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Abstract

Network file serving applications often use caching to
increase throughput and capacity.  Furthermore,
caching in the operating system’s kernel multiplies
these benefits.  What these caches lack are the ability to
receive or retrieve content from many disparate
sources.  Adaptive Fast Path Architecture (AFPA) [3],
a network server accelerator implemented for HTTP,
suffered from this same limitation.  AFPA not only
required the caching of static content from the file
system but dynamic content generated from a myriad of
sources.

This paper introduces an architecture designed
specifically to address the many combinations of HTTP
content sources and caching techniques required by
AFPA.  N-source In-kernel Cache (NICache) is an
in-kernel cache capable of caching both
application-specific and application-independent data
and delivering it via any application protocol.  Data
may come from a variety of sources and may be stored
in the kernel using numerous kernel specific
mechanisms.  NICache provides a framework for a
generic multiple source, in-kernel cache that provides
extensive flexibility without negatively affecting
performance for static content and potentially
significantly increasing the performance of serving
dynamic content.  NICache has been implemented on
Linux and Windows 2000 for an HTTP reverse-proxy
cache, AFPA. 

1.0 Introduction

HTTP servers can be accelerated via in-kernel caches
caching static files [1, 2, 10].  Adaptive Fast Path
Architecture (AFPA) [3] demonstrated the performance
gains of caching static HTML files in memory via the

Windows file cache and pinned memory1.  As the World
Wide Web has moved towards dynamic content
(estimated at 30 percent [4, 19]), the need for caching
dynamically generated content has grown.  Caching of
dynamic content is especially important because it is
compute intensive; a dynamic page may require several
orders of magnitude more computation time than a static
page of comparable size [5].  Dynamic content can be
generated from various mechanisms (JSP, PHP, CGI,
Apache modules, databases) either locally and remotely.
This disparity places the requirement of caching content
from many sources on the caches such as AFPA.  This
content may arrive in different formats and may need to
be cached using different kernel mechanisms.  

AFPA also includes a reverse split-connection, thereby,
forwarding requests to other HTTP servers.  Proxy
caching has been established as an efficient means of
offloading work from busy back-end servers [4], and
AFPA, already having the caching capability, had the
requirement to cache the eligible responses.  The
addition of caching dynamically generated content and
responses from back-end servers led to convoluted
algorithms and structures with type fields for both the
source and the storage mechanism.  Each cache object,
that is, an application specific set of cached data,
contained many different elements for each of the
different sources of data resulting in wasted memory.  A
more architected solution was needed.

To solve this problem, AFPA has been enhanced with
N-source In-kernel Cache (NICache) - an architecture for
building in-kernel caching applications to handle the
ever-increasing combinations of sources and storage
mechanisms in a flexible and extensible fashion without
sacrificing performance.  N-source In-kernel Cache
separates information about the source of the data from
the caching mechanism itself, thus allowing for new data
sources or caching techniques to be added with minimal

Kernel-level Caching of Dynamic HTTP Content from Many Sources

Jason LaVoie and John M. Tracey
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY  10598

{lavoie, traceyj}@us.ibm.com

1 Pinned Memory, also know as non-pageable memory or non-paged pool, is guaranteed  to reside in physical
memory thus can be accessed at all times and all IRQL levels. [23]
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impact on existing code.  The architecture is application
protocol and operating system independent and
includes policies and APIs for managing the cache.
Once data is cached, NICache manages the cached data
efficiently and effectively in areas such as expiration and
time to live for weak consistency [21] while managing the
system resources it uses.  Since NICache can choose
between different kernel mechanisms for content
storage, resource utilization for various resources can be
closely monitored and controlled.

Furthermore, caching of entire files and application
responses is no longer sufficient.  Fragment caching,
that is caching portions of HTTP responses, saves a
significant amount of CPU time [5].  The NICache
architecture allows for the composition of content -
either from the cache or retrieved for assembly.

The primary design goal of NICache is achieving
flexibility and extensibility without negatively impacting
performance.  Given NICache’s integration with AFPA,
performance is always a key concern.  Strict resource
management and full control of the cache from the

application is also important.  Meeting these design
goals results in an architecture allowing customization of
the cache while maintaining performance levels.

In this paper the overall design of AFPA with NICache is
introduced, followed by a description of the NICache
architecture.  After the components are defined, the
important relationships and interactions between the
components are dis cussed.  Performance data is then
provided presenting the impact of NICache, followed by
implementation limitations.  Lastly, related work and a
conclusion are presented.

2.0 Architecture

This section presents and overview of the entire
architecture.  Subsequently, the NICache architecture is
explored in greater detail.

