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INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS WITH APPLICATION TO SOME
STATISTICAL PROBLEMS

Dimitri Kanevsky∗

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
{ kanevsky@ us.ibm.com}

ABSTRACT
The discrimination technique for estimating the parameters
of Gaussian mixtures that is based on the Extended Baum
transformations (EB) has had significant impact on the speech
recognition community. There appear to be no published
proofs that definitively show that these transformations in-
crease the value of an objective function with iteration (i.e.,
so-called ”growth transformations”). The proof presented in
the current paper is based on the linearization process and
the explicit growth estimate for linear forms of Gaussian
mixtures. We also prove that a set of invariant points for
EB transformation coincides with a set of critical points of
the objective function. And finally we derive new transfor-
mation formulae for estimating the parameters of Gaussian
mixtures generalizing the EB algorithm, and run simulation
experiments comparing different growth transformations.

1. INTRODUCTION

The EB procedure involves two types of transformations
that can be described as follows. LetF (z) = F (zij) be
some function in variablesz = (zij) andcij = zij

δ
δzij

F (z).
I. Discrete probabilities:

ẑij =
cij + zijC∑

i cij + C
(1)

wherez ∈ D = {zij ≥ 0,
∑

j zij =
∑j=mi

j=1 zij = 1}

II. Gaussian mixture densities:

µ̂j = µ̂j(C) =
∑

i∈I cijyi + Cµj∑
i∈I cij + C

(2)

σ̂2
j = σ̂j(C)2 =

∑
i∈I cijy

2
i + C(µ2

j + σj
2)∑

i∈I cij + C
− µ̂2

j (3)

where

zij =
1

(2π)1/2σj
e−(yi−µj)

2/2σ2
j (4)

∗The work is partly supported by the DARPA Babylon Speech-to-
Speech Translation Program.

andyi is a sample of training data. It was shown in [4] that
(1) are growth transformations for sufficiently largeC when
F is a rational function. Updated formulae (2, 3) for rational
functionsF were obtained through discrete probability ap-
proximation of Gaussian densities [6] and have been widely
used as an alternative to direct gradient-based optimization
approaches ([8], [7]). As originally presented in our IBM
Research Report [5] we demonstrate in this paper that (1)
and (2, 3) are growth transformations for sufficiently large
C if functionsF obey certain smoothness constraints. Ax-
elrod [1] has recently proposed another proof of existence
of a constant C that ensures validity of the MMIE auxiliary
function as formulated by Gunawardana et al. [3]). We also
prove that a set of invariant points for EB transformation co-
incides with a set of critical points of the objective function
thereby implying that if the consequent application of an
EB transformation converges to some point than this con-
vergence point is the critical point.

2. LINEARIZATION

This principle is needed to reduce proofs of growth trans-
formation for general functions to linear forms.

Lemma 1 Let

F (z) = F ({uj}) = F ({gj(z)}), j = 1, ..m (5)

be a function that can be represented as a composite of a
system ofm functionsuj = gj(z) wherez varies in some
real vector spaceRn of dimensionn. Let gj(z) for all
j = 1, ...m and F (z) be differentiable atz. Let, also,
δF ({uj})

δuj
exist atuj = gj(z) for all j = 1, ...m. Let,

further, L(z′) = L({gi(z′)}) =
∑

j
δF ({uj})

δuj
gj(z′) where

δF ({uj})
δuj

is taken atuj = gj(z) andz′ ∈ Rn . Let TC be
a family of transformationsRn → Rn such that for some
l = (l1...ln) ∈ Rn TC(z)− z = l/C + o(1/C) if C →∞.
(Hereo(ε) means thato(ε)/ε → 0 if ε → 0). Let, further,
TC(z) = z if ∑

i

δL(z)
δzi

li = 0 (6)
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Then for sufficiently largeC TC is growth forF at z iff TC

is growth forL at z.

ProofFirst, from the definition ofL we have
δF (z)
δzk

=
∑

j
δF ({uj})

δuj

δgj(z)
δzk

= δL(z)
δzk

Next, for z′ = TC(z) and sufficiently largeC we have:
F (z′)−F (z) =

∑
i

δF (z)
δzi

(zi′−zi)+o(1/C) =
∑

i
δF (z)

δzi
li/C+

o(1/C) =
∑

i
δL(z)
δzi

li/C +o(1/C) =
∑

i
δL(z)
δzi

(zi′−zi)+
o(1/C) = L(z′)−L(z)+o(1/C). Therefore for sufficiently
largeC F (z′)− F (z) > 0 iff L(z′)− L(z) > 0.

3. EB FOR DISCRETE PROBABILITIES

The following theorem is a generalization of [4].

