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Abstract— Overlay multicast (or application-level multicast)
has become an increasingly popular alternative to IP-supported
multicast. End nodes participating in overlay multicast can form
a directed tree rooted at the source using existing unicast links.
For each receiving node there is always only one incoming link.
Very often, nodes can support no more than a fixed number of
outgoing links due to bandwidth constraints. In this paper, we
describe an algorithm for constructing a multicast tree with the
objective of minimizing the maximum communication delay (i.e.
the longest path in the tree), while satisfying degree constraints
at nodes. We show that the algorithm is a constant-factor
approximation algorithm. We further prove that the algorithm
is asymptotically optimal if the communicating nodes can be
mapped into Euclidean space such that the nodes are uniformly
distributed in a convex region. We evaluate the performance of
the algorithm using randomly generated configurations of up to
5,000,000 nodes.

I. INTRODUCTION

In many applications, such as Internet-based content dis-
tribution networks, a desirable means of delivering informa-
tion is multicast, delivering information simultaneously to a
chosen group of hosts. Currently a set of standards exists
for supporting multicast in IP networks. However, overlay
(application-layer) multicast ([6], [13]) has become an increas-
ingly popular alternative to network-supported IP multicast.
While IP multicast is not universally available on the Internet,
and requires allocation of globally unique IP address for
each communicating group, overlay multicast can be easily
implemented over existing infrastructure, and no global group
identifier is required. The interested reader is referred to [7]
for a comprehensive survey on this topic.

In simplest multicast scenario, a dedicated source host
delivers information to a group of receiving hosts. Overlay
multicast is implemented in application layer, and all the data
is transmitted via unicast delivery supported in the underlying
network. Because of bandwidth limitations, it may not be
possible to simultaneously send data from the source to each
receiving host via unicast. An implementation of overlay
multicast uses receiving hosts to forward information to other
receivers. If the data stream intensity does not change, it is
natural to assume that each participating host has a fixed
bound on the number of hosts to which it can communicate.
Bandwidth capacity constraints of this kind translate into

degree constraints on the nodes of the multicast tree. In this
case, to initiate overlay multicast, one needs to construct a
degree-constrained spanning tree in a complete graph, where
the nodes correspond to the hosts, and the edges correspond
to the unicast communication paths.

An important practical problem in this context is to deter-
mine how to construct a multicast tree which minimizes the
largest communication delay observed by the receiving hosts
during a multicast. Various studies have been conducted whose
primary focus is protocol development for efficient overlay
tree construction and maintenance. Examples are Narada [6],
Yoid [8], ALMI [13], Host Multicast [20], NICE [3], Delauney
graph [10]. Some other work in peer to peer network is related
to the tree construction in application level multicast; see e.g.
Chord [18] and CAN [14]. Most of such studies have been
experimental in nature; see e.g. [5], [6], [4], [9], [13], [1]. In
particular, Chu et. al. [5] use a heuristic called Bandwidth-
Latency to build the multicast overlay tree. This heuristic,
described in more detail in [19], selects paths by choosing
those with the greatest available bandwidth (i.e., maximum
possible fanout).

We note that this tree construction problem corresponds to a
graph-theoretic problem of constructing a rooted spanning tree
of minimum radius with degree constraints. Various versions
of the problem have been studied in the literature. The famous
Traveling Salesman Problem [2] is a special case. In general,
the degree-constrained spanning tree problem is harder than
the TSP. In [17], and later [16] and [15], the authors describe
an NP-hard minimum diameter, degree-limited spanning tree
problem (MDDL), and propose heuristics for solving it. In
the minimum-diameter version they consider, the objective is
to minimize largest communication delay between any pair
of participating nodes. However, the quality of the heuristic
solution observed in simulations described in [17] decreases
as the number of nodes increases.

In [11], Malouch et. al. introduce the radius minimization
version, where the distance to the root is minimized. The
authors prove that the problem in general is NP-hard, and
show that in the special case of unit node-to-node delays the
problem can be solved optimally in polynomial time. For the
case of general distances a set of heuristics is described.