2.1 Overall Design

Figure 1 provides an overview of AFPA including
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Figure 1:  Overview of AFPA with NICache
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NICache.  The architecture provides a general-purpose
framework that is augmented with support for one or
more applications such as HTTP or LDAP. We refer to
the application support simply as “the application” or, in
some cases, “the kernel application” to distinguish it
from application functionality implemented at user-level.
NICache allows caching of data from multiple sources by
separating caching from retrieval. This separation is
mirrored by encapsulation of functionality into Cache
Objects and Data Sources. The division of responsibility
between a Cache Object and Data Source can be
highlighted by example. One Cache Object might
leverage an in-memory file system cache for backing
store, while another could explicitly allocate and manage
its own pinned or pageable memory. Different Data
Sources might retrieve data from a file system, an HTTP
server, and a user-level application server respectively.
Any Cache Object can be used with any Data Source.

AFPA provides a name facility that allows one or more
application-specific names to be associated with a Cache
Object. In the case of an HTTP application, a name might
simply be a URL. A more sophisticated name
implementation might also allow for constraints on
various fields of an HTTP request such as cookie or
accept headers. AFPA allows an application to
instantiate one or more name spaces in which it can
create, delete and look up names. Specific functionality
such as comparison of names is provided by the
application.

In Figure 1, the processing of a request for static content
begins when AFPA receives the request and parses it to
obtain the name (URL in this case) in its
application-specific request parser (1). Next, the
application invokes a routine in NICache to look up the
name in the name space associated with the application
(2). If the name is found, then a reference to its
corresponding Cache Object is returned to the
application. Now, the application calls the generic send
engine to send the Cache Object (3). The send engine is
provided by AFPA for the application to use when
sending responses to clients. The send engine invokes a
get data routine in the Cache Object to obtain the data
for the response (4). If the Cache Object has valid and
non-expired cached data, then it will immediately return
the content. Otherwise, the Cache Object obtains the
required response data by invoking a get data routine in
the corresponding Data Source  (5). The Data Source
retrieves the data from the appropriate source, e.g., a file
in the file system or another server via HTTP, and
returns it to the Cache Object. The Cache Object
subsequently returns the content to the application.
Finally, the send engine generates the appropriate [20]

HTTP response headers and sends the response (6).
The interaction between AFPA, Cache Objects, and Data
Sources will be covered in more detail in section 2.2.6.

2.2 NICache Architecture

The requirements for closely tying certain data
structures with their behaviors and inheritance within
the design led to an object-oriented design.  Due to the
many-to-many relationship between the sources of
content and the storage of content, an object-oriented
approach aides in solving many design problems.  Figure
2 provides a UML-style [6]  object diagram.  This section
contains a description of each of NICache’s objects
followed by a discussing of their relationships.  More
detail on the implementation of specific derivations of
NICache’s primary objects can be found in section 3.0.

Though NICache is discussed in the context of AFPA,
the design presented herein can be applied to a variety
of network file serving applications.  To that end, it is
built as a library to be used by in-kernel applications
such as AFPA.

2.2.1 Cache Objects

The fundamental object in NICache is the Cache Object.
The Cache Object represents the cached form of a single
unit of data and supplies functions for efficient access to
the content.  NICache supports any number of varying
types of Cache Objects as long as they inherit from the
parent Cache Object.  The abstract parent class contains
members standard in all Cache Object types, such as
reference count, a unique name, locks, access rate and
expiration time along with other metadata.  Likewise, the
parent Cache Object specifies those functions, often
referred to as virtual functions, that must be defined by
the children Cache Objects.  These functions, which will
be discussed in detail later, include GetData, Suspend,
Cleanup, and Create.  Each instance of a Cache Object
represents a single logical unit of cached data, such as a
file or output from a program, identified by a unique
name.  A Cache Object’s name will be mentioned
throughout this paper; however, its attributes and
construction are application specific and outside the
scope of this paper.  

All Cache Objects have metadata as a member.
Metadata has two components: one application specific,
the other application independent.  The application
independent portion of the Cache Object’s metadata
contains that information which is generic across all
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applications.  This includes expiration time, size, last
modified time, content type, and content encoding.  The
application dependent portion of the metadata is a
generic reference to a buffer that is set and filled out by
the application and/or Data Source.

By design, Cache Objects are completely independent
from the actual source of the data.  Fundamentally,
Cache Objects store data and return it upon request.
Cache Objects can contain references to other Cache
Objects of any type.  This inclusion allows Cache
Objects to be composed of other objects, thus removing
duplicate cached data and allowing for object assembly.
The collection of all instantiated Cache Objects is “the
cache”.