Theorem 1 LetF (z) be a function that is defined overD =
{zij ≥ 0,

∑
zij = 1}. LetF be differentiable atz ∈ D and

let ẑ 6= z are defined as in (1). ThenF (ẑ) > F (z) for suf-
ficiently large positiveC andF (ẑ) < F (z) for sufficiently
small negativeC.

ProofFollowing the linearization principle, we first assume
that F (z) = l(z) =

∑
aijzij is a linear form. Than the

transformation formula forl(x) is the following:

ẑij =
aijzij + Czij

l(z) + C
(7)

We need to show thatl(ẑ) ≥ l(z). It is sufficient to prove
this inequality for each linear sub component associated with
i

j=n∑

j=1

aij ẑij ≥
j=n∑

j=1

aijzij

Therefore without loss of generality we can assume thati is
fixed and drop subscripti in the forthcoming proof (i.e. we
assume thatl(z) =

∑
ajzj , wherez = {zj}, zj ≥ 0 and∑

zj = 1). We have:l(ẑj) = l2(z)+Cl(z)
l(z)+C , wherel2(z) :=∑

j a2
jzj . The linear case of Theorem 1 will follow from

next two lemmas.

Lemma 2
l2(z) ≥ l(z)2 (8)

Proof Let as assume thataj ≥ aj+1 and substitutingz′ =∑j=n−1
j=1 zj we need to prove:

j=n−1∑

j=1

[a2
jzj + a2

n(1− z′)] ≥
j=n−1∑

j=1

(aj − an)2z2
j +

2
j=n−1∑

j=1

(aj − an)anzj + a2
n (9)

We will prove the above formula by proving for every fixed
j (a2

j − a2
n)zj ≥ (aj − an)2z2

j + 2(aj − an)anzj . If (aj −
an)zj 6= 0 then the above inequality is equivalent toaj −
an ≥ (aj − an)zj and is obviously holds since0 ≤ zj ≤ 1

Lemma 3 For sufficiently large|C| the following holds:
l(ẑ) > l(z) if C is positive andl(ẑ) < l(z) if C is

negative.

ProofFrom (8) we have the following inequalities.
l2(z) + Cl(z) ≥ l(z)2 + Cl(z),
l(ẑ) = l2(z)+Cl(z)

l(z)+C ≥ l(z)2+Cl(z)
l(z)+C if l(z) + C > 0

andl(ẑ) = l2(z)+Cl(z)
l(z)+C ≤ l(z)2+Cl(z)

l(z)+C if l(z) + C < 0.
The general case of Theorem 1 follows immediately from
the observation that (6) is equivalent tol2(z)− l(z)2 = 0 .

4. EB FOR GAUSSIAN DENSITIES

For simplicity of the notation we consider the transforma-
tion (2), (3), only for a single pair of variablesµ, σ, i.e.
we drop subscriptj everywhere in (2, 3), (4) and also set

ẑi = 1
(2π)1/2σ̂

e−(yi−µ̂)
2
/2σ̂2

Theorem 2 Let F ({zi}), i = 1...m, be differentiable at
µ, σ and δF ({zi})

δzi
exist atzi. Let eitherµ̂ 6= µ or σ̂ 6= σ.

Then for sufficiently largeC

F ({ẑi})− F ({zi}) = T/C + o(1/C) (10)

Where

T =
1
σ2
{{

∑
cj [(yj − µ)2 − σ2]}2

2σ2
+[

∑
cj(yj−µ)]2} > 0

(11)
In other words,F ({ẑi}) grows proportionally to1/C for
sufficiently largeC.

Proof According to the linearization principle, we can as-
sume thatF ({zi}) = l(µ, σ) := l({zi}) :=

∑i=m
i=1 aizi.

Let us denote alsol(µ̂, σ̂) := l({ẑi}) :=
∑i=m

i=1 aiẑi. Then
cj = ajzj in (2), (3). We want to prove that for sufficiently
largeC l(µ̂, σ̂) ≥ l(µ, σ). This inequality is sufficiently to
prove with the precision1/C2.

µ̂ = µ̂(C) =

∑j=m
=1 cjyj + Cµ
∑j=m

=1 cj + C
=

1
C

∑j=m
j=1 cjyj + µ

1
C

∑j=m
=1 cj + 1

∼

∼ (
1
C

∑

j

cjyj+µ)(1−
∑

j cj

C
) ∼ µ+

1
C

(
∑

j

cjyj−µ
∑

j

cj)

(12)

µ̂ ∼ µ +

∑
j [cj(yj − µ)]

C
(13)
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Next, we have

σ̂2 = σ̂(C)2 =

∑
j cjy

2
j + C(µ2 + σ2)∑

j cj + C
− µ̂2 (14)

Let us computêσ2 using (14)
∑

j cjy
2
j + C(µ2 + σ2)∑

j cj + C
∼

∼ (

∑
j cjy

2
j

C
+ µ2 + σ2)(1−

∑
j cj

C
) ∼

∼ µ2 + σ2 +
1
C

[
∑

j

cjy
2
j − (µ2 + σ2)

