
RC23052 (W0401-006) January 5, 2004
Computer Science

IBM Research Report

SLA Based Profit Optimization in Web Systems

Li Zhang
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Danilo Ardagna
Politecnico di Milano

Eipartimento di Elettronica e Informazione
Via Ponzio 34/5
20133 Milano

Italy

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SLA Based Profit Optimization in Web Systems

Li Zhang
IBM

T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

zhangli@us.ibm.com

Danilo Ardagna
Politecnico di Milano

Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano, Italy

ardagna@elet.polimi.it

ABSTRACT
With the rapid growth of eBusiness, the Web services are becoming
a commodity. To reduce the management cost for the IT infrastruc-
ture, companies often outsource their IT services to third party ser-
vice providers. Large service centers have been set up to provide
services to many customers by sharing the IT resources. This leads
to the efficient use of resources and a reduction of the operating
cost. The service provider and their customers often negotiate util-
ity based Service Level Agreements (SLAs) to determine the cost
and penalty based on the achieved performance level. The system
is based on a centralized controller which can control the request
volumes at various servers and the scheduling policy at each server.
The controller can also decide to turn ON or OFF servers depend-
ing on the system load. This paper designs a resource allocation
scheduler for such web environments so as to maximize the profits
associated with multiple class SLAs. We consider a realistic util-
ity function for the profits, which depends on the level of achieved
service quality in a non-linear way. We show that the overall prob-
lem is NP-hard, and develop meta-heuristic solutions based on the
tabu-search algorithm. Experimental results are presented to show
the benefits of our approach.

Keywords
Resource Allocation, Quality of Service, Utility Function, SLA
Optimization, Load Balancing

1. INTRODUCTION
With the rapid growth of eBusiness, the Web services are be-

coming a commodity. To reduce the management cost for the IT
infrastructure, companies often outsource their IT services to third
party service providers. Large service centers have been set up to
provide services to many customers by sharing the IT resources.
This leads to the efficient use of resources and a reduction of the
operating cost.

The service provider and their customers often negotiate util-
ity based Service Level Agreements (SLAs) to determine the cost
and penalty based on the achieved performance level. The service
provider need to manage its resource to maximize its profits. Utility
based optimization approaches are commonly used for providing
load balancing and obtain the optimal trade-off among job classes
for Quality of Service levels. The utility functions some times are
used as guidelines and provide only the trend at high level.

This paper designs a resource allocation scheduler for Web ser-
vice environments. The scheduling policy is designed to maximize

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM xxx.xxx.

the revenue while balancing the cost (or energy) of using the re-
sources. The overall profit (utility) includes the revenues and penal-
ties incurred when Quality of Service guarantees are satisfied or
violated. The revenue depends on the QoS levels in a discrete fash-
ion. It is naturally used in the contracts between customers and
the service providers. The customer would pay a per request fee
for the volume of requests served. The per request fee depends on
the level of performance experienced by the user. The better the
achieved performance, the higher the revenue gained per request
for the service provider. The system is based on a centralized con-
troller which can establish the request volumes at various servers
and the scheduling policy at each server. The controller can also
decide to turn ON or OFF servers depending on the system load.

We show that the overall problem is NP-hard. We further develop
meta-heuristic solutions based on the tabu-search algorithm. The
neighborhood exploration is based on a fixed-point iteration, which
requires solving a new network allocation flow problem. We prove
structural properties of problem solutions and apply these insights
to guide search algorithm. Experimental results are presented to
show the benefits of our approach.

The rest of the paper is organized as follows. Section 2 intro-
duces the overall system model. The optimization problem formu-
lation is presented in Section 3. Section 4 analyzes the structural
properties of the optimization problem. The structural properties
are the basis for the search algorithms in Section 5. Experimental
results in Section 6 demonstrates the quality and efficiency of our
solutions.

2. THE SYSTEM
We consider the service system to be a distributed computer sys-

tem consisting ofM heterogeneous clusters of servers hostingN
different e-commerce web sites. Each cluster is built from a num-
ber of homogeneous machines. There are totallyK classes of re-
quest streams. Each class of request can be served by a collection
of servers. For simplicity assume that each class of request is as-
sociated with a single web site. LetAi;k be the indicator function
that assigns requests (and sites) to clusters:Ai;k equals 1 if classk
request can be executed by serveri, 0 otherwise.

The architecture comprises of a request dispatcher in front of
the clusters to assign the incoming requests to individual servers in
the cluster. The controller can also establish the scheduling policy
at each server. Each server has a Generalized Processor Sharing
(GPS) scheduler. The allocation weights for each class can be set
by the controller. The controller can also turn OFF and ON indi-
vidual server inside a clusters in order to reduce the overall cost.

For each classk requests, a step-wise utility function is defined
to specify the per request revenue (or penalty) incurred when the
corresponding average response time assumes a given value. Fig-

1

ure 1 shows, as an example, the plot of an utility function. Intu-
itively, customers are willing to pay a higher rate per request when
their requests are served with lower response times. We observe
the discontinuity in the function in Figure 1. As we will discuss
in the next sections, this discontinuity in the cost function and the
discrete nature of the problem make the optimization problem NP-
hard. In the literature the load balancing problem with SLA prof-
its was faced considering always continuous convex and differen-
tiable cost functions (see for example [7],[10],[15],[11]). Consider-
ing step-wise functions of the mean response time is more intuitive
from the customer point of view and are currently adopted [4].

Figure 1: Utility Function

Each data center is modeled by a queueing network composed of
a set of multi-class single-server queues and a multi-class infinite-
server queues. The former represents the collection of servers within
heterogeneous clusters. The infinite-server queues represent the
client-based delays, or think times, between the server completion
of one request and the arrival of the subsequent request within a
Web session (see Figure 2).

User sessions begins with a classk request arriving to the data
center from an exogenous source with rate�k. Upon completion
the request either returns to the system as a classk0 request with
probability pk;k0 or it completes with probability1 �

PK
l=1 pk;l.