2.2.2 Data Sources

Data Sources identify the source of content and possess
logic to obtain the latest version of the content.  As with
Cache Objects, Data Source types have an abstract
parent class containing members and methods standard
to all Data Sources.  Members for Data Sources include a
reference to actual data (if any) and an expiration time of
that data (if any).  A Data Source may temporarily have a

reference (or copy) of the data while obtaining it from the
actual source.  Common methods in Data Sources are
GetData, Validate, Create, and Cleanup.  The GetData
routine is called by the Cache Object to retrieve the
latest version of the data.  The Validate method is used
by the Cache Object to determine whether the current
version of the cached content is still valid.  Testing for
validity allows a Cache Object with expired content to
verify it has up-to-date data without actually transferring
data if it has not changed.

Each Data Source instance is responsible for retrieving
content at the request of a Cache Object; therefore, each
instance is associated with a single Cache Object
instance.  Data can arrive from a variety a sources:  files,
HTTP servers, FTP servers, user-level programs, etc.

Data Sources maintain coherency between the source of
the data and the cached version in the Cache Object.  If
the content changes (file-change notification, database
trigger [8, 9], HTTP push), then the Data Source must
invalidate the Cache Object’s version of the data.  For
example, File Data Sources have a FileChangeCallback
function that is registered as a callback with file systems
that support such a feature (e.g. NTFS).  In the event the
file changes, this callback function will invalidate the

Figure 2:  UML Object Diagram
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Cache Object’s data.  Invalidation is encouraged
whenever applicable because it maintains strong
consistency (versus time to live), and it performs better
than other methods used for strong consistency [21].

2.2.3 Resource Utilization Objects

Resource Utilization Objects are simply a list of system
resources used by a particular Cache Object.  System
resources tracked by these Utilization Objects include
the usage of pageable memory, non-pageable memory,
and system page table entries.  The latter is a limited
resource on some operating systems (e.g. Windows)
that  is consumed when chunks of memory must be
mapped into the kernel address space.  The system page
table, which is limited in size, maintains the kernel
address to physical page mapping.  Resource Utilization
Objects are used to determine resource utilization by
NICache and to determine on which Cache Objects to
perform resource balancing operations.   Each Cache
Object has a single Resource Utilization describing the
resources consumed by that Cache Object.

2.2.4 Cache Object Containers

Cache Object Containers (also referred to as just
Containers) are standard searchable/sortable data
structures conforming to an interface specified by the
abstract parent Cache Object Container class.  This
standard interface, including methods for adding,
removing, and searching, allows NICache to use many
disparate Containers for different purposes with little
regard to what the actual Container is.  This allows the
application utilizing NICache, AFPA, to employ
Containers best suited to its task.  A Hash-Table and
Linked-List were two types of Containers used in the
AFPA implementation.  Containers contain references to
Cache Objects.  

2.2.5 Cache Object Manager

The Cache Object Manager manages all Cache Objects
in NICache in regards to lookup, creation, and deletion
requests from the kernel application.  These interactions
are shown in Figure 3.  The lookup API is used by AFPA
to retrieve cached content based upon the object’s
unique name.  The Cache Object creation function in the
Cache Object Manager takes as input a Data Source and
returns a newly constructed Cache Object. When a
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Figure 3:  NICache - AFPA Interaction
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request to cache new content is made into the Cache
Object Manager, it must choose the “best” mechanism
(a.k.a. Cache Object type) to cache the data.  This choice
is made based upon the resources available on the
system, the type of data in the Data Source, and those
resources used by current instances of Cache Objects
via the Resource Utilization objects.  Cache Objects can
be deleted when they expire or when they are determined
to be expendable in a resource-constrained environment.
The Cache Object Manager chooses which Cache
Objects to remove based upon access rates, last
accessed times, and the resources utilized by the Cache
Object.  For example, if pinned memory becomes
constrained, the Cache Object Manager may decide to
remove a number of Pinned Memory Cache Objects with
low access rates that are utilizing large amounts of
pinned memory.  To aid in this  process the Cache Object
Manager could have a Priority Queue Container that
stores only Pinned Memory Cache Objects sorted by
pinned memory utilization or access rate.