∑

j

cj ] (15)

µ̂2 ∼ µ2 +
2µ

C

j=m∑
=1

cj(yj − µ) (16)

This gives

σ̂2 ∼ µ2 + σ2 +
1
C

[
∑

j

cjy
2
j − (µ2 + σ2)

∑

j

cj ]−

−[µ2 +
2µ

C

∑

j

cj(yj − µ)] =

= σ2 +
1
C

[
∑

j

cjy
2
j − (µ2 +σ2)

∑

j

cj−2µ
∑

j

cj(yj−µ)]

(17)
And finally

σ̂2 ∼ σ2 +

∑
j [(yj − µ)2 − σ2]cj

C
(18)

(yi − µ̂)2/σ̂2 ∼ 1
σ2

[(yi − µ)2−

−2(yi − µ)
∑

j cj(yj − µ)
C

]×

×{1−
∑

j cj [(yj − µ)2 − σ2]
σ2C

} ∼

∼ (yi − µ)2

σ2
− 1

Cσ2
{ (yi − µ)2

σ2

∑

j

[(yj − µ)2 − σ2]cj+

+2(yi − µ)
∑

j

(yj − µ)cj} (19)

ẑi ∼ 1
(2π)1/2σ̂

e
−(yi−µ)2

2σ2 +
Ai

Cσ2 (20)

Where

Ai =
(yi − µ)2

2σ2

∑

j

[(yj−µ)2−σ2]cj+(yi−µ)
∑

j

(yj−µ)cj

Continue this we have

ẑi ∼ Ke
−(yi−µ)2

2σ2 (1 +
Ai

Cσ2
) (21)

Where

K =
1

(2π)1/2σ̂

1/σ̂ ∼ 1
σ
{1−

∑
j cj [(yj − µ)2 − σ2]

2σ2C
} (22)

(1 +
Ai

Cσ2
){1−

∑
j cj [(yj − µ)2 − σ2]

2σ2C
} ∼

∼ 1 +
1

Cσ2
{ (yi − µ)2

2σ2

∑

j

[(yj − µ)2 − σ2]cj+

+(yi − µ)
∑

j

(yj − µ)cj − 1/2
∑

j

cj [(yj − µ)2 − σ2]} ∼

∼ 1 +
Bi

Cσ2
(23)

WhereBi = [ (yi−µ)2

2σ2 −1/2]
∑

j [(yj −µ)2−σ2]cj +(yi−
µ)

∑
j(yj − µ)cj

Using the last equalities we get

ẑi = zi +
Bi

Cσ2
zi (24)

Sincel(µ̂, σ̂) is a linear form we have

l({ẑi}) = l({zi}) +
l({Bizi})

Cσ2
(25)

and

l({Bizi}) =
∑

i

aizi{[ (yi − µ)2

2σ2
− 1/2]×

×
∑

j

cj [(yj − µ)2 − σ2] + (yi − µ)
∑

j

cj(yj − µ)} =

=
∑

i

ci{[ (yi − µ)2

2σ2
− 1/2]

∑

j

cj [(yj − µ)2 − σ2]+

+(yi − µ)
∑

j

cj(yj − µ)} =

=
{∑j cj [(yj − µ)2 − σ2]}2

2σ2
+ [

∑

j

cj(yj − µ)]2 (26)

l({ẑi})− l({zi}) ∼ T

C

Since by assumption eitherµ̂ 6= µ or σ̂ 6= σ T 6= 0. Q.E.D.
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5. CONVERGENCE AND INVARIANT POINTS OF
EB TRANSFORMATIONS

In this section we preserve assumptions of Section 4 and
assume thatTC : (µ, σ) → (µ̂, σ̂) denotes an EB transfor-
mation (2, 3). First we need the following

Lemma 4 If TC(µ, σ) = (µ, σ) for someC thanTC(µ, σ) =
(µ, σ) for anyC for whichTC(µ, σ) is defined.

ProofThe equality

µ =

∑j=m
=1 cjyj + Cµ
∑j=m

=1 cj + C
(27)

for someC such that
∑j=m

=1 cj +C 6= 0 is equivalent to the
equality

µ(
j=m∑
=1

cj + C) =
j=m∑
=1

cjyj + Cµ (28)

and therefore (27) is equivalent to the equality

µ =

∑j=m
=1 cjyj∑j=m
=1 cj

(29)

if
∑j=m

=1 cj 6= 0. In other words, (27) holds for anyC for

which
∑j=m

=1 cj + C 6= 0.
Next, if (29) holds than

σ2 =

∑
j cjy

2
j + C(µ2 + σ2)∑

j cj + C
− µ2 (30)

and therefore the equality (30) is equivalent to the equality

σ2 =

∑
j cjy

2
j∑

j cj
− µ2 (31)

if
∑j=m

=1 cj + C 6= 0 and
∑j=m

=1 cj 6= 0. Q.E.D.