Let �k denote the aggregate rate of arrivals for classk requests
�k =

PK
k0=1 �k0pk0;k + �k.

In next sections the following notation will be adopted:

Mi := number of homogeneous server within clusteri;

yi := number of clusteri servers ON;

Ci := capacity of a single server in clusteri;

C := overall computing capacity in the time scheduling

period under consideration;

�k := service rate for classk jobs at a server of capacity 1;

�i;k := load at clusteri for classk jobs;

�i;m;k := load at serverm in clusteri for classk jobs;

�i;m;k := scheduling GPS parameter for classk jobs

at serverm within clusteri;

Ri;m;k := response time for classk jobs at serverm in clusteri;

Uk(R) := utility step-wise function for classk jobs;

L := number of thresholds for utility functions:

ci := cost associated with turning on a server in clusteri;

The routing matrix[Ai;k] is used to assign private servers to indi-

vidual Web site, for dedicated e-commerce transaction servers, or
to limit the number of Web sites assigned to clusters for caching
issues ([15]). Often theAi;k bounds become from the solution
of long term provisioning optimization problems (the solution is
evaluated for example once a week [15]). Our problem can also
consider short term provisioning and the optimization algorithm is
executed more frequently (several times every hour). Note thatci,
the cost associated with turning on a server in clusteri, is a function
of inter-scheduler time. In practice,ci / Ci, if power is the main
cost associated with turning a server on. In the following, we will
assume that the first K-1 job classes are associated with SLA, and
class K is the best effort class.

Figure 2: Network Queue Model

The analysis of multi-class queueing system is notoriously diffi-
cult. We use the GPS bounding technique in [16] to approximate
the queueing system. Under GPS the server capacity devoted to
classk requests at timet (if any) isCi�i;m;k=

P
k02K(t) �i;m;k0 ,

whereK(t) is the set of classes with waiting requests on serverm
at clusteri at timet. Requests within each class on every server are
executed either in a First-Come First-Serve (FCFS) or a Proces-
sor Sharing (PS) manner. Under FCFS, we assume that the service
requirements for classk requests at clusteri have an exponential
distribution with mean(Ci�k)

�1, whereas under PS service re-
quirements of classk requests at clusteri follow a general distribu-
tion with mean(Ci�k)

�1, including heavy-tail distributions. Since
many Web servers exploit the local operating system mechanisms
for scheduling work within a class, the assumption of PS within
each class is reasonable for a wide range of Web servers found in
practice ([10]). In the approximation each multi-class single-server
queue associated with serverm in clusteri is decomposed into mul-
tiple single-class single-server queues with capacity greater than or
equal toCi�i;m;k. The response times evaluated in the isolated
per-class queues are then upper bounds on the corresponding mea-
sures in the original system.

3. OPTIMIZATION PROBLEM
Given the system model in Section 2 we formulate the cost op-

timization problem below. We would like to maximize the overall
profit by controlling the request routing and the processor sharing
scheduling policies.

max
MX
i=1

yiX

m=1

K�1X
k=1

Uk(Ri;m;k)�i;m;k � ciyi

!
(1)

2

yiX
m=1

�i;m;k = �i;k (2)

MX
i=1

�i;k = �k (3)

�i;k = 0 if Ai;k = 0 (4)

�i;k � 0 if Ai;k = 1 ^ yi > 0 (5)

K�1X
k=1

�i;m;k � 1 (6)

Ri;m;k =
1

Ci�k�i;m;k � �i;m;k
; yi > 0; (7)

�i;m;k < Ci�k�i;m;k

Uk(Ri;m;k) =

LX
l=1

vl;kSATl;k(Ri;m;k) (8)

SATl;k(Ri;m;k) = 1 , zl�1;k < Ri;m;k � zl;k;

z0 = 0; zL+1 =1
LX
l=1

SATl;k(Ri;m;k) = 1 (9)

yi 2 [0;Mi]; yi integral

Equation (2) entails that the traffic assigned to individual servers in
a cluster equals the overall load assigned to the cluster. Equation
(3) defines the overall load of class-k jobs as a function of exoge-
nous arrivals and feed-back probability. Note that in autonomic
computing systems the exogenous arrival usually is a prediction of
the arrival rate for the current inter-scheduler period. Equations (4-
5) assign sites requests to clusters according toAi;k constrains and
the status of the cluster (servers ON or OFF). Finally equations (6-
8) express GPS parameters scheduling bounds and utility functions
in terms of response times (the condition�i;m;k < Ci�k�i;m;k

guarantees that resources are not saturated). Equation (9) guaran-
tees that at each server, each job class is assigned to one SLA level.
Hereyi, �i;m;k and�i;m;k are decision variables and overall we
have a Mixed Integer Programming problem.

In the following section, fixing some variables, the problem will
be reduced to a multi-choice binary knapsack (MKP) and an NP-
hard network flow resource allocation problem, so the overall prob-
lem is NP-hard. The problem is solved by implementing a tabu-
search algorithm; the evaluation of the neighborhood is based on a
fixed point iteration of MKP and network flow resource allocation
problems. The optimization technique will be discussed in Sec-
tion 5.

4. ANALYSIS OF THE PROBLEM
Let’s first fix the number of servers ON in a cluster. The prob-

lem of finding the best routing and scheduling parameters�i;m;k

and�i;m;k, in order to maximize revenue at a single server be-
comes a multiple-choice binary knapsack problem and a network
flow resource allocation problem.

The Multi-choice Binary Knapsack Problem (MKP) is a variant
of the classical Knapsack Problem. Let there ben groups of items.
Groupl hasnl items. Each item of the group has a particular value
and it requires resources. The objective of the MKP is to pick ex-
actly one item from each group for maximum total value of the
collected items, subject to the resource constraint of the knapsack.