For all the proposed heuristics, the scalability issue remains
open. Namely, the worst-case delay bound proven for these
algorithms may grow quickly with the size of the system.
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In this paper we assume that each node can be mapped
to a point in Euclidean space, and node-to-node delays can
be approximated by Euclidean distances between these points.
Under this assumption, we describe an algorithm for construct-
ing a degree-constrained spanning tree, and show that it arrives
at asymptotically optimal solution. The asymptotic optimality
result holds if points are uniformly distributed inside a convex
region in Euclidean space, and at least 2 outgoing links
are allowed at each node. This result easily extends to the
non-uniform distribution case, with the only requirement that
density function is strictly more than some constant � � �
inside the convex region, and is zero everywhere else.

The method of mapping hosts to points in Euclidean space,
with delays corresponding to Euclidean distances, is often used
in the analysis of overlay networks. For example, [16] and [10]
use geographical locations of computers to create a mapping
of hosts to the two-dimensional plane. The advantage of this
method is that no actual network delays need to be measured
to construct the mapping, and subsequently the multicast tree.
Another approach, proposed in work by the Global Network
Positioning group [12], achieves higher accuracy by measuring
some of the delays, and mapping hosts into Euclidean spaces
of dimension 3 and above. In our work, we assume that the
mapping has already been done, for example, using one of
the methods above. We will concentrate on constructing the
degree-constrained spanning tree with minimal radius.

We organize our presentation into four parts. First, we
present a simple constant-factor approximation algorithm for
solving the problem in Euclidean space. We use a constant-
factor algorithm as a subroutine of the asymptotically optimal
algorithm, to connect points inside cells of a polar grid.
Next, we describe our asymptotically optimal algorithm for
the special case of out-degree at least 6 at each node, and
with points uniformly distributed in a two-dimensional disk,
and prove asymptotic optimality. We follow by describing how
to extend the algorithm to work in higher dimensions, with
general degree constraints, and with general convex regions.
Finally, we analyze algorithm performance through simulation.

II. CONSTANT FACTOR APPROXIMATION

Before we can describe the asymptotically optimal algo-
rithm, which is the main focus of this paper, we need to
introduce a subroutine for connecting points within cells of
a polar grid. This subroutine in itself is an approximation
algorithm. It creates a valid degree-constrained spanning tree
for a given set of points in Euclidean space. The length of the
longest path in the tree is within a constant factor of the best
solution among all the possible degree-constrained spanning
trees. This constant approximation factor is independent of the
number of points in the region. Although it is easier to describe
a version of the algorithm for a square, we will describe a polar
version, which is more suitable for this paper’s setting.

Consider ring segment shown on Figure 1 a), with inner
radius �, outer radius �, and angle �. Suppose all the points are
contained within this segment. Assume that the source point,
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���

�����	
�

�	
�

Fig. 1. Constant factor approximation algorithm.

which is the root of the tree, is also specified. The algorithm
proceeds recursively as following:
Bisection Algorithm

1) Divide the segment into 4 sub-segments, by splitting it
with an arc of radius ������� and a ray dividing angle
� into two halves.

2) Pick a representative point in each non-empty sub-
segment, such that its’ radius in polar coordinates is
closest to the radius of the source node. Connect the
source to all the representatives. See Figure 1 b).

3) Repeat the procedure within each non-empty sub-
segment, to connect the points inside the sub-segment,
using the representative point as a local source.

The algorithm constructs a spanning tree in which each node
has at most 4 children. We observe that each path always
moves monotonically along the radius axis. The steps along
the angle axis at each level can be bounded by the angle of
the sub-segment. Therefore, the length of each path � � can be
bounded from above using the triangle inequality as follows:

�� � ����� � �� � � �� �������� ����� � 			 �
� ����� � �� � � �� � ���� (1)

where � is the radius of the source node.
We will now show that this algorithm can be used to

construct a constant factor approximation for a given set of
nodes. We first construct a ring segment to cover all these
points. We pick the center of the ring to be very far, so that
the angle � is small, (	
�� � ��
�), and both � and � are
large, such that � � �	
�. Pick � and � such that � � �
can not be reduced, without leaving some nodes out of the
ring segment. Similarly, assume that � can not be reduced.
Then, since any path must connect to extreme nodes, and using
triangle inequality, it is easy to see, that for the optimal longest
path 
�� the following holds:


�� � ����� � �� � � ���


�� � � 	
� � � �����	

Combining this with (1), for any tree path 
, we obtain:

�� � � �
���
and therefore this algorithm can be used to produce solutions
within a constant factor of the best possible.
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It is not difficult to modify the algorithm to produce a
spanning tree with out-degree 2. To do this, during each
recursive call, connect the source to two points from the same
segment. Points should be chosen to have a radius closest
to the source. Then each of the two points can be used to
connect 2 of the 4 sub-segments, so that all sub-segments
are connected. In this case, the upper bound on the solution
doubles the angle term, since on each level of the path we
now use 2 links instead of one:

�� � ����� � �� � � �� � ���	 (2)

Theorem 1: The Bisection Algorithm provides a solution
within a factor of 5 times optimal for the minimum radius
problem when maximum out-degree is restricted to be 4. The
approximation factor becomes 9 if the maximum out-degree
is restricted to be 2.

III. ASYMPTOTICALLY OPTIMAL ALGORITHM

In this section we describe our hierarchical algorithm to
recursively build multicast trees. We will prove that it is
asymptotically optimal. To simplify the presentation, we will
make several assumptions. These assumptions will be lifted in
the next section.

We assume that the � points corresponding to the communi-
cating hosts are uniformly distributed inside a disk of radius 1
and the source is located at the center of the disk. We assume
each node can forward transmission to at least 6 down-stream
links. The main idea of the algorithm is to divide the disk into
a hierarchy of smaller and smaller grid cells. The algorithm
builds a tree based on the hierarchy to connect the points in
the grid cells. At a high level, our grid partitioning algorithm
proceeds in three stages:
Algorithm Polar Grid

1) Create a grid of equal area cells, partitioning the disk.
2) Connect the cells, using cell representatives, and form a

core network.
3) Connect points within the cells, using the constant factor

approximation algorithm.

We describe the details of each step of the algorithm in the
following subsections. We then evaluate the performance of
the algorithm and prove the asymptotic optimality results.

A. Constructing the polar grid.

First, the algorithm creates a polar grid covering the unit
disk. This grid must have the following properties:

1) All cells of the grid have the same area.
2) Cells are organized in rings. Each containing ring has

twice more cells than the ring immediately inside it.
3) There is at least one point in each cell of the grid, except

for the cells in the outermost ring.

For a fixed number of rings �, we construct the grid by
dividing the unit disk using � circles with the same center,
and radius

�� � ��
�
�
���

� � � � � � � �	 (3)
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Fig. 2. Dividing the disk into ring segments of equal area.

We further divide each ring � into �� equal segments such that
each cell segment on level � is aligned with 2 segments on
level �� � (see Figure 2).

Since the radius of ring � is chosen such that �� �
�
�����,

the area of disk bounded by circle � is twice the area of disk
bounded by circle �����. If we imagine that there are two cells
inside circle 0, then it is easy to see that for each �, circle �
contains twice as many cells as circle �� � ��, and therefore
property 1) holds.

Given a set of points, we choose the number of rings �
as large as possible, such that property 3) is satisfied. In the
analysis section we will show that � increases as the number
of points � increases.

B. Connecting the cells.

According to property 3) of the grid, each ring segment
contains at least one point (except for the outermost segments).
We can choose a point within each segment to be the repre-
sentative of the segment. If there is more than one point in a
segment, choose the point that is closest to the center on the
inner arc of the segment. Cell representatives are connected in
a binary tree, rooted at the source node in the center of the unit
disk. Each representative is connected to two representatives
of next ring cells, aligned with its cell. Outermost ring cells
that do not have any points are ignored.

C. Connecting remaining points within cells.

Finally, in each cell that contains more than one point, we
run the constant factor algorithm described in the previous
section. The algorithm connects all the remaining points, and
the distribution tree is completely constructed.

The constant factor algorithm requires out-degree 4, and
additional out-degree 2 can be used at the representative node
to connect to next level cells, and therefore the resulting
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spanning tree will have maximum out-degree 6. We will
improve on this estimate in the next section.