Proposition 1 1. Let a differential ofF equals zero at
(µ, σ), i.e. dF (µ, σ) = 0.
ThenTC(µ, σ) = (µ, σ) for anyC.

2. LetTC(µ, σ) = (µ, σ) for someC. Then
dF (µ, σ) = 0.

In other words, the set of critical points of the function
F coincides with the set of points that are invariant under
an EB transformation.

Corollary 1 Let{Tn
C(µ, σ)} converges to(µ̂, σ̂) whenn →

∞. Let F be differentiable at(µ̂, σ̂). ThendF (µ̂, σ̂) = 0
andTC is invariant at(µ̂, σ̂).

Proof

1. Solving the following system of equations:

0 =
δF (z)

δµ
=

∑
ci(yi − µ)/σ2 (32)

and

0 =
δF (z)

δσ
=

∑
ci[−1/σ + (yi − µ)2/σ3] (33)

gives transformation formula (2, 3)(µ̂, σ̂) = TC(µ, σ) =
(µ, σ) with C = 0. The proposition now follows from
Lemma 4.

Proof of Corollary 1
The statement follows from the fact thatTC(µ̂, σ̂) = (µ̂, σ̂)
since application ofTC to a set of points{Tn

C(µ, σ)} pre-
serves density points of this set.
Remark
For EB transformations for discrete probabilities (1) one can
suggest similar statements and proofs on coincidence of a
set of invariant point of an EB transformation and critical
points of a lagrangian associated withF (z) and probability
constraints.

6. NEW GROWTH TRANSFORMATIONS

One can derive new updates for means and variances ap-
plying EB algorithm of the section 3 by introducing prob-
ability constraints for means and variances as follows. Let
us assume that0 ≤ µj ≤ Dj , 0 ≤ σj ≤ Ej . Then we
can introduce slack variablesµj ′ ≥ 0, σj ′ ≥ 0 such that
µj/Dj + µj ′/Dj = 1, σj/Ej + σj ′/Ej = 1. Then we can
compute updates as in (1), withcj as in (2, 3).

µ̂j = Djµj

∑
i cij

(yi−µj)

σ2
j

+C

∑
i cij

(yi−µj)

σ2
j

µj+DjC

σ̂j = Ej

∑
i cij [−1+

(yi−µj)2

σ2
j

]+Cσj

∑
i cij [−1+

(yi−µj)2

σ2
j

]+EjC

If someµj < 0 one can make them positive by adding
positive constants, compute updates for new variables in the
new coordinate system and then go back to the old system
of coordinates.

7. EXPERIMENTS AND DISCUSSION

Our preliminary experiments are done for a single pair of
means and variances0 < µ < 3, 0 < σ < 3 ( i.e. a sub-
scriptj can be dropped in update formulae in sections 1 and
6) and a Gaussian mixturel(µ, σ) =

∑i=100
i=1 aizi. Coeffi-

cients in this linear formai andyi were chosen randomly.
One iteration consists of three following steps:
1. EB with the best C: Computeµs = µ̂(C′), σs = σ̂(C′)
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as in (2, 3) where
C′ = argmaxC∈{1,2,...,100}l(µ̂(C′), σ̂(C′))
2. Modified EB with the best C:Computeµm = µ̂(C′),
σm = σ̂(C′) as in the section 6 where
C′ = argmaxC∈{1,...,100}l(µ̂(C′), σ̂(C′))
3. Mixture of EB and modified EB with the best C: We de-
fine the best mixture as:µ(α̃) = αµs + (1 − α)µm and
σ(α̃′) = α′σs + (1− α′)σm where
(α̃, α̃′) = argmax(α,α′)∈[0,1]×[0,1]l(µ(α), σ(α′))
We repeatedly run three experiments (each consisting of 5
iterations: the EB (step 1), the modified EB (step 2) and
the mixture (steps 1-3, in which an output from step 3 was
fed as the input in the step 1, i.e.(µ, σ) = (µ(α̃), σ̃(α̃′))).
A typical plot of three experiments is shown in Figure 1
(values of the objective function are placed along the ordi-
nate axis). These illustrative simple numerical experiments

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

o  Mixture of EB and modifed EB with the best C

x Modifed EB with the best C

< EB with the best C

Fig. 1. Graphs of objective values for 3 maximization meth-
ods.

show that different growth transformations can exhibit dif-
ferent behavior and that combining them with appropriate
weights can improve the growth rate. This leaves open a
question for efficient computation of weights and constants
in these formula. One of the possible approaches for esti-
mating weights and constants is to treat them as parameters
and estimate them together with means and variances. This
approach will be investigated in future experiments.
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