In mathematical notation, letcl;k be the value of thek-th item inl-
th group,wl;k the resource requirement andW the resource bound
of the knapsack. Then the problem is:

max

nX
l=1

nlX
k=1

cl;kxl;k

nX
l=1

nlX
k=1

wl;kxl;k � W

nlX
k=1

xl;k = 1 xl;k 2 f0; 1g

If the number of server ON and the load at each server are fixed,
then in order to maximize the objective function one can maximize
revenues at single servers obtaining

PM
i=1 yi sub-problems:

max

K�1X
k=1

LX
l=1

vl;k�i;m;kSATl;k(Ri;m;k(�i;m;k))

SATl;k(Ri;m;k(�i;m;k)) = 1,

zl�1;k <
1

Ci�k�i;m;k � �i;m;k

� zl;k ,

1

zl;k
� Ci�k�i;m;k � �i;m;k <

1

zl�1;k
K�1X
k=1

�i;m;k � 1

LX
l=1

SATl;k(Ri;m;k(�i;m;k)) = 1

where�i;m;k are the decision variables withi = 1; ::;M , m =
1; ::; yi andk = 1; ::; K�1. In order to satisfy constrains and save
resources for scheduling the previous inequality can be satisfied
setting:

SATl;k = 1, �i;m;k =
1

zl;kCi�k
+
�i;m;k

Ci�k

which corresponds in selecting one interval of the utility function
(see Figure 1) when the response time equals to the upper bound of
the interval. We now have the MKP problem where parameters are
defined by:

cl;k = vl;k�i;m;k

wl;k =
1

zl;kCi�k
(10)

W = 1�
K�1X
k=1

�i;m;k

Ci�k
(11)

xl;k = SATl;k(Ri;m;k(�i;m;k))

and all groups have sizeL, the number of thresholds of utility func-
tions. Note that equation (11) corresponds to the system equilib-
rium condition defined in equation (8), while the bound that keep
selecting one item from every groups in the MKP formulation cor-
responds to select one interval of the utility function for each SLA
request job class.

Now consider a directed network consisting of nodesV and di-
rect arcsA. The arcsav1v2 2 A carry flow fv1v2 , from node
v1 2 V to nodev2 2 V. The flow is a real variable that is
constrained to be bounded below by a constantlv1v2 and above

3

by a constantuv1v2 . Let be a single source nodes 2 V, sat-
isfying

P
asv2

fsv2 �
P

av1s
fv1s = R > 0. This valueR,

the net outflow from the source, is a constant and represents the
amount of resource available to be allocated. There aren sinks
nodev2 2 N � V which have the property that their net inflowP

av1v2
fv1v2 �

P
av2v3

fv2v3 > 0. All other nodesv2 are trans-

shipment nodes that satisfy
P

av1v2
fv1v2 �

P
av2v3

fv2v3 = 0.

A function Fv2 (x) is associated with each sink nodev2 and the
optimization problem is:

max
X
v22N

Fv2(
X
av1v2

fv1v2 �
X
av2v3

fv2v3)

X
asv2

fsv2 �
X
av1s

fv1s = R

lv1v2 � fv1v2 � uv1v2 8v1; v2 2 V

Figure 3: Network Flow Model

If the number of server ON and the scheduling policy at each
server are fixed, then in order to maximize the objective function
one can establish the load at each server and solve the following
K � 1 sub-problems:

max
PL

l=1 vl;k�i;m;kSATl;k(Ri;m;k(�i;k))Pyi
m=1 �i;m;k = �i;kPM

i=1 �i;k = �k (12)

�i;k = 0 if Ai;k = 0

�i;k � 0 if Ai;k = 1 ^ yi > 0

SATl;k(Ri;m;k(�i;k)) = 1,

zl�1;k <
1

Ci�k�i;m;k��i;m;k
� zl;k ,

Ci�k�i;m;k �
1

zl�1;k
< �i;m;k � Ci�k�i;m;k �

1
zl;kPL

l=1 SATl;k(Ri;m;k(�i;m;k)) = 1

where�i;m;k are the decision variables withi = 1; ::;M , m =
1; ::; yi andk = 1; ::; K � 1. This problem is a special case of the
network flow resource allocation problem where the overall flow is
defined by equation (12), and the network is shown in Figure 3. A
plot of sink cost functions is shown in Figure 4. The cost function
is discontinue and intervals where the function is linear are defined
by:

(fml�1; f
m
l] =

�
Ci�k�i;m;k �

1

zl�1;k
; Ci�k�i;m;k �

1

zl;k

�
: (13)

Figure 4: Sink Cost Function

The interval bounds are a function of the scheduling policy, the
capacity of servers and of utility function thresholds. So different
sink nodes are characterized by different cost functions, with cor-
responding intervals characterized by the same slope. Note also
that the slopes are decreasing moving from left to right and a sink
function can obtain is maximum in any interval (the maximum of
a sink function depends on slopes and on widths of intervals). If
we consider different cost functions these are translated byÆ =
�Ci�k�i;m;k (see Figure 3). Note also that if a server has limited

capacity (i.e.,Ci�k�i;m;k � 1=zl;k < 0) some intervals may be
missing.

Since sink nodes cost functions are neither convex, nor differen-
tiable, the network flow resource allocation problem is NP-hard([9]).
Nevertheless, the following properties of the optimum solution can
be proved.

THEOREM 1. In the optimum solution of a flow problem at most
one server is assigned to a request rate different from a sink func-
tion upper edge interval.

PROOF. If we relax equation (12) bound, the optimization prob-
lem has a trivial optimum that assigns to each server the load which
corresponds to individual optimum of sink functions. (Note that
each sink node corresponds to a server). Let’s assume that in the
optimum solution two servers are assigned to a load�0, �00 which
do not coincide to upper edges of corresponding intervals. Letv0

andv00 be the corresponding slopes and assumev0 > v00. Then
the solution can be improved by increasing the load�0 assigned to
the first server while decreasing�00 of the second one in order to
satisfy the flow equation (12) until�0 coincide with the upper edge
of the interval; this contradicts the hypothesis that the solution is
optimal.