D. Lemmas.

In order to prove asymptotic optimality of the solution, we
need to show that � increases as a function of number of nodes
�. To do this, we need to introduce the following two lemmas.

Lemma 1: If each of � balls is uniformly and independently
assigned to one of �� buckets (for some fixed �), the prob-
ability 
���� of having at least one empty bucket after the
assignment is complete satisfies


���� � �����
���

	 (4)

Proof: The probability of having at least one bucket
empty is bounded from above by the sum of probabilities of
having each of the buckets empty. Therefore,


���� � ��
�
�� �

��

��
	

Note that ��� � ��� for any �, and inequality (4) follows.

The Corollary below follows immediately.

Corollary 1: If � � �, then 
����� � as ���.

Since we are interested in deriving an asymptotic result,
Corollary 1 would suffice for our analysis. However we would
like to know the values of � that can give useful results even
for small �. The following lemma gives some insight.

Lemma 2: If � � ���� then 
���� � ��� for all � � �.

Proof: Consider ����� � �����
���

. Assume that � �
� � � and � � �. Observe that in this case ����� is a concave
function of �. By taking derivative, we can show that it reaches
its maximum at

��� �

�
�

�� �

��������
	

Notice that ��� is increasing in � and ����� � �. Therefore if
� � ���, the maximum is attained at some ��� � �, and hence
for � � � function ����� is non-increasing. Furthermore, for
any �, ����� � ���	 The lemma follows from equation (4),
i.e. 
���� � �����.

Therefore, since in �-ring grid there are ���� cells, with
high probability we can say that if we require at least one
point in each cell, then

�
� � �����

and therefore,

� � ��� ���� �	 (5)

In our analysis we will assume that � is sufficiently large
and � � �.

�� ��

��

��

��

��

Fig. 3. Proof of upper bound on longest path.

E. Solution analysis.

We can now evaluate the solution quality based on the
uniform distribution assumptions. It is easy to see that, as the
number of nodes � increases, the lower bound of the optimal
solution cost (the longest distance from disk center to any
point) approaches 1 from below. To complete the proof, we
need to show that an upper bound on solution obtained by the
algorithm approaches 1 from above.

Any path � in the constructed spanning tree consists of two
parts: the sub-path 
 connecting cell representatives, and the
sub-path � between the points in the last cell, constructed by
the constant factor approximation algorithm:

�� � �� � �� 	

Making use of (1), we can write

�� � ����� � �� � � �� � ����

for some �� �� �� �, defined by the last cell of path � .
Using the polar version of the triangle inequality, the length

of the path can be bounded from above by computing the
radius and arc components separately. The path which follows
the cell boundaries is an upper bound. For example, in
Figure 3, the length of �� is less than �� � ��, and arc
�� can be upper-bounded by arc �� . The total length of all
the ray segments (similar to ��) is at most 1 minus the radius
of the disk. The ����� � �� � � �� component of �� can be
included in this estimate as well, since we pick the least-radius
point to be our cell representative.

Thus,
�� � � � ���� ��� (6)

where �� is the sum of arc lengths for inner �� � �� circles
of �-ring grid.

Let �� be the length of an arc segment on circle � in the
polar grid:

�� � ��
�

�
�
���

� �
��

�
��

�
�
���

� � � � � �	
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In our estimate of �� only the inner arcs are involved, i.e.
arcs 1 through k-1. Hence,

�� �

����
���

�� �
��

�
�
���

� �� ��
�
�
���

�� ��
�
�

	

Recall that �� in (6) is an arc length as well, for some
ring �:

�� � �	 	

We can rewrite (6) as following:

�� � � � ���� �� � � � ��	 � ��	 (7)

We can show that the right-hand side of inequality (7)
approaches 1 from above as � approaches infinity. Here is
the precise argument. Both �	 and �� are infinitesimal as �
goes to infinity. For any arbitrary small � � �, there exists a
� such that when � � �, the delay value corresponding to
the solution �� is less than �� ���. Based on Corollary 1, for
any arbitrary small Æ � �, there exists an ��, such that when
� � ��, the probability of having at least one point in each
cell is larger than �� Æ��. It is also easy to show that there
exists an �� such that when � � ��, the probability of having
a point in the ring between the circle of radius ����� and the
unit circle is larger than � � Æ��. This implies the minimum
radius is at least �� ���. Therefore, with probability at least
� � Æ, when � � ������� ��� the minimum radius is at
least �� ���. At the same time there is at least one point in
each of the grid cells, which implies �� � �� ���. Under this
condition, the length of the longest path in this tree is within
� plus the value of the optimal solution. This completes the
proof for the asymptotic optimality of Algorithm Polar Grid:

Theorem 2: For any small �� Æ � �, there exists an � such
that with probability greater than �� Æ, when the number of
points � is larger than � , the length of the longest path in the
tree produced by Algorithm Polar Grid is within � plus the
optimal solution.

IV. GENERALIZATION

In the previous section, in order to simplify the presentation,
we assumed that points are uniformly distributed inside a disk,
the out-degree of at least 6 is allowed, and the points belong
to two-dimensional space. The algorithm can be adjusted
accordingly to remove these constraints. We describe the
necessary changes in this section.

A. Out-Degree 2

There is a version of the asymptotically optimal algorithm,
in which at least out-degree 2 must be allowed at every node.
In other words, it is possible to construct a binary tree with
the same asymptotic optimality property.

We have discussed how to adjust the constant factor ap-
proximation algorithm in Section II. A few changes have to
be made to the algorithm that chooses and connects the cell
representatives. In each cell, three cases are possible:

1) There is only one point in the cell. Make it a cell
representative, and use it to connect to the two cells
in the next ring.

2) There are two points in the cell. Choose a point closest
to the center of the disk as the cell representative.
Connect the representative directly to the other point.
Then connect the second point to the two cells in the
next ring.

3) There are three or more points in the cell. Choose the
point closest to center point as the cell representative.
Pick one of the remaining cells to be the center for
connecting other points in the cell. Choose another point
for connecting cells in the next ring. The two special
points are connected directly to the representative point.

The asymptotic analysis and the constant factor approxima-
tion analysis are very similar. The only difference is that the
contributions from the arcs need to be doubled. This is the
case because now two links are used in each cell, instead of
just one link. Since this contribution is infinitesimal for large
�, the constant multiplier can be ignored, and the same proof
can be used to show asymptotic optimality.

B. Higher Dimensions

The algorithm can be adjusted to work in dimensions higher
than two. The most important component of the proof is the
creation of the polar grid, which satisfies properties 1)-3).
The grid can be created similarly, in polar coordinates, by
splitting the �-dimensional sphere into segments. The radius
of each subsequent ring should equal to previous ring radius,
multiplied by �

�
� (so it has twice the volume). Each cell is

split into two along a splitting axis. The splitting axes are
chosen to cycle through all the axes. Although the details of
equal volume split become tedious, a similar proof can be
constructed.

C. General Convex Region

Proving asymptotic optimality for a circle (�-sphere), with
the source in the center, implies asymptotic optimality in
any convex region with arbitrary source placement inside the
region. The algorithm constructs the smallest ring covering all
points and centered at the source, and proceeds similarly as
the circle case. The analysis is very similar. In this case, the
lower bound on the longest path approaches the outer ring
radius from below.

V. EXPERIMENTS

In this section, we provide some experimental results to
illustrate the quality, running time and other properties of
our heuristic algorithms, for problems of different sizes. For
each problem size, we have generated 200 random sets of
points, uniformly distributed inside the unit disk. The average
maximum delay and other parameters of solution trees are
computed. We have tested both the out-degree 6 and out-
degree 2 versions of the algorithm. We have also evaluated the
performance of the three-dimensional version of the algorithm
to connect points uniformly distributed inside a unit sphere.
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TABLE I

EXPERIMENT RESULTS.