Using the Cache Object Manager as the focus of control
allows strict resource tracking to be done.  At any time
the Cache Object Manager can calculate NICache’s
approximate utilization of many system resources.
Furthermore, upon finding out a high-water mark for a
system resource has been crossed, the Cache Object
Manager can make appropriate adjustments, such as
deleting, suspending or morphing Cache Objects.  When
a Cache Object is suspended, its cached content is

removed and the resources used to store it are freed;
however, the Cache Object instance is allowed to persist.
This is done to avoid the overhead of instantiating a
new Cache Object if heap memory is not constrained.
Morphing a Cache Object from one type to another type
can be done if one resource used for caching is
constrained, but another is not.  Morphing essentially
results in copying a Cache Object’s metadata into a new
object of a different type.  The data is then converted
from one caching mechanism to another.  Morphing a
Cache Object eliminates the overhead of deleting a
popular Cache Object and replacing it right away.

The Cache Object Manager also handles expiration
processing.  Using timers, Cache Objects can be
inspected at regular intervals to determine if the content
has expired.  A Cache Object with a low or zero access
rate that has expired may be deleted, while a Cache
Object with a higher access rate that has expired will be
invalidated.  By simply invalidating an expired Cache
Object, during the next request for that object, NICache
avoids the overhead of creating a new Cache Object and
retrieving the content from the source.  Furthermore, if
the data has not changed, it can be validated thus
avoiding the population of the Cache Object which
could involved a costly transfer of data.  The population
of Cache Objects and the validation of expired content is
discussed in more detail in the next section

2.2.6 Object Interaction

Figure 4: Object References
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Figure 4 illustrates the reference relationship between
instantiated objects.  Each Cache Object instance in the
diagram can be any Cache Object type, and each Data
Source instance can be any Data Source type.  Container
1 is some sort of a list structure, while Container 2 is
more of an array structure.  As seen in this figure, Cache
Objects are associated with (maintain a reference to) a
single Data Source and vice versa.  This is because each
piece of cached content needs to be retrieved from a
distinct source.  For example, if a file is being cached, the
ability to locate and reload that particular file is needed.
Although it is intuitive to believe System Cache Objects
will always have a File Data Source, it is not a
requirement for NICache. 

Containers hold references to Cache Objects as seen in
Figure 4, and a Cache Object must be present in at least
one container at all times (so it can always be located).
Typically, the Cache Object Manager will employ many
different containers:  one for fast searches (Hash Table),
one for deletion processing (a weighted Linked List or a
tree structure), and perhaps one for each type of Cache
Object (Linked Lists) for resource recovery.  Many
Containers are needed because a Container that is
efficient at lookups may not be best suited for sorting
certain types of Cache Objects based on utilization or
other criteria.  All additions, deletions, and lookups done
on Containers are done via the Cache Object Manager.
Figure 4 shows two containers holding references to
every instantiated Cache Object.  The behavior of the
cache can easily be altered by replacing or adding
Containers.  Figure 3 shows the Cache Object Manager’s
interaction with the Containers when responding to calls
from AFPA.

After AFPA has obtained a needed Cache Object via the
Cache Object Manager (i.e. Lookup in Figure 3), it must
now request the content stored within the Cache Object.
The GetData function shown in Figure 3 must be called,
passing in such information as the length and offset of
the needed data and a pointer to a callback function.
NICache makes no assumption as to whether the caller
of GetData can block or not.  To that end, NICache uses
an asynchronous interface (represented as dashed lines
in Figure 3) for retrieving the data from Cache Objects.
By extension, the data returned to AFPA is always
pinned into memory (i.e. it is not pageable) so AFPA will
not encounter a page fault when referencing the content.
Pageable Memory Cache Objects need to temporarily pin
data when it is passed to AFPA.  Cache Objects do not
have any data when created; therefore, upon the first
request for data from AFPA, the Cache Object must

request data from the Data Source.

Each Data Source must also support an asynchronous
GetData call, which is made by a corresponding Cache
Object.  The interface between Cache Objects and Data
Sources is also non-blocking because a Cache Object
instance may have partial data that is ready to be
returned to the application but is waiting for the next
chunk of data from the source.  There is no need to delay
returning part of the data while waiting for the Data
Source to respond.  More importantly, there is no need
to hold up a process for the unbounded amount of time
it may take for a source to respond.  After retrieving data
from the source, the Cache Object’s callback function is
invoked, passing in a reference to the data or file handle
and metadata.  Without knowledge of the caching
mechanism employed by the Cache Object, it is not
enough for every Data Source to return references for
buffer addresses.  Typically, most Data Sources will
return references; however, a File Data Source passing
buffers to a System Cache Object results in a frivolous
file read.  In addition it prevents the GetData from
behaving properly (because it needs to issue its own
read with the file handle).  In the special case of the
pairing between a System Cache Object and a File Data
Source, a file handle should be passed to the Cache
Object.  Since all sources should work with all Cache
Objects, File Data Sources always return file handles and
places the responsibility of reading the file onto the
Cache Object.  Each type of Cache Object should have
the capability of receiving data in either format.   What
happens if the Cache Object Manager decides an HTTP
response should be cached by a System Cache Object?
The HTTP response does not have a file name or
directory on the local machine, but to be resident in the
system (page) cache a file must exist.  It is up to the
Cache Object to create a temporary file and write the
HTTP response to the file.  Removal of the file is the
Cache Object’s responsibility.  If a new response for the
same URL arrives from the source, then the file must be
refreshed.  Other Cache Object types may need to do
something similar because not all data arrives in the
format required by the storage mechanism. 

