. This is consistentwith the earlier
SLIDINGBLOCK work [6], which found that SLIDING-
BLOCK neededto incorporateblock-level compression
to becompetitivewith gzip.

In some cases,REBL performs better than DERD,
which is a file-level delta-encoding approach; in most
othercases,REBL is verysimilarto it. Theaverageblock
sizeusedto markcontent-definedblocks affectstheen-
coding sizesof REBL to a limited extent;themoresimi-
larity thereis in adataset,suchasSlashdot, themore
effective smallerblocks are.

We are currently working on extending and experi-
mentingwith the REBL andLBFS techniquesto reduce
network usagein communicationenvironments. This
will be helpful to determine the applicability of REBL

in reducing redundantnetwork traffic, andit canalsobe
comparedwith othernetwork-orientedmechanismslike
rsync[20, 25] andlink-level fingerprint-basedduplicate
detection[21].
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Notes
1. In practice,we don’t expect thecomplexity to bethis
bad,andsomeheuristicscouldbeusedto reduceit [26],
but they arebeyond thescopeof this paper. Evenwith
suchoptimizations, the techniquesdescribedin this pa-
perimproveefficiency substantially.

2. Encoding chains are possible—	 against � , �
against h , and so on—but decoding sucha chain re-
quiresfirst computing � from h to obtain 	 . We dis-
count this possibility dueto its complexity andperfor-
manceimplications.

3. Our initial implementationstoredthe relationshipof
every pair of blocks with at leastonematching finger-
print. With this approach,we ran out of addressspace
operating on our larger datasets. We reduced memory
usageby storinga informationonly for blocksmatch-
ing many fingerprints,but eventhatapproachsufferson
extremely large datasets.

4. Othersophisticatedtechniquesmay be usedto gen-
eratesuper-fingerprints, but in our casewe neededa
hashingfunctionwith a low probability of collisionsand
MD5 satisfiedthecriteria.
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