Out-Degree 6 Out-Degree 2
Nodes Rings Core Delay Dev Bound CPU Sec Core Delay Dev Bound CPU Sec

100 3.61 1.53 1.852 0.20 7.18 0.002 2.21 2.634 0.31 10.74 0.0015
500 5.26 1.22 1.420 0.08 4.92 0.01 1.61 1.876 0.15 6.96 0.01

1,000 6.06 1.13 1.302 0.05 4.09 0.02 1.40 1.622 0.11 5.66 0.02
5,000 8.01 1.00 1.142 0.02 2.65 0.08 1.12 1.285 0.04 3.44 0.08

10,000 8.97 0.99 1.102 0.02 2.20 0.17 1.06 1.202 0.03 2.76 0.17
50,000 11.00 0.94 1.049 0.01 1.61 0.96 0.98 1.095 0.01 1.88 1.02

100,000 11.98 0.95 1.034 0.00 1.43 2.01 0.97 1.067 0.01 1.63 2.13
500,000 14.00 0.92 1.016 0.00 1.22 11.06 0.93 1.031 0.00 1.32 11.84

1,000,000 15.00 0.93 1.012 0.00 1.15 22.99 0.94 1.022 0.00 1.22 24.52
5,000,000 17.00 0.91 1.005 0.00 1.08 132.34 0.91 1.009 0.00 1.11 142.08

The experiments are run on an Intel Pentium II 400 Mhz
computer with 128 megabytes of RAM.

All the data obtained in our experiments on unit disk is
shown in Table I. Column one contains �, the number of nodes
to be connected. The Second column, “Rings”, is the average
value of � that is, the number of rings for this problem size.
Columns 3 and 8, “Core”, contain the average core delay – the
longest portion of the path between cell representative nodes.
Columns 4 and 9, “Delay”, show the average longest delay
observed in the solution tree. Columns 5 and 10, “Dev” display
the standard deviation of the longest delay. The lower bound
on the delay is close to 1, so the closer delay is to 1, the
better. “Bound” columns show the value of the upper bound
given by equation (7), evaluated at � � �. The reason to pick
� � � is because �� � �	 for all �. In the formula for
upper bound, the coefficient of �	 should be doubled for out-
degree 2 trees. Finally, the “CPU Sec” column contains the
computation times.

To illustrate our results, we have included a set of plots,
based on data shown in Table I. The results demonstrate that
the algorithm converges very quickly.

Figure 4 shows the maximum sender-to-receiver delay, to-
gether with the delay bound and the core delay. The horizontal
axis representing the number of nodes is in logarithmic scale.
This is also the case for plots 5 and 6. The bound used in
the analysis of the algorithms significantly over-estimates the
delay for problems with a small number of nodes. The bound
becomes better and better as the number of nodes increases.
The difference between the core and the total delay does not
diminish. This is because the difference depends on the radius
of the outermost ring, which remains constant as the number
of nodes increases.

Figure 5 combines the plots on Figure 4, and compares the
maximum delay for degree 2 and degree 6. The delay overhead
of degree 2 trees is almost 2 times the overhead of degree
6 trees. This is intuitive, since there is the same relationship
between the bounds on the lengths of the paths. As the number
of nodes increases, the degree of each particular node becomes
less and less important, and the two curves all converge to the
best possible delay of one.

Figure 6 shows how the number of rings, �, in the grid

created by the algorithm changes with the number of nodes,
�. The node axis is again in logarithmic scale. The points
follow almost a straight line. This indicates that there is a
logarithmic dependence, which is implied by (5).

Figure 7 shows how the running time of the program
increases with the number of nodes. The small insert plot
shows the details for problems with nodes between 100 and
10,000. The plot allows us to evaluate the general trend of
the algorithm complexity. In our experiments we observed
that running time increases almost linearly, which makes it
possible to run the algorithm for networks with very large
sizes. We remark that our straightforward implementation
of the algorithm can probably be fine tuned and improved.
Furthermore, in practice, the running time will depend on the
hardware and software environment used.

In fact, during the assignment of points to the grid cells, our
algorithm inspects each point only once, which requires 
���
operations. Then, the bisection algorithm must divide ring
segments, and enumerate all the points within each segment.
Given � points, the bisection algorithm will create at most
� non-empty segments. In the worst case, the number of
operations at this stage can be estimated as 
����, since
each point may be inspected during the processing of each
segment. Since the distribution of points is uniform, the total
running time of our algorithm will be linear in � with high
probability. This can be intuitively explained by the following
argument. Since points are distributed uniformly between cells,
the average number of points in each cell is ����. Our
experiments confirm that the relationship between � and �
stated in (5) holds, i.e., � is a logarithmic function of �
(see Figure 6). Because of this relationship, the number of
points per cell remains constant on average, independent of �.
Therefore, the running time of bisection in each cell is also
roughly constant. Since we require at least one point to be
contained in each cell, the total number of cells is at most

���. Therefore, the total number of calls to the bisection
procedure is at most 
���, leading to an overall number of
operations which is 
���.