This property basically says that in the optimum solution there is
only one� free assignment.

THEOREM 2. In the optimum solution of a flow problem the�
free assignment is in the interval which corresponds to the lowest
level of performance.

PROOF. Let’s consider an optimum solution, let be�0, the free
assignmentv0 the slope of the corresponding interval and assume
that there is an assignment�00 which coincide to an upper edge of
an interval such that the corresponding slopev00 is greater thatv0.

4

Then the solution can be improved increasing�0 while decreasing
�00 in order to satisfy the flow equation (12); this contradicts the
hypothesis that the solution is optimal.

5. OPTIMIZATION TECHNIQUE
In the previous section we have shown that the optimization prob-

lem is NP-hard. We now provide structural properties of the prob-
lem. Based one the insights, we develop a tabu-search algorithm
in order to find a quasi-optimal solution. The neighborhood explo-
ration is based on a fixed point iteration of the MKP to determine
the optimal scheduling and network flow problems to determine
optimal routing. The next section will discuss the fixed point itera-
tion procedure. Section 5.2 will describe the tabu-search algorithm
implementation.

5.1 Fixed Point Iteration Procedure
The solution of the MKP problem is based on the HEU heuristic

described in [2] which provides solution on average equal to 94%
of the optimum. On the other hand, the literature does not provide
any results for the network flow allocation problem and we have
developed a local search approach in order to find a solution. The
local search performs two dual moves in order to improve the initial
solution:

� Increase by a unit the performance level of servers with low
performance allocating their load to servers with higher per-
formance level.

� Decrease by a unit the performance level of servers with high
performance allocating their load to servers with lower per-
formance level.

Based on the properties described in theorem 1 and 2, at each move,
load of the server with higher slope is increased and the load at the
server with the lowest slope is decreased in order to satisfy flow
equation (12).

The local search starts increasing GPS parameters determined
by the MKP solution. GPS parameters are modified in order to al-
low more degrees of freedom performing the two moves in the sec-
ond phase. We have implemented two approaches to increase GPS
parameters which derive two different fixed point iteration proce-
dures:

� At each server GPS parameters are increased, until their sum
equals to 1, fairly among job classes assigned to the server.

� At each server only one job class GPS parameter is increased
(again until sum locally equals to 1). The job class is chosen
by separately solving a flow problem for each SLA class and
selecting the class that gives the best improvement in the so-
lution of the flow problem.

In order to evaluate the quality of the solution, results of the two
approaches are compared with results of an exhaustive search al-
gorithm. Here we only need to compare the performance of the
algorithms for a fixed set of servers. Therefore, the cost associ-
ated with servers is neglected and only revenues are considered.
Results are obtained randomly generating service rates�k, overall
class request rate�k and settingAi;k = 1. The number of thresh-
olds varied between 5 and 9, the utility functions have fixed thresh-
olds (proportional to the service time1=�k and the cost scheme
is also proportional to the service time [14]. The data center uti-
lization varies between 0.2 and 0.8. Table 5.1 shows proportional
coefficients for thresholds and costs. Note that independent of the
number of steps adopted, the revenue associated with the last step

Table 1: Utility Function Proportionality Coefficients
Thresholds Costs

1.5 1000
5 250
10 150
20 100
50 50
100 30
1000 20
2000 10
5000 5
10000 �109

Table 2: Fixed Point Iteration Results
Av. err% Max err% Av. impr% Max impr%

FPI1 15.73% 66.63% 131.75% 423.98%
FPI2 15.40% 69.16% 134.44% 413.37%

FPI 1+2 12.21% 66.17% 145.71% 423.98%

equals�109, in this way we are guaranteed that the last thresholds
is never violated.

Tests consider three job classes and a data center with alterna-
tively three and four servers. The exhaustive search is very time
consuming, when the load is light (0.2 utilization of the overall ca-
pacity of the data center) with 5 servers the solution of a single
problem requires a day. Overall 2600 tests were run and results
are almost independent by the number of thresholds of utility func-
tions. Results are shown in Table 5.1, and are compared also with
revenues of the proportional assignment scheme which employs:

�i;m;k = �k
Ci�kAi;kPM
l=1 Cl�kAl;k

�i;m;k =
�i;m;k=�kPK
l=1 �i;m;l=�l

Note that this proportional allocation scheme is a natural way to
assign the traffic and server capacity. It is provably the best load
balancing scheme in terms of stability regions and it is used as a
benchmark in the SLA profits maximization literature ([10]).

Table 5.1 reports also results of a third heuristic which for each
problem instance takes the maximum between fixed point iteration
1 and 2 solutions (this is the implementation that has been adopted
in the tabu-search). In this way both the average error and the aver-
age improvement can be enhanced.

Exhaustive search results shows that the optimum solution is
very different from the proportional assignment scheme since in-
stead of balancing the load among servers of clusters, often favors
the use of dedicated servers for job classes. This can be explained
considering that dedicated servers give better performance. Let’s
consider as an example two different servers with the same ca-
pacity and two job classes. If the two job classes has, for the
sake of simplicity, the same arrival rate� and the same service
time 1=� the proportional assignment scheme has a response time
R1 = R2 = 1=(0:5(� � �)) twice than the dedicated server
schemeR1 = R2 = 1=(�� �).

Plot in Figure 5 shows the trace of the execution for the two fixed
point iteration procedures for a system with 2 clusters, each cluster
having 60 servers, and totally 3 job classes. The plot shows that the
fixed point iterations converges very quickly (usually less than 30
iterations), execution time is about 3 seconds.

