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View-in-Context

Aravind Kalaiah Holly Rushmeier Fausto Bernardini

Abstract
We present a simple and cost-effective solution for aug-
mented reality for pictures. Our approach is robust and
achieves realistic results with minimal calibration, equip-
ment, and user expertise. In our scheme the user takes a
series of pictures of the site where the virtual object has
to be visualized. These pictures are all we need for cam-
era calibration, illumination capture, and rendering. We
present a novel camera calibration technique that deter-
mines the orientation of a site that is too far to calibrate
using the traditional calibration algorithms. We capture
the illumination at the site by infering from the shadows
cast by a paper-made cube placed at the site. We then
combine all the information to place the object at the site
with a consistent illumination and shadows.

Key words: Augmented Reality, Image-Based Rendering,
Inverse Rendering.

1 Introduction

Changing the living space around us is a common day-to-
day activity. In particular, the act of placing a new physi-
cal entity in a scene assumes special significance in a vari-
ety of industries such as architecture, construction, enter-
tainment, museums, electronic commerce, etc. Visualiz-
ing the scene prior to this act could be critical for various
reasons such as feasibility analysis, time, cost, and plan-
ning. Although traditional techniques of modeling and
rendering virtual environments could be used to visual-
ize the entire scene virtually, realism can be difficult to
achieve. This is mainly because the parameters required
for these simulation algorithms tend to be grossly inac-
curate. Moreover such attempts to model a real-world
environment is bound to be expensive, cumbersome, and
time-consuming.

In this work, we address the problem of placing a syn-
thetic object at any given site in a photograph of a real-
world environment. This involves handling three main is-
sues : (1) the position and orientation of the object should
be consistent with the rest of the scene, (2) the illumina-
tion of the object should be consistent with the rest of
the scene, and (3) the illumination of the scene should
be changed to account for the synthetic object. There
has been considerable research into this area and most
solutions involve a combination of controlled setup, ge-

ometric modelling of the scene, calibration, user input,
and inverse computation [15, 3, 17, 4, 5, 2]. However,
a simple, quick, easily mastered, and complete solution
to this problem is found lacking. Our approach is moti-
vated to robustly generate a realistic image while keeping
the cost, effort, and the user-expertise at low levels. We
detail a six-step protocol for capturing the pictures that
give us all the information needed for our computation in
a efficient manner.

For the purposes of a simple but realistic solution, we
make two assumptions: (1) the object is lit by distant
lighting, and (2) apart from direct illumination, the only
interaction between the synthetic object and the scene in-
volves the intereflection between the object and the base
of the site. We show how these assumptions can be used
to create a wide range of pictures for augmented reality
applications. Our approach is based on determining the
distant lighting at a site by infering from the shadows cast
by a paper-made cube (see figure 1).

2 Previous Work

Our work primarily draws from two areas of research: il-
lumination recovery and reflectance recovery. While the
former deals with determining the position and the in-
tensity of the light sources in the environment, the lat-
ter focuses on the estimation of the BRDF (bidirectional
reflectance distribution function) of the various surfaces
visible in one or more pictures taken by the user.

Methods for recovering scene illumination use either
a specialized camera, a light probe, or knowledge of the
local environment. Sato et. al. [12] use a omnidirectional
stereo camera to capture a view of the illuminating envi-
ronment. Sato et. al. [13] determine the distant illumina-
tion at a site by interpreting the shadows cast by an object
of known geometry already in the real scene. Debevec [3]
uses a high dynamic range images of a shiny spherical
“light probe” to capture the incident illumination. Zhang
and Yang [18] use a lambertian spherical light probe to
characterize a small number number of directional light
sources in a scene.