Finally, in Figure 8 we demonstrate algorithm convergence
results in the three-dimensional unit sphere. Similar to the
unit disk case, we run 200 experiments for each problem
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Fig. 4. Average maximum delay compared to bounds.

size, and computed the average longest path length. For three
dimensions, the straightforward extension of our algorithm
builds a tree of out-degree 10. In the bisection algorithm, each
cell representative node uses 2 links to connect to cells in the
next ring, and uses at most 8 links to connect to points inside
the cell. As in two dimensions, we modify the algorithm to
construct trees of out-degree no more than 2. In both cases,
the longest path length converges to the lower bound of 1.

Similar to the longest path results on unit disk, shown in
Figure 5, the difference in three dimensions between out-
degree 2 and out-degree 10 trees becomes less noticeable
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Fig. 5. Comparison of average maximum delay for out-degrees 2 and 6.

as the number of nodes increases. Although the asymptotic
optimality holds in general multi-dimensional Euclidean space,
Figure 8 shows that the largest delay in 3 dimensions is
higher than in 2 dimensions, for problems with the same
number of nodes. This can be explained by the increase in
the average distance between uniformly distributed points, as
the dimensionality of the unit sphere increases and number of
points remains constant.

VI. CONCLUSION

We have investigated the problem of constructing an overlay
multicast tree that minimizes the largest sender-to-receiver
delay, and satisfies bandwidth constraints by limiting the out-
degree of nodes in the tree. We approach the problem by
creating a mapping of communicating hosts to points in multi-
dimensional Euclidean space. Using methods described in
[12] or [16] and [10], the mapping approximates the unicast
communication delays between hosts to the distances between
points in the Euclidean space.

In this setting, we describe a simple bisection algorithm
to construct a tree with maximum delay within a constant
factor of optimal for any set of nodes. Next, we assume that
the communicating points are randomly distributed inside a
two-dimensional disk centered around the sender. We describe
another approximation algorithm to build a tree with maximum
out-degree 6. The algorithm uses the bisection method as a
subroutine in each cell of a polar grid. We prove that the al-
gorithm creates a tree with maximum delay that asymptotically
approaches the best possible, as the number of nodes increases.
This result implies that as the number of communicating
hosts grows, it becomes possible to construct better and better
overlay multicast trees. In particular, for many remote leaf
nodes, the communication delay from the source will decrease.

Next, we describe how to extend our grid-based algorithm
to construct trees of out-degree no more than two, to work
with points in more than two dimensions, and to work with
general convex regions, not limited to spheres. We show that
asymptotic optimality is preserved during all modifications we
make.
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Finally, we implement the algorithm, and perform simu-
lation experiments to analyze its performance. Experimental
results show that, in practice, the algorithm converges much
faster than the theoretic bound we derived. Furthermore, the
experiments confirm that the running time of the algorithm
grows almost linearly with the number of nodes, and the
algorithm is reasonably scalable.

Our algorithm can also be applied to the minimum diameter
version of the problem, described in [17] and other papers. The
bisection algorithm provides a larger factor approximation for
the minimum diameter problem. But the asymptotic optimality
of our algorithm can not be guaranteed for any convex region
in Euclidean space, although the result still holds for points
uniformly distributed in a sphere. To construct an optimal
solution in the sphere, an artificial root node should be chosen
among nodes closest to the sphere center. In general convex
regions, the algorithm will only find a tree with delay within
factor of 2 of the optimal as the number of nodes becomes
large.

Since for all mapping methods, there is usually a discrep-
ancy between the Euclidean distances and the actual trans-
mission delays, it is interesting to see how well the algorithm
performs in combination with the mapping. We leave this for
future work. Also, we note that in practice, there is interest in
a decentralized version of the algorithm.
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