Once the content received from the client is cached
within the Cache Object, AFPA’s callback function is
called, passing in the content.  The Cache Object’s
callback function and AFPA’s callback function can be
called many times for the same respective GetData
request.  This allows the data to trickle in from the
source, but still be served to the application.  Figure 5
demonstrates the double GetData asynchronous call
pattern between AFPA, a Cache Object, and a Data
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Source.  Subsequent requests into a Cache Object with
valid data result in AFPA’s callback being called without
contacting the Data Source until the content becomes
invalid.

A Cache Object’s data may become invalid by the Data
Source responding to an update from the source, the
Cache Object Manager flagging the data as expired, or
the Cache Object itself.  Each request for data results in a
self-check of the expiration time by the Cache Object.
When the Cache Object receives a request for content
that has become invalid, the Cache Object submits an
asynchronous Validate call to its associated Data
Source.  Dykes et al [20] discuss the benefits of
validating data instead of blindly retrieving it for large
enough files.  If a mechanism for validating data exists
within the source (e.g. HTTP HEAD request or a file’s
last modified time), then the Data Source should check
the validity of the data.  If the data stored in the Cache
Object is still valid, the Cache Object’s validation
callback is called with a new expiration time.  If the data
is no longer valid, the callback is returned with a status
indicating as such, and the Cache Object instance must
submit a GetData request to the Data Source.

Each GetData request into an instantiated Cache Object
may get forwarded to subordinate Cache Objects if the

data requested falls within that subordinate Cache
Object.  For example, if a Cache Object has ten bytes of
data and includes another Cache Object containing 50
bytes, a request for the first 20 bytes will result in ten
bytes served by the first Cache Object and the first ten
bytes of the subordinate Cache Object.  In the event
many GetData requests are made into a Cache Object
that does not have the needed content, then all requests
are queued at the Cache Object.  A single GetData call is
made into the Data Source for the requested data.  When
the Cache Object’s callback function is called, all
pending requests for the needed data are completed.
This queuing prevents many GetData calls into the Data
Source, and thus many calls out to the source of the
data.  GetData calls into the Cache Object for different
ranges of the data that are not present result in
respective GetData calls to the Data Source.

3.0 Component Detail

3.1 Cache Objects

Cache Object types differ by the technique in which data
is stored.  System Cache Objects store data by pinning it
in the kernel’s system cache (page cache).  On
Windows, this is done by issuing a CcMdlRead system

GetData(offset, length,
              AppCallback)

Application :CacheObject :DataSource Source

Retrieve from source.

Data1..*

GetData(offset, length,
             COCallback)

COCallback(Data. metaData)1..*

AppCallback(Data, metaData)1..*

1..* indicates
one or more

calls

Source
Specific

Figure 5:  Sequence Diagram
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call [22] passing in a file handle, offset, and length.  The
result of this call is a reference to a pinned Memory
Descriptor List (MDL) that can be returned to AFPA in
response to a GetData call into the Cache Object.  On
Linux the System Cache Object issues a
do_generic_file_read2 system call passing in a file
handle and a custom actor function3.  The actor function
increments the page_count on those pages holding file
data in the page cache.  By incrementing the
page_count, the pages will not be removed from the
page cache because they will be considered ‘in use’.
The System Cache Object maintains the file handle as
part of its member data.

Pinned Memory Cache Objects store the data in pinned
memory, that is, non-paged pool on Windows and kernel
memory on Linux.  GetData calls are satisfied by
returning the page or pages that contain the requested
data either as MDLs on Windows or a list of pages on
Linux.

Many other mechanism can be used to store content.  If
supported by the operating system, pageable memory
can be used in a Pageable Memory Cache Object.
Custom mechanisms, such as a HashTableOnDisk Cache
Object could store large amounts of data using efficient
persistent storage [7].  Virtually any kernel mechanism
for storage can be used as a Cache Object as long as the
implementation conforms to the attributes and methods
parent Cache Object.