There are many different techniques [9, 14, 11, 10]that
use a combination of multiple images, controlled light-
ing, and geometric information to locally determine the
BRDF of any given surface. Fournier et. al. [7] in their
pioneering work describe a solution for augmented re-
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(a) (b) (c)

Figure 1:We present a simple start-to-end solution to place a virtual object in the picture of a real-world environment (figure (a))
by determining the incident illumination at the site by interpreting shadows from a paper-made cube (figure (b)). The resulting
image is shown in figure (c).

ality assuming all the surfaces in the environment were
diffuse. With the knowledge of the geometry, camera pa-
rameters, and the lighting attributes they estimate the dif-
fuse albedo of the surfaces by reprojecting them on the
real image. The image can then be modified using pro-
gressive radiosity techniques. Drettakis et. al. [6] extend
this for interactive manipulation with the pre-processing
made more robust and convenient using computer vision
techniques for camera calibration. Debevec [3] modeled
only the local geometry after determining the distant light
distribution with a light probe. Debevec proposed an au-
tomatic technique to extract the diffuse reflectance prop-
erties of the surface while the specular properties were
fine-tuned manually. Loscos et. al. [8] use a knowledge
of the geometry and the the light sources to recover the
diffuse BRDF in the scene even in the presence of highly
textured surfaces. Yu et. al. [17] propose an extensive
solution to this problem by simulating the light transport
and minimizing the error in the parameters of the Ward’s
anisotropic BRDF model [16]. They use the geometry of
the scene and measure the lighting attributes that illumi-
nates the scene. They can then easily introduce virtual
objects in the pictures of the real scene by simulating the
light transport. More recently, Boivin and Gagalowicz [2]
propose an incremental and hierarchical solution that can
extract a wide range of reflectance properties from a sin-
gle photograph given the geometric model of the scene
and the lighting attributes.

Of previous methods, our approach follows De-
bevec [3] most closely. We also divide the problem
into estimating distant illumination and local geometry
and reflectance. For distant illumination however we use
a more commonly available object for light probe than
a shiny spherical ball. We use a paper cube that can
be readily assembled from common copier/printer paper.
Similar to the work of [13] we construct the lighting dis-
tribution from examining the shading and shadows of the
cubical probe. The averaging effect of diffuse reflectance

reduces the dynamic range of luminances to make esti-
mates of illumination. The directionality and frequency
of the illumination are indicated by the sharpness of shad-
ows cast by the test object. The advantage is that the illu-
mination is constructed from luminances in the range of
the objects in the photograph we are augmenting, rather
than the high dynamic range required by the shiny sphere.
Unlike Sato et. al. [13], we control the surface onto which
shadows are cast, and take into account the effects of in-
tereflection. Using a cube rather than a sphere reduces
the demands on accuracy of estimating the camera pa-
rameters in the system, and so requires less user exper-
tise. Different views of the cube are readily aligned by
indicating vertices on the cube.

3 Data Capture

Our data capture process requires the user to take six pic-
tures (see figure 2). The first set of pictures are taken
from a distance that is possibly far from the site. It con-
sists of two pictures taken from approximately the same
spot with the first picture being of the scene (including the
base) where the synthetic object has to be rendered. The
second picture is taken with a plain sheet being placed at
the site (for calibrating the camera for the first picture).
The remaining pictures are close-up shots of the site. The
third picture is taken with a calibration sheet placed at
the site and the forth picture is that of a paper-made cube
placed on top of a plain sheet. They both are taken with
approximately similar camera coordinates and sheet ori-
entation. Then the user goes around and takes the fifth
picture capturing the cube from the other side and then
takes the sixth picture with the calibration sheet placed at
nearly the same orientation as in the seventh. The shad-
ows in the forth and the fifth pictures help us to determine
the lighting incident at the site. The third and the sixth
pictures are taken to calibrate pictures four and five re-
spectively. If the user is only interested in a closeup shot
of the site then we can do without the second picture. We
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Figure 2:The six pictorial inputs to our algorithm: (1): The original picture in which the virtual object needs to be inserted. (2):
The corners of the paper are used to calibrate the camera using our novel calibration technique. (3): A closeup shot of the site with
the Tsai [15] calibration sheet. (4): Picture used to determine the incident lighting at the site using the shadows cast by the cube.
(5): Same picture as (4) but taken from the other side of the cube. (6): Serves to calibrate picture (5). We use these pictures to
generate a new picture with an artificially inserted synthetic object.

denote the pictures by the termpi wherei = 1, . . . , 6 is
the number of the picture in the picture capture sequence
as shown in figure 2.