5

Figure 5: Fixed Point Iteration Execution Trace

5.2 Tabu Search Algorithm
The overall optimization problem (1) is solved by implementing

a tabu-search algorithm. The neighborhood of the current solution
is defined by two moves which increase and decrease alternatively
the number of servers ON at each cluster. The evaluation of each
move requires a fixed point iteration of the MKP and network flow
allocation problems in order to obtain�i;m;k �i;m;k values. The
fixed point iteration discussed in the previous section converges
very quickly. But we can not guarantee it converges to a global op-
timal solution. For this reason in the evaluation of a move the fixed
point iteration is executed twice. The first execution considers as
initial solution the solution obtained applying the proportional as-
signment schema, the second execution, vice versa, tries to take
advantage of the current solution routing and scheduling policies
in the following way:

� If the move turns ON a server then for the new server we
apply the scheduling policy of the cluster bottleneck; the new
server and the bottleneck server share equally the load. For
the other servers in the cluster the routing and scheduling
policy remains the same as the previous iteration.

� If the move turns OFF a server then its load is assigned to
others servers in the same cluster proportionally according to
servers’ spare capacity, the scheduling policy is unmodified.
That is the scheduling of the previous iteration is applied.

The execution that take advantage of current scheduling and rout-
ing assignment is more efficient and leads to the next current solu-
tion in almost 70% of cases. The neighborhood of a solution is de-
fined by all solutions that can be obtained by applying these moves
to all clusters. The search is guided by a tabu-search meta-heuristic
in which only the short-term memory mechanism has been imple-
mented. Since the neighborhood has almost the same size during
the algorithm execution, the tabu list has a static size proportional
to the number of clusters in the system.

In order to obtain good results, we faced the problem of finding a
high quality initial configuration for servers at the data center. The
number of servers ONyi are the main variables of the problem,
since they affect performance and cost function. On the other hand,
�i;m;k and�i;m;k affect only performance and can be considered
fine tuning variables while, at high level, the performance of a Web
site mainly depends on the number of servers adopted. In order to
find a good initial solution for the tabu-search algorithm we have
evaluated three different estimates for the number of server ON.

In the first estimate we evaluate the cost function at cluster level
and enumerate job class performance level at various clusters. The

0

50

100

0

50

100
10000

−5000

0

Figure 6: Plot of equation (1) as a function of the number of
servers ON

cost function (1) is non-convex and non-differentiable and presents
abrupt steps in correspondence of individual step of utility func-
tions. As an example, consider the plot of Figure 6. The plot shows
the trend of equation (1) as a function of the number of server ON,
considering two clusters and two job classes, assigning higher pri-
ority to the most cost advantage job class and assigning requests
to cluster according to their overall capacity (that is the load is as-
signed according toCiyi=C ratio and is equally balanced among
different servers in the same cluster). The cost function initially de-
crease when servers are turned ON since for high load few servers
can not satisfy SLA and there is the cost associated with server
ON. When the number of servers is increased and SLA are satis-
fied the cost function jumps abruptly and the global maximum is
always associated with satisfying a SLA for one set of job classes.
Asymptotically when the number of server ON is increased the cost
function decrease as the plane of equation�

PM
i=1 ciyi = costant

since when SLA are satisfied at the maximum level for each class
of jobs, performance are improved but increasing the number of
servers is not of advantage for the Service Provider; the cost func-
tion is dominated by the cost associated with servers ON.

The estimate is obtained by considering a different cost function
that evaluates SLA revenue at cluster level instead of at server level
as in equation (1); let’s consider the following problem:

max
MX
i=1

K�1X
k=1

Uk(Ri;k)�i;k � ciyi

!
(14)

yiX
m=1

�i;m;k = �i;k

MX
i=1

�i;k = �k�i;k = 0 if Ai;k = 0

�i;k � 0 if Ai;k = 1 ^ yi > 0

yi 2 [0;Mi]; yiintegral
K�1X
k=1

�i;m;k � 1

Ri;m;k =
1

Ci�k�i;m;k � �i;m;k
; yi > 0; �i;m;k < Ci�k�i;m;k

(15)

6

Ri;k =

Pyi
m=1 �i;m;kRi;m;k

�i;k

Uk(Ri;k) =
LX
l=1

vl;kSATl;k(Ri;k)

SATl;k(Ri;k) = 1 , zl�1;k < Ri;k � zl;k; (16)

z0 = 0; zL+1 =1 (17)
LX
l=1

SATl;k(Ri;k) = 1 (18)

SLAs are evaluated considering the average response time for class
k jobs at cluster level, besides�i;m;k and�i;m;k are fixed:

�i;m;k =
1

K � 1
(19)

�i;k = �k
Ciyi
C

(20)

�i;m;k =
�i;k
yi

(21)

which corresponds to adopt Processor Sharing scheduling policy
(19), assign load to clusters proportionally to their capacity (20)
and balancing the load in each cluster among individual servers
(21).C =

PM
i=1 Ciyi is the overall computing capacity available at

the data center in the scheduling time interval under consideration.
Then it is easy to evaluate response timesRi;m;k andRi;k:

Ri;m;k =
1

Ci�k
K�1

� 1
yi
�k

Ciyi
C

=
(K � 1)C

Ci(�kC � (K � 1)�k)

Ri;k =

PM
i=1 �i;;m;kRi;m;k

�i;k
=

(K � 1)C

Ci(�kC � (K � 1)�k)

Note that with positions (19-21) response times depend only on the
overall computing capacity of the site, that isC =

PM
i=1 Ciyi, and

servers in the same cluster have the same performance.

0

20

40

60

0

20

40

60
−2

−1

0

x 10
4

Figure 7: Plot of equation (14) with homogeneous clusters as a
function of the number of servers ON

Figure 7 is an example of a plot of equation (14) as a function
of the number of servers ON when only two clusters and two job
classes are considered. Note that plots are smoother of the previ-
ous case but show the same behavior, that is initially decreasing,

Figure 8: Utility Function, Multiple Class Dedicated Servers

asymptotically trend a plane and the global maximum correspond
to satisfying a SLA of one job class.