3.2 Data Sources

Data Source types differ by the source they represent.
An HTTP Data Source, for example, maintains a URL and
host name for the content stored in its associated Cache
Object.  Additionally it stores any pertinent headers (e.g.
range) specified by AFPA.  The HTTP Data Source’s
GetData function formulates an HTTP GET request and
submits it to the TCP stack.  When data begins
streaming in from the HTTP server, a callback within the
HTTP Data Source that was registered with TCP is
called.  This callback, in turn, parses the HTTP response
headers and streams the data buffers along with
metadata stripped from the response(s) to the Cache
Object.  The HTTP Data Source’s Validate method works
much like the GetData request.  A call to the HTTP Data
Source’s Validate function results in the generation of an
HTTP HEAD request.  This request is submitted to the

TCP stack (after registering the appropriate callback).
When this callback is called with a response, it will
examine the response code.  If the response indicates the
data is still valid, then new metadata (gathered from the
response headers) including the expiration time is
passed to the Cache Object.  Otherwise, the Cache
Object is notified that its content is invalid.

A File Data Source, on the other hand, maintains a
process identifier and a file name.  The process identifier
is the thread id of the thread that opened the file. This is
needed for closing the file in the appropriate context.  A
File Data Source’s GetData function entails checking the
interrupt request level, opening the file and collecting
metadata (size, last modified time, file type) about the file.
If GetData is called at elevated IRQ (i.e. at
interrupt/dispatch level), then the rest of the processing
is deferred to a thread.  Upon opening the file and
collecting metadata, the Cache Object is passed the file
handle and metadata.  A File Data Source’s Validate
method consists of checking to see if the last modified
time is greater than that in the metadata currently stored
in the Cache Object.  The Cache Object is notified as to
whether the current form of the data is current.

A Buffer Data Source is a simplistic Data Source
describing a pageable buffer that is used to pass buffers
of generated content from user level to kernel level.  The
GetData function for a Buffer Data Source entailed
returning requested portions of the buffer.  The Validate
function for a Buffer Data Source always returns
“Invalid” because there is no way to verify the contents
with user level.  A more robust user-level Data Source
that eliminates copying user-level data into the kernel is
planned.  This more robust data source based on IO-Lite
[28] will allow two way communication, therefore
validation, between the kernel and user mode operating
environments.

4.0 Performance Analysis

In this section we present an analysis of the performance
of AFPA employing NICache.  We will demonstrate the
effect caching of dynamic content has on throughput
based on the cacheability of the content.  Furthermore,
we will show the impact of NICache on AFPA when only
static content is requested to show the effect of the
overhead of NICache.

3 In Linux, an actor function is a function passed into the generic file read function that performs application
specific operations during the read (such as copy into a buffer). 

2 Defined in the 2.4 and 2.5 Linux kernel source trees in /mm/filemap.c.
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4.1 Workload

We used a single synthetic workload in our experiments:  
SPECweb99 [11].  SPECweb99 is an industry accepted
benchmark that requests files ranging in size from 100
bytes to 900 kB.  This benchmark requests a mix of both
static and dynamic content of various types.  We vary
the mixes for different tests to highlight different aspects
of the software, and we will note these variations when
discussing the tests.  Depending on the test, we also
restrict the number of directories for requested files.

Because of these modifications, the results presented
here do not meet SPECweb99 reporting guidelines and
are not certified SPECweb99 results.  Reasons for these
modifications follow.  When evaluating AFPA against
TUX [10], our intent was to evaluate the ability of AFPA
and TUX to serve static content from RAM, not to
generate dynamic content.  When evaluating NICache’s
ability to manage and deliver dynamic content, we
eliminate static content because it becomes noise in the
results.  SPECweb99 is designed to increase the number
of directories requested by the clients as the load the
server is subjected to (in terms of the number of
simultaneous connections) increases.  The number of
directories is related to the number of simultaneous
connections according to the following formula:  D =
(3.27 * C) / 5 + 25, where D is the number of directories
and C is the number of simultaneous connections.  Each
directory includes 36 files totaling approximately 4.88
MB.  For a C of 2000, for example, the clients would
request 1336 directories (or approximately 6.3 GB).  As
the server we used was configured with “only” 2 GB of
RAM, we limited the number of directories so we could
evaluate each (software) server's performance serving
content from RAM, which is their primary purpose.
Allowing the clients to request the SPECweb99
mandated number of directories would have essentially
amounted to evaluating the disk performance of the
server, which was not our intent.