After the pictures are taken, the user loads the pictures
into our software and identifies certain features of the pic-
tures. In picturep2, the user marks the corners of the
sheet. The user then identifies the corners of the cube
and the sheet in picturesp4 andp5 and the calibration
points in picturesp3 andp6. Note that this stage can also
be automated (or atleast computer-assisted) using feature
detection algorithms for enhanced efficiency [3].

We start with the processing of the pictures by first cal-
ibrating the camera parameters for picturesp1, p4 and
p5 (§4). We then correct picturesp4 and p5 for the
color distortion introduced by the camera (§5.1). We fol-
low this with a radiosity based correction which undoes
the inter-reflection between the cube and the sheet in the
color-corrected versions of picturesp4 andp5 (§5.2). We
use the corrected pictures to determine the lighting at the
site by inverse computation from the shadows cast by the
cube (§5.3). Finally, we render the virtual object into pic-
turep1 with consistent orientation and illumination (§6).
We conclude the paper with results and conclusions in
sections§7 and§8 respectively.

(a) (b)

Figure 3:The area enclosed in red in figures (a) is the part of
picturep4 that is used of computing the distant illumination.
Figure (b) shows the analogous area for picturep5.

4 Camera Calibration

The white sheets and the cube seen in the photographs of
figure 2 are the common A4 paper that are used for laser
printers. To determine the lighting at the site we need to
reconstruct a three-dimensional model of the cube sitting
on top of the sheet and casting shadows on the sheet. We
use the Tsai calibration algorithm [15] on picturep3 to
determine the coordinates of the camera w.r.t. the sheet
in picturep4. This lets us establish a mapping between
a three-dimensional cube-on-top-of-sheet model andp4.
However, since all parts of the sheet and the cube cannot
be seen in a single picture, we use this mapping for only
certain portions of the sheet and the cube as shown in
figure 3. The remaining portions are covered in picture
p5 which is in turn calibrated using picturep6.

3



Figure 4:The orientation and the relative distance of the sheet
in picturep2 is determined by using the projection coordinates
si and the rectangular constraints inherent in the pointspi.

While the Tsai calibration gives us the parameters of
the camera, this information still cannot give us the depth
at any pixel. For this we use our knowledge of the di-
mensions of the sheet, the dimensions of the cube, and
the relative position of the cube w.r.t. the sheet. This al-
lows us to map any pixel(u, v) of picturesp4 andp5 to
a point on the cube and vice-versa.

The Tsai calibration technique can robustly recover the
camera parameters but is impractical for the case where
the site is far away. This is because a site that is far away
would require a large calibration sheet so that the calibra-
tion points are sufficiently spaced in the picture. For this
problem, we propose an alternate approach of determin-
ing the extrinsic parameters of the camera relative to the
focal length of the photo shot. In particular, we determine
the orientation of the site and its distance from the center
of projection relative to the focal length of the camera.
We infer these properties by exploiting the inherent con-
straints between the corners of the rectangular sheet in
picturep2. Let pi = (pi

x, pi
y, pi

z), i = 1 . . . 4, be the four
corners of the rectangle as shown in figure 4. Let every
cornerpi project to a pointsi = (si

x, si
y) on the image.

Then we have the following relationships between them:

pi
x =

si
xpi

z

f
∀i = 1, . . . , 4, (1)

pi
y =

si
ypi

z

f
∀i = 1, . . . , 4, (2)

p3 = (p4 − p1) + (p2 − p1) + p1, (3)

0 = (p1 − p4) • (p3 − p4), (4)

wheref is the focal length of the camera. Equations (1)
and (2) impose the constraints of perspective projection,
while equations (3) and (4) enforce the rectangular and
planar constraints respectively. This gives us 12 linear
equations with 13 variables. We solve this linear system
in MATLAB by expressing all the terms relative to the
focal lengthf . The camera parameters ofp1 are needed
for illumination of the virtual object and to cast shadows
at the base. Our relative camera parameters suffice for

(a) (b)

Figure 5: We correct the original picturep4 (a) using an ap-
proximation of the camera response function to get the cor-
rected picture (b).

this task. However, since all the recovered parameters are
in the camera coordinates, this does not allow us to spec-
ify the dimensions of the virtual object in a real-world
metrics such as meters. We leave this factor as a variable
and allow the user to scale the virtual object according to
his/her needs.