In particular the plot in Figure 7 consider two homogeneous clus-
ters and the two job classes have the same throughput and utility
function. Under these assumptions the cost function behaves like
a staircase and each step corresponds to a straight line in they1,
y2 plane. Straight line equations can be determined considering all
of the possible combinations of thresholds for the two class of jobs
and the two cluster that is:

zl�1;k < Ri;k � zl;k; i = 1; : : : ;M ; k = 1; : : : ; K � 1

It is easy to find that this set of equation gives:

Cizl�1;k(K � 1)�k

Cizl�1;k�k �K + 1
<

MX
i=1

Ciyi �
Cizl;k(K � 1)�k

Cizl;k�k �K + 1
: (22)

Since the system has homogeneous servers and the two job classes
have the same throughput and utility functions, the system of in-
equalities reduce to a single equation

PM
i=1 Ciyi = const. If clus-

ters are heterogeneous or job classes have different utility functions
or throughput then the staircase degenerates and the plot is less reg-
ular but the optimum can be anyway found considering the solution
of the set of inequalities (22). So in order to evaluate the initial
number of server under these hypotheses of scheduling and load
LM(K�1) problems like the following have to be solved:

min
MX
i=1

ciyi (23)

zl�1;k < Ri;k � zl;k; i = 1; : : : ;M ; k = 1; : : : ; K � 1

yi 2 [0;Mi]; yi integral

The minimization problem originate from the fact that given re-
sponse time bounds from the set of inequalities (22), the aim is to
reduce the number of server. Problem (23) can be reduced to the
following LPI problem:

min
PM

i=1 ciyi (24)

Cizl�1;k(K � 1)�k

Cizl�1;k�k �K + 1
<

MX
i=1

Ciyi �
Cizl;k(K � 1)�k

Cizl;k�k �K + 1
(25)

Note that in the set of constrains (25), the sum
PM

i=1 Ciyi does not
depend onk, then the set of constrains can be replaced by a single
inequality taking the maximum of the left inequality and minimum

7

of the right one. Besides, since we have a minimization problem
only the left inequalities have to be satisfied, then the problem sim-
ply becomes:

min
MX
i=1

ciyi (26)

MX
i=1

Ciyi > max
k=1;:::;K�1

Cizl�1;k(K � 1)�k

Cizl�1;k�k �K + 1
: (27)

Theyi variables are bounded, for eachi, yi � Y , Y = maxMi,
with the change of variablexi = Y � yi and considering that
min f(x) is equivalent tomax�f(x). Therefore, problem (26)
becomes a knapsack problem. There areLM(K�1) problems orig-
inate from the combination of bounds in (25). These cases corre-
spond to all of the possible assignments of job response times for
K classes at clusteri to SLA levels. The best choice is obtained by
inspecting the solutions of theLM(K�1) problems. Note that all
of the set of combination has to be enumerated. But each combi-
nation does not necessarily require the solution of a new knapsack
problem. If the number of job class is large the enumeration of
knapsack problems can be intractable, in such situation the number
of class can be reduced by clustering.

The second method identifies the initial solution by a greedy
algorithm that assigns dedicated servers to job classes, exploiting
the structure of the optimum solution discovered from exhaustive
search results. The greedy procedure includes two steps. In the
first step the optimum performance level assignment to job classes
is identified. That is, the combination of performance level of job
classes that maximizes revenues is found (if job classk is assigned
to the performance levell then the revenue associated with the class
is simplyvl;k�k). The performance level assignment is identified
by enumerating all of the possible performance level combinations
of job classes and evaluating the overall capacity of a cluster as
CiMi. This is essentially modeling a set of servers as a single
server of capacity proportional to the number of servers, which im-
plies an over-estimate of data center capacity. The second phase
iteratively tries to assign job classes to dedicated servers according
to the performance levels identified in the first phase. if the capac-
ity available at the data center is not sufficient then the performance
level of the class that corresponds to the minimum loss in revenue
(that is the classk such that(vl;k � vl+1;k)�k is minimized) is
decreased.

The third method finds the initial solution by assigning again
dedicated servers to job classes but the assignment is identified
by the solution of a multiple-choice multiple-dimension knapsack
problem (MMKP). A multiple-dimension knapsack problem is one
kind of knapsack where the resources are multi-dimensional, i.e.
there are multiple resource constrains for the knapsack. The MKKP
problem is a combination of the MKP problem presented in Sec-
tion 4 and a multiple-dimension knapsack. Formally let there ben
groups of items, groupl hasnl items, letcl;k be the value of the
k-th item inl-th group,wl;k;i the amount of resourcei required by
thek item in thel group andWi the amount of thei resource. Then
the problem is:

max
nX
l=1

nlX
k=1

cl;kxl;k

nX
l=1

nlX
k=1

wl;k;ixl;k � Wi

nlX
k=1

xl;k = 1; xl;k 2 f0; 1g:

In this case we assume to assign to job classes dedicated servers

inside each cluster which share the load assigned to the cluster.
Let’s denote withyi;k the number of servers dedicated to job class
k at clusteri. Class load is assigned to cluster proportionally to
their capacity, i.e.,

�i;k =
CiAi;kPM
i=1 CiAi;k

�k:

Now let’s consider a very simple system constituted by a single
class and single cluster. LetC be the capacity of servers andc the
cost associated with servers in status ON. If load is balanced among
servers in the clusters then the response time is given by:

R =
1

C� � �=y
; � < C�y (28)

and the cost function becomes:

max U(R)�� cy

If we consider the utility function in Figure 1, it is easy to see that
the optimum values ofy can be found by considering discontinuity
points of the utility function since in the same interval the response
time is smaller and potentially the number of server ON is greater
but the overall revenue is the same. So each discontinuity point
could be characterized by a coupleyl = d �

C��1=zl
e, fl, where

the latter is the value of the cost function obtained withy = yl.
The optimum number of server ON could be so evaluated simply
by inspection. Now consider the general system under study but
assign job classes to dedicated servers. Then the response time is
given by the following equation:

Ri;k =
1

Ci�k � �i;k=yi;k
; �i;k < Ci�kyi;k (29)

Considering each job classk and clusteri then the set
f(fl;k;i; yl;k;i)g can be determined (see Figure 8) as discussed pre-
viously. Let bexl;k;i = 1 if classk is assigned to clusteri and the
corresponding SLA isl, andxl;k;i = 0 otherwise. Then we can
consider the problem:

max
MX
i=1

K�1X
k=1

LX
l=1

fl;k;ixl;k;i

K�1X
k=1

LX
l=1

yl;k;ixl;k;i �Mi (30)

LX
l=1

xl;k;i = 1; xl;k;i 2 f0; 1g; (31)

where the set of constrains (30) implies that at mostMi servers in
each cluster are assigned and constrains (31) assign each job class
to a single cluster and to exactly one SLA level. Also this MKKP
problem has been solved implementing HEU heuristic proposed in
[2]. Next section will show results that can be obtained by adopting
the three different initial solutions.

6. EXPERIMENTAL RESULTS
In this section we present experimental results to illustrate the

effectiveness of our approach. The number of job classes has been
varied between 3 and 6; the number of clusters has been varied
between 2 and 10 and overall data centers with 200 servers have
been considered. Service times were random generated and for
each test case the load was increased in a way that the utilization of
data center resources varied between 0.2 and 0.8.

8

Figure 9: Revenue for Different Data Center Configurations

We begin with a simple exercise to decide the cost associated
with servers. The cost of a unit capacity server has been evalu-
ated considering the revenues obtained. Plots in Figure 9 shows
revenues evaluated by an exhaustive search algorithm applied on
data centers with various capacities and configurations for increas-
ing load (numbers in parenthesis specify the capacity of servers
adopted). It is interesting to note that revenues increase almost lin-
early but start decreasing after a maximum that is obtained when
the data center utilization is about 0.5-0.6. After the maximum,
job classes are assigned to lower levels of performance and the in-
creasing load implies a loss in revenues instead of a potential ben-
efit for the Service Provider. Figure 10 shows that the maximum
revenue grows linearly with data center capacity with coefficient
almost equal to 160. In our tests we used 120 as unit capacity cost;
sensitivity analyses showed that a�20% variation of unit cost co-
efficient implies on average a�15% variation of our results.

Plots in Figure 11 show the trace of execution of the tabu search
algorithm for a system with 2 clusters. The first cluster has 60
servers with capacity 1. And the second cluster has 60 servers with
capacity 2. There are 3 classes of jobs. Clusters are shared among
the three job classes, i.e.,Ai;k = 1. Plots show that the tabu-
search approach is efficient since solutions can be improved after
the analysis of worsening ones. Usually the initial solution obtained
with the HEU heuristic gives better performance in terms both of
initial and final solution when the load is high. When the load is
light, better results can be obtained by the greedy approach. The
first method proposed to determine the initial solution gives the best
results only in 14% of cases. The second best solution identified
by the algorithm usually differs from the best one by at most one
server. Sometimes, the second best solution uses the same number
of servers as the identified optimal but adopt different scheduling
and routing policies.

An estimate of the quality of our solution is obtained by compar-
ing our results with results of an exhaustive search algorithm. Tests
considered data centers with two clusters shared by 3 job classes
for increasing loads. In order to keep the analysis tractable a clus-
ter withyi servers ON was modeled as a single server with capacity
Ciyi. Results are quite good since with this approximation in the
exhaustive search performance of a single cluster areyi times better
thanyi servers, the average error was about 30% varying between
5-70%, the error increases with the utilization of the data center
since the number of servers adopted in the solution also increases
and the inaccuracy of the estimation grows. In order to compare our
results with the adoption of the proportional assignment schema
the number of servers that has to be turned ON is evaluated as

Figure 10: Maximum Revenue vs. Data Center Capacity Plot

the number of servers that keeps the utilization of the data center
equals to 0.6, according to greedy solutions which adopt utilization
thresholds in resource allocation control as described in [7] and
[1] (we empirically verified that applying proportional assignment,
SLA are optimized when resource utilization is approximately 0.6).
Considering this scenario our approach improves SLA revenues of
one order of magnitude since for the same load our controller is
able to reduce the number of servers ON, furthermore inspecting
solutions we can identify islands of servers which share the load
inside clusters but in general the load is not balanced among all of
the servers of a cluster.

7. RELATED WORK
Recently, the problem of maximization of SLA revenues in shared

data center environments has attracted vast attention by the research
community. Considering the high variability of system load ([7])
the goal is to design a self-managing infrastructure that allocates
shared resources to third party sites hosted at the data center, while
maximizing revenues from SLA contracts. Main components of
these architectures ([14]) typically are a requests classifier, which
identify requests from different sites and estimates requests ser-
vice times, a predictor, which from load history forecasts future
system load conditions, and a controller which assigns system re-
sources to requests trying to satisfy SLA bounds while maximizing
the provider’s revenue. Overviews of self-managing infrastructures
can be found in [3, 7, 13, 6].

Figure 11: Execution Trace of the Tabu-search Algorithm for
Different Initial Solutions

9

The problem of maximization of SLAs can be formulated as the
dual problem of minimization of system response times and max-
imization of throughput as in [15]. That work proposes a static
algorithm which assigns sites to overlapping servers executed once
a week, on long term predictions basis, while a dynamic algorithm
implements a real time dispatcher and assigns incoming requests to
servers considering short term load forecasts. In [12] continuous
yield functions are introduced and the problem of maximization
of yield is formulated as a scheduling problem. The work pro-
poses a greedy scheduling algorithm while incoming requests are
assigned to servers according to the queue length. The effective-
ness of the overall approach is verified by simulation. The authors
in [6] considered the dual problem of minimizing customers’ dis-
content function considering an online estimate of service time re-
quirements and response times. The optimal GPS scheduling is
identified by Lagrange multipliers.