4.2 Test Environment

Our experiments were performed on an unmodified Red
Hat Linux 2.4.18-5 kernel running on an IBM eServer
xSeries 300 with dual 866 MHz Pentium III, 4 x 512 MB
RAM (2 GB total), and two ACEnic gigabit Ethernet
adapters.  No attempt was made to tune the TCP stack
(other than any settings AFPA or TUX may have
modified themselves.)  Although an SMP kernel was
used, only a single processor was used for our
experiments.

Our test environment included twelve SPECweb99 client
machines:  IBM Intellistation Z-pros, running Windows
2000 SP2.  Each of these machines contained two 450
MHz Pentium II Xeon processors, 512 MB RAM, and a
single ACEnic gigabit Ethernet adapter.  An Extreme
Networks Summit 7i gigabit Ethernet switch connected
the twelve clients to the server.  The network was
configured so six clients communicated with a single
adapter on the server.

4.3 Static Content

2,185TUX
2,253AFPA with NICache

Simultaneous
Connections

Table 1

Table 1 contains the results from our first experiment.
Caching only static content which completely fits into

RAM (25 SPECweb99 directories), AFPA achieved about
3% more simultaneous connections than TUX under
identical conditions.  AFPA with NICache used File Data
Sources to describe the static files and used System
Cache Objects to cache the content of those files.

The added flexibility and extensibility of NICache does
not have a negative effect on the performance of AFPA.
Due to major changes to the infrastructure of AFPA to
accommodate NICache, a before and after comparison
will not yield a valid comparison.  

4.4 Dynamic Content

Since NICache provides the capability to cache dynamic
content, this next experiment only uses SPECweb99
dynamic content generated by Apache 2.0.43 and a
statically linked Apache module.  Apache was
configured to use all standard defaults.  For the
AFPA/NICache results, the dynamic content generation
module was augmented with logic to populate the AFPA
cache based on a percentage of cacheability.  For a
given request, AFPA checked to see if it can serve the
desired content from the cache.  If not, the request was
“punted” to Apache.  Apache then invoked the module
to generate the content.  If the content was deemed
“cacheable”, then the module would call an API to
populate the AFPA cache.  Apache would then respond
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to the initial request.  Subsequent requests for that
content (i.e. URL) could then be served out of the cache.
Cacheability is a percentage dictated by a parameter
passed into the Apache module.  Configured to use 20
SPECweb99 directories, 90% cacheability means the
module demand-populated AFPA with directories 0 - 17.
Fifty-percent cacheability means AFPA is populated
with directories 0 - 9.  When cacheability was 0%, all
HTTP requests still pass through AFPA and are handed
off to Apache.  Cached content inside of NICache was
given an infinite expiration time.  Buffer Data Sources
were used to pass dynamically generated content to the
kernel.  Pinned Memory Cache Objects were used for
caching this content.

Figure 6 shows the results of varying cacheability.  Of
course, the Apache case was not using AFPA/NICache;
therefore, the results are a straight line with a slope of
zero.  When cacheability is set to 0%, AFPA/NICache
provide negligible overhead in terms of throughput.
AFPA/NICache doubles the throughput of Apache
2.0.43 at 60% cacheability.  At 100%, AFPA/NICache
provide a benefit of a factor of about 6.8.

The NICache results were expected to be approximately
linear; however, the curve is concave with a knee around
70%.  We believe this is due to the connection hand-off
from AFPA to the user-space server.  This process is
detailed in [1].  When keep-alive is used (and it was for
these experiments), after a connection  is handed to
Apache, that connection remains in user-space until
MaxKeepAliveRequests is reached or the maximum
number of requests per connection in SPECweb99 is
attained.  For these tests, the Apache default of 100 was
used for MaxKeepAliveRequests, and SPECweb99’s
default of ten was used for the average number of
requests per keep-alive connection.  Seventy-percent of
the requests in SPECweb99 were keep-alive.  Returning
to Figure 6, as cacheability increases, the likelihood of
passing a connection to the user-level server decreases,
thus causing a sharp increase after 70%.  We believe this
makes a case for more cacheable dynamic content to
increase benefit.  We also assert this gives validation to
the notion of adding a configurable layer-7 router [3] to
AFPA to give locality to dynamic requests on back-end
HTTP servers.

2,2591,7161,020725576475414372340310286AFPA/NICache
288288288288288288288288288288288Apache
1009080706050403020100

Figure 6:  Dynamic Content Results
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4.5 Conclusions

The amount of dynamic content on the Internet will most
likely increase.  As long as a percentage of that content
is cacheable, even for a short duration, benefits can be
derived from caching.  Studies have shown dynamic
content to be more cacheable than previously thought.
[27]  Although the results presented only contain two
sources (file system for static content files and an
Apache module for dynamic content), NICache provides
a flexible and extensible framework for caching content
from a variety sources.  It does this while maintaining
high performance and not impacting the miss case.