5 Illumination Capture

5.1 Color Correction
When the user is using a simple commercial camera
we have to account for the possibility that the exposure
time of the different pictures cannot be controlled by the
user. That leads to color calibration issues since the site-
illumination extracted from picturesp4 andp5 may be
too bright or dim compared to the actual site-illumination
as seen in the original picturep1. To color-calibrate the
three relevant picturesp1, p4, andp5 we use the pixel
response curve of the camera. Debevec and Malik [5] re-
cover this curve by using several camera exposures of a
scene with varying time intervals. They note that the ac-
tual color,Z, observed at any pixel of a picture is a func-
tion of the irradiance,E, observed at that pixel by the
camera’s sensor and the exposure time,4t, of the shot.
The relationship between them is given by:

g(Z) = ln(E) + ln(4t),

whereg(·) is a smooth monotonic function that they re-
cover. Although we do not recover this function, we use
this relationship to color-calibrate the picturesp2, p4,
andp5.

Consider any diffuse pointx in picturep2 that is also
visible in picturep4. If we denote its irradiance byEx,
then we have that:

g(Zi
x) = ln(Ex) + ln(4ti), for i = 2, 4

whereZi
x is the color ofx as seen in picturepi and4ti

is the exposure time of the picturepi. That gives us the
relation:

ln(4t4)− ln(4t2) = g(Z4
x)− g(Z2

x). (5)
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Color calibration then comes down to determining how
the pixel valueZ4

x would change if the camera exposure
time was4t2 as opposed to4t4. If we denotecorr(Z4

x)
as the corrected pixel value then we have that:

ln(Ex) = g(Z4
x)− ln(4t4)

= g(corr(Z4
x))− ln(4t2).

So the corrected color can now be written as:

g(corr(Z4
x)) = g(Z4

x) + ln(4t2)− ln(4t4).

We note that the termln(4t2)− ln(4t4) is independent
of the pointx. We estimate this term by the termg(Z2

m)−
g(Z4

m), wherem is any other diffuse point that is visible
in both picturesp2 andp4. This follows directly from
equation (5). We thus have that:

g(corr(Z4
x)) = g(Z4

x) + g(Z2
m)− g(Z4

m).

We note that in general,g(Z), exhibits near-linear prop-
erty for most cameras when the values ofZ is in the range
[50, 255]. If we approximate the functiong(Z) to be a
linear function, then we have that:

corr(Z4
x) ≈ Z4

x + Z2
m − Z4

m. (6)

The near-linear property ofg(Z) is not true for very
low values ofZ. However, since the illumination com-
putation (that picturep4 is used for) is dictated by the
mid-range color values, we did not see any noticeable ef-
fects of this approximation. The pointm has to be chosen
such that it has a very high irradiance in both figuresp2

andp4 for approximation (6) to hold true. We chose the
point m to be the center of the white sheet in picturep2.
However, since this point is occluded in picturep4, and
we chose the color of the mid-point of the top of the cube
in picturep4 to representZ4

m. The three color channels of
each pixel of picturep4 are then corrected using approx-
imation (6). Similarly, we correct picturep5 separately.
Note that we are not calibrating the pictures w.r.t. the tar-
get picturep1. However, sincep1 andp2 are shot with
similar camera locations and lighting, the auto-exposure
feature of the camera is bound to use similar exposure
times for the two shots.

5.2 Correction by Inverse Radiosity
Using a white paper for the cube and for the paper sheet
in picturesp2, p4, and p5 helps us to do the color-
calibration and the illumination extraction robustly. It
also allows us to account for any color variations due
to color-variable lighting (e.g. an orange light from one
side and blue from another). However, it also has the un-
desirable effect that we cannot interpret the pixel values

(a) (b)

Figure 6:We eliminate the diffuse inter-reflection between the
base paper and the cube seen in picture (a) by using an in-
verse radiosity solution. Picture (b) shows the resulting shad-
ows without the inter-reflection.

directly since the observed color also includes the illumi-
nation due to the inter-reflection between the white-sheet
and the cube in picturesp4 andp5. We undo this inter-
reflection by using an inverse-radiosity solution. This
is possible since the paper sheets we normally use are
nearly diffuse reflectors, except at grazing angles. Figure
6 shows picturep4 before and after the correction.