In [10], the authors proposed an analytical formulation of the
problem to maximize the multi-class SLA in heterogeneous web
clusters considering the tail distribution of the requests response
times. The problem is solved by a fixed point iteration which con-
verges to the global optimum of the system (the cost function is
concave continuous and differentiable) but the number of servers
in every cluster is fixed independently by load condition. The con-
trol variables are the GPS parameters at each cluster and the fre-
quency of requests assigned to different clusters. The load is bal-
anced in each cluster. The problem of minimization of the cost as-
sociated with servers is considered in [7], the main costs associated
with the use of resources is energy consumption and a greedy re-
source allocation algorithm is proposed which reconfigures cluster
farms on the basis of servers utilization. Finally, in [5] is presented
a study which estimates benefits of resource multiplexing of on-
demand data centers environment with respect to the granularity of
the control, that is the spatial allocation granularity (the resource
unit allocated to customer classes, i.e. one server) and the tem-
poral allocation granularity (i.e. the inter-scheduling time of the
controller). The study proposes also an analysis which relates the
temporal granularity with the accurateness of the predictor.

8. CONCLUSIONS
We proposed an allocation controller for web data center envi-

ronments which maximizes the profits associated with multi-class
Service Levels Agreements. The cost model consists a class of real-
istic utility functions which include revenues and penalties incurred
depending on the achieved level of performance and the cost asso-
ciated with servers. The revenue function depends on the achieved
level of service as well as the request volume. The per request rev-
enue decreases for lower level of user experienced response time.
The overall optimization problem is NP-hard. We show structral
properties of the optimal solution, and use these insights to guide
our meta-heuristic procedure based on the tabu-search algorithm.
Experimental results show that revenues that can be obtained with
a proportional assignment schema can be significantly improved
and we verified the quality of our solution with exhaustive search.
Future work will consider the problem of maximization of SLA
profits in multi-tiers systems and the model will be extended in or-
der to include in the cost model also the tail distribution of response
times.

9. REFERENCES
[1] Abdelzaher, T. F., Shin, T.,F., Bhatti, N. 2002.Performance

Guarantees for Web Server End-Systems: A
Control-Theoretical Approach. IEEE Transactions on
Parallel and Distributed Systems. 13, 1, 80-96.

[2] Akbar, M. M., Manning, E.,G., Shoja, G., C., Khan, S. 2001.
Heuristic solution for the Multiple-Choice
Multiple-Dimension Knapsack problem. Conference on
Computational Science, San Francisco, USA.

[3] Appleby, K., Fakhoury, S., Fong, L., Goldszmidth, G.,
Kalantar, M., Krishnakumar, S., Pazel, D. P., Pershing, J.,
Rochwerger, B. 2001.Oceano- SLA Based Management of a
Computing Utility. In Proc. of the IFIP/IEEE Symposium on
Integrated Network Management, 855-868.

[4] Boutilier, C., Das, R., Kephart, G. Tesauro, G. Walsh W.
2003.Cooperative Negotiation in Autonomic Systems using
Incremental Utility Elicitation. To appear, Uncertainty in
Artificial Intelligence.

[5] Chandra, A., Goyal, P., Shenoy, P. 2003.Quantifying the
Benefits of Resource Multiplexing in On-Demand Data
Centers. In Proc. of the First Workshop on Algorithms and
Architectures for Self-Managing Systems, San Diego, CA.

[6] Chandra, A., Gong, W., Shenoy, P. 2003.Dynamic Resource
Allocation for Shared Data Centers Using Online
Measurements. In Proc. of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of
computer systems, Poster Session.

[7] Chase , J. S., Anderson, D. C. 2001Managing energy and
server resources in hosting centers. In Proc. of the eighteenth
ACM symposium on Operating systems principles, 103-116.

[8] Chen., X., Mohapathra, P, Chen, H. 2001.An Admission
Control Scheme for Predictable Server Response Time for
Web Access. In Proc. of WWW 2001 Conference, 545-554.

[9] Kim, D., Pardalos, P.M. 1999.Dynamic Slope Scaling and
Trust Interval Techinques for Solving Concave Piecewise
Linear Network Flow Problems. Networks 35, 3, 216-222.

[10] Liu, Z., Squillante, M. S., Wolf, J. 2001On maximizing
service-level-agreement profits. In Proc. of the 3rd ACM
conference on Electronic Commerce, 213-223.

[11] Liu, Z., Squillante, M. S., Wolf, J. 2002.Optimal Resource
Management in e-Business Environments with Strict
Quality-of-Service Performance Guarantees. IEEE
Conference on Decision and Control.

[12] Shen, K., Tang, H., Yang, T. 2002.A Flexible QoS
Framework for Cluster-based Network Services.
citeseer.nj.nec.com/485133.html.

[13] Urgaonkar, B., Shenoy, P., Roscoe, T. 2002.Resource
Overbooking and Application Profiling in Shared Hosting
Platforms. ACM SIGOPS Operating Systems Review, 36,
239-254.

[14] Verma, A., Ghosal, S. 2003.On Admission Control for Profit
Maximization of Networked Service Providers. In Proc. of
WWW 2003 Conference, 128-137.

[15] Wolf, J., Yu, P. S. 2001.On balancing the load in a clustered
web farm. ACM Transactions on Internet Technology, 1,2,
231-261.

[16] Zhang, Z. L., Towsley, D., Kurose, J. 1995.Statistical
analysis of the generalized processor sharing scheduling
discipline. IEEE Journal on Selected Areas in
Communications, 13,6, 1071-1080.

10