5.0 Implementation
AFPA with NICache has been implemented in C for both
Linux and Windows.  The Linux version contains the
NICache framework, two Cache Object containers - a
hash table and linked list, two Cache Object
implementations - System Cache Object and Pinned
Memory Cache Object, and two Data Sources - a File
Data Source and a Buffer Data Source.  NICache was
implemented in about 4,800 non-blank lines of code, and
the AFPA portion consists of about 14,000 non-blank
lines of code.  Although the aforementioned experiments
were run with only one Cache Object and one Data
Source implementation each, many Cache Object and

Data Source types can be used simultaneously.

The Windows version of NICache includes the
framework, a single Cache Object Container - a hash
table, two Cache Objects - System Cache Object and
Pinned Memory Cache Object, as well as two Data
Sources - File Data Source and HTTP Data Source.  Of
the 50,000 lines of code reported by the Windows’ driver
build utility [25], about 45,000 is the AFPA
implementation4 and 5,000 the NICache implementation.

As mentioned previously, the NICache architecture was
constructed using an object oriented paradigm.  Figures
7 and 8 show the main components of the parent Cache
Object and Data Source ‘classes’ respectively.  The
attributes and methods are common across both
platforms.

Performance numbers for fragment caching  were not
presented because that portion of the software is not yet
implemented.

6.0 Related Work

A wide variety of research in the area of Web caching
[12] has been done.  We outline some of the most
relevant work here.  To our knowledge, no other studies
on multiple source in-kernel caches have been
performed.

Several Web caches have been implemented for the
kernel and can be categorized by their integration with
the TCP/IP stack.  Microsoft’s Scalable Web Cache

4 The AFPA source code is much larger on Windows than Linux because the Windows code contains a layer-7
router and a proxy.  Details can be found in [3].

Attributes:
    AccessRate
    referenceCount
    cacheObjectLock;
    CacheObjectMutex
    *pDataSource;
    *pCacheObjectManager
    *pSearchKey;
    *pMetaData;  

Methods:
    GetData
    Suspend
    Cleanup

    GetDataComplete
    ClearData
    SendComplete

 
 Figure 7:  Cache Object Specification

Attributes:
     *pCacheObject;
     union {
         *pData[]  ( temp buffer)
         fileDesc
     }
    dataSize;
    expirationTime

Methods:
    Cleanup
    GetData
    Validate

Figure 8:  Data Source Specification
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(SWC) [14] is highly integrated with the Windows
TCP/IP implementation.  Linux’s kHTTPd [24] employs
kernel-mode socket interfaces.  Both of these Web
caches handle requests using kernel-mode threads.  Red
Hat Content Accelerator [10], otherwise known as TUX
uses a threaded model but offers greater performance
and features over kHTTPd on Linux.  Although TUX
uses the file system to cache content, it has its own
cache directory management so that the URL to file
object resolution is not performed by the file system
(which is similar to the AFPA file system object
architecture on both Windows and Linux.)  Furthermore,
it implements zero-copy TCP send from the file system
memory along with a checksum cache for network
adapters that do not support outbound hardware
checksumming.  Lastly, TUX efficiently supports server
side includes for fast dynamic content generation.  All
three of these solutions lack the capability to cache
dynamic content in the kernel.  Furthermore, SWC and
TUX each use separate proprietary API for forwarding
requests for dynamic content to a user-level server.

Several commercial products provide user-level caching
functionality for both static and dynamic content, that is
actual HTML output from Servlets/JSPs, including
DynaCache [15], IBM WebSphere Application Server
[16], Oracle9i AS Web Cache [17], and SpiderCache from
Spider Software [18].  None of these products contain a
kernel-based caching component.

Arun Iyengar et al [9] cache dynamically generated
content by pushing evolving content out to the Web
cache.  Though the content they generate can be
considered dynamic, it does not change for individual
user request’s.  Therefore, this approach only works
when the dynamic data is not dependent on a user’s
state (e.g. a cookie).

The General-Purpose Software Cache [24] GPS is a
generic cache that can store contents using memory or
disk.  Instead of a concept of a Data Source, the GPS
cache accepts data as a buffer through the API.  When
the data changes, it is up to the application using GPS to
update the data not GPS.  Finally, GPS only stores data
using memory (provided by the application) or disk.
NICache permits the use of many kernel-level storage
techniques.
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