To start with, we partition the sheet and the four sides
of the cube into small rectangles that are about 1-2mm
wide using the calibration picturesp3 andp6. The ra-
diosityBr of any rectangler on the sheet is given by:

Br = ρs
dI

d
r + ρs

d

∑
c

BcFr−c (7)

whereρs
d is the diffuse albedo of the sheet,Id

r is incident
irradiance atr due to thevisiblepart of the distant light,c
is any rectangle on the cube, andFr−c is the rectangle-to-
rectangle form factor fromr to c (see figure 7(a)). We do
not include any visibility term inside the integral since the
cube is a convex object and hence the visibility term can
be handled directly by comparing the normals ofr andc
during the form factor computation. The direct incident
distant light at the sheet can be derived from equation (7)
as:

Id
r =

Br

ρs
d

−
∑

c

BcFr−c (8)

Figure 6(b) shows the direct incident irradiance,Id
r , on

the sheet and the cube. We used aρs
d value of 0.9 for our

test cases. Changing it by±0.05 did not create noticeable
changes in our results.

5.3 Incident Lighting
To estimate the incident lighting at the scene we use the
implicit information that is contained in the shadow cast
by the cube onto the paper. Sato et. al. [13] introduced
this method to successfully extract the distant-lighting in
both indoor and outdoor scenes. We use their method to
estimate the lighting from the visible incident light,Id,
that was determined in§5.2.
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Figure 7: (a) The radiosity at a rectangler on the sheet is a
function of the visible lightLv and the radiosity of the rect-
anglesc on the cube. (b) Any pointp on the sheet is lit by
the distant lighting coming from all directions of the upper-
hemisphere. We partition the hemisphere into patches centered
at directions(θi, φi).

Consider any pointp on the sheet. Since it rests on a
flat surface, it only sees the distant lighting in its upper
hemisphere as shown in figure 7(b). We divide the up-
per hemisphere intoN patches with the center of each
patch being at an angle of(θi, φi) w.r.t. p. Let ωi denote
the solid angle that the patch subtends atp and letLd

i be
the average radiance through that patch. Furthermore let
Si(p) be the visibility function which takes the value 1 if
p is visible in the direction(θi, φi) and 0 otherwise. Then
the incident irradiance due to the distant light,Id

p , can be
expressed as:

Id
p =

N∑

i=1

Ld
i Si(p)ωi cos θi. (9)

Each pointp on the sheet gives rise to an equation of the
form (9). If we chooseM points on the sheet, then we
have the following linear system of equations:

α1,1L
d
1 + α1,2L

d
2 + . . . + α1,NLd

N = Id
1

α2,1L
d
1 + α2,2L

d
2 + . . . + α2,NLd

N = Id
2

...

αM,1L
d
1 + αM,2L

d
2 + . . . + αM,NLd

N = Id
M

whereαj,i is the coefficient of theith term in the equation
corresponding to thejth point (see equation (9)). This is
a liner system ofM equations withN variables. If the
rank of the matrixα = {αj,i} is atleastN , then this sys-
tem can be solved using linear least-squares optimization
methods. We use the Levenberg-Marquardt algorithm [1]
to solve this system of equations and to determine the in-
cident distant lightingLd

i .
We use the sheet-partitioning that was used in§5.2 for

setting up our linear system. The center of each parti-
tion gives us an equation of the form of equation (9). To
make the system of equations more robust we add an-
other equation representing the unoccluded illumination

(a) (b)

Figure 8:(a) A closeup of rendering of the virtual apple with-
out inter-reflection between the object and the base. Figure (b)
shows the same scene with inter-reflection.

of the sheet. For this we compute the average color of
the top of the cube as observed in picturep4 and add the
corresponding equation to the linear system. Further, to
make the linear system numerically stable, we have to
ensure that the solid angles,ω(θi, φi), do not differ sig-
nificantly. We do a near-uniform partitioning of the upper
hemisphere as follows:

θ = acos(uo)
φ = 2πu1

whereu0 andu1 are a uniform partitioning of the closed
range (0, 1). We avoid having duplicate light rays with
θ = 0 by using a minimumθ threshold of 5 degrees.

6 Rendering

After we have estimated the distant illumination at the
site, placing the virtual object in picturep1 involves three
steps: (1) placing the object with the right orientation, (2)
casting shadows at the site, and (3) illuminating the vir-
tual object. The first of these issues can be solved using
our camera calibration method described in§4 with the
size of the object being specified in terms of the focal
lengthf of the camera in picturep1.

For casting shadows at the site, we first determine a
shadow region around the object. We do this by deter-
mining a thresholdθ amongst the light directions such
that all directions with greaterθ have negligible intensity.
For each pixel in this region we determine the fraction,
η, of the distant light intensity incident at that point. As-
suming that the base is a perfectly diffuse reflector, we
set the new color at the pixel to be aη fraction of its orig-
inal color. We do not need to know the actual albedo of
the base for this because the incoming direct light (un-
der shadowing) is a subset of the original incoming light
without shadowing. We illuminate the object using the
distant light and the user specified material properties.

While the direct illumination of the object and the base
accounts for a significant amount of the overall illumi-
nation, the inter-reflection between the two can be sig-
nificant as well (see figure 8). We do the inter-reflection
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by estimating the amount of light bounced back from the
base to the object. This is similar to the final “gathering”
step in the final calculation of pixel values in a global illu-
mination solution since we have an estimate of the light
leaving the base. Light from the object can also be re-
flected back onto the base. To compute the complete cal-
culation for multiple interreflections between object and
base the user needs to estimate the surface BRDF by a
semi-manual method such as that described in [3].

7 Results

We show our results on two scenes captured with differ-
ent lighting and cameras. We needed about 10 minutes
for capturing the pictures in each of the two photo ses-
sions. We used 16 values ofφ and 8 values ofθ for a to-
tal of 128 lighting directions. We used 1mm-patches for
our inverse-radiosity solution. The lighting computation
could be done within 5 minutes on our 2.4 GHz Pentium
IV PC, although the inverse-radiosity solution was a little
longer at 10 minutes. The rendering time depended on the
scale of the virtual object. A bigger virtual object leads
to larger shadows and thus more computation time. We
needed about 10 seconds for the case of the apple while
the cow model took a longer time of about 10 minutes.
Our results can be seen in figures 9 and 10.

8 Conclusions and Future Work

We present a simple, robust, and cost-effective solution
for augmented reality applications. Our streamlined ap-
proach can capture the distant illumination at the site and
the camera parameters with just six pictures. Our acqui-
sition stage is very robust. Since the color correction
accounts for the differences in the exposure time of the
pictures, the user does not have to worry about control-
ling the exposure time. The positioning of the camera
for each shot is only specified approximately – hence the
user is not constrained to hold the camera perfectly still
from shot to shot.

In our approach we assume that the base is a perfectly
diffuse reflector. We can improve our results by estimat-
ing the full BRDF of the base by extending current such
methods used for uniform reflectance [3, 2]. Getting rid
of the user inputs should further automate the whole pro-
cess with potential extension to video sequences. Also,
it seems possible to determine the distance of the light
sources from the shadow information. Such a method
would allow us to extend our approach to a wide variety
of scenes.
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(a) (b)

(c) (d)

Figure 9:Figure (a) shows the original acquired picturep1, while figure (b) shows the rendering of the cow into the picture but
without shadows or inter-reflection. Figure (c) shows shadows cast by the model while figure (d) shows the object with shadows
and inter-reflection.

(a) (b) (c)

Figure 10:Figures (a) shows an actual Bach figure, while figure (b) shows a scanned model of the Bach figure placed synthetically
using our method. Note that the structure of the shadows are similar in the two cases. Figure (b) can be made to look even closer to
figure (a) using knowledge of the BRDF of the base and that of the Bach figure. Figure (c) is a rendering of the cow model using
the lighting computed for the scene of figure (1). Notice how its shadows look out of place.
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