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Introduction 
IBM Research and the University of Colorado collaborated on their submission to the inaugural Genom-
ics track at TREC 2003.  IBM Research has extensive experience in natural language processing, text 
analysis, and large-scale systems [9, 13, 3, 5, 16, 10].  IBM also has numerous research and business ac-
tivities in the broad areas of bioinformatics and bio-medical information processing [14, 8].  IBM Re-
search is currently developing BioTeKS, a middleware system for text analysis, mining, and information 
retrieval in the bio-medical domain.  The University of Colorado (CU) has been working in the area of 
bioinformatics and text analysis in the bio-medical domain for a number of years and has made substan-
tial contributions to the field [7, 11, 15, 12].  CU contributed their domain expertise to enhance the Bio-
TeKS system and jointly we designed and evaluated experiments while preparing our track submissions. 

The basic premise of BioTeKS is that the best way to enable effective exploitation of vast text resources 
is to associate meaningful semantics with the tokens and phrases in the text.  With a better understanding 
of the semantic content of text as a foundation, we can build information extraction, summarization, and 
indexing systems that address specific information needs in complex domains.  For example, bio-medical 
researchers often need to find documents that contain specific entities (e.g., genes, proteins, cellular com-
ponents) interacting in certain ways.  To satisfy such requests, we must first be able to identify the entities 
(which may be named using a variety of aliases or synonyms) and then recognize textual constructs that 
describe these entities interacting with the desired relationships.    

BioTeKS is built on the IBM Unstructured Information Management Architecture (UIMA) [6], which is a 
framework for building unstructured information analysis applications.  UIMA provides a number of 
standard facilities for managing the flow of data through the system, scheduling and orchestrating low-
level analysis tasks, and assembling, analyzing, and storing results.  BioTeKS uses the UIMA framework 
to assemble text analysis engines that provide tokenization, named entity recognition, part of speech tag-
ging, shallow and deep parsing, relationship extraction, and semantic indexing.   

For our Genomics track submissions, we focused on developing named entity recognizers for genes, pro-
teins, and functions.  Our basic recognizer was dictionary based, where each dictionary entry contained all 
known synonyms for the corresponding entity, and matching of synonyms against the text involved nor-
malization heuristics appropriate for the entity type.  For example, authors are often lax in their use of 
capitalization, spaces, hyphens, and slashes when writing gene symbols [4].  Our matching heuristics con-
sider this behavior, and much of our pre-submission work involved experiments to determine which heu-
ristics provide the best balance of precision and recall for the Genomics track tasks.  Our dictionary of 
gene and protein names was derived from the full LocusLink database, and our function dictionary was 
derived based on a statistical analysis of verbs and related nominalizations that frequently co-occur with 
the gene of interest in the Genomics track training data. 
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For the primary task (ad-hoc retrieval), we analyzed the test corpus with our named entity recognizers and 
created annotations in the text for recognized entities.  An annotation spans the original text in the docu-
ment and contains meta-data about the annotation, such as a canonical form and the semantic role of the 
entity.  We then used the JuruXML search engine [1, 2] to index the full text and annotations for each 
document in the corpus.  The JuruXML query language supports both free-text queries as well as queries 
over annotations, annotation attributes, and the text spanned by annotations.  We automatically generated 
the JuruXML queries from the test topics, with the final query generation algorithm selected based on 
experiments with the training data.  Our final average precision over 11 points of recall for the 50 test 
queries was 0.28. 

For the secondary task (information extraction/summarization), we applied the same set of named entity 
recognizers to annotate the text documents.  We then scored each sentence using a weighted combination 
of features, including annotations, location in the document, and structural role of the sentence (e.g., title).  
The weights were determined empirically, and the best scoring sentence was returned as the summary. 

In the remaining sections we describe our overall architecture, present our approach in more detail, briefly 
analyze our results, and close with conclusions. 

Architecture 
Our BioTeKS system is built on the IBM Unstructured Information Management Architecture (UIMA) 
[6], which is summarized in Figure 1.  The UIMA provides a framework for implementing and deploying 
an unstructured information processing and analysis system.  Unstructured information (text in this sce-
nario) is fed to an Application Logic layer, which represents a specific instantiation of the architecture for 
the current domain and provides an application level interface to the framework.  The Application Logic 
layer passes documents to the Collection Analysis Engine, which calls on the Collection Processing Man-
ager to orchestrate the text analysis processing steps.  The actual text analysis operations are performed 
by pluggable Text Analysis Engines. 

A Text Analysis Engine, or TAE, performs a specific text analysis task, such as tokenization, lemmatiza-
tion, part of speech tagging, parsing, named entity recognition, relationship extraction, etc.  TAEs may 
operate directly on document content, or they may process the output of previously run TAEs.   The 
UIMA framework defines a standard API for building a TAE and describing its functionality, inputs, and 
outputs.  For TAEs that require access to other information resources during analysis, the Structured 
Knowledge Access module provides mechanisms for accessing various knowledge resources, such as dic-
tionaries, lexicons, or ontologies.  These resources may be provided locally, or they may be standard, ex-
ternal resources (e.g., MeSH, UMLS, GO) with appropriate Knowledge Source Adapters that allow ac-
cess to the resource through the framework. 

When the text analysis processing steps for a given document are complete, the Collection Processing 
Manager submits the results for indexing by the Semantic Search Engine (JuruXML), stores selected 
analysis results and document meta-data in the Store, and returns the results to the Collection Analysis 
Engine.  The Collection Analysis Engine accumulates results over all of the documents in the collection 
and performs any collection-wide analyses specified by the application logic layer, saving those results in 
the Store. 

The UIMA framework exploits standard middleware software to implement various components of the 
framework as appropriate (e.g., a relational database management system, such as IBM DB2™, for the 
Store, or an application server, such as IBM WebSphere™, for deploying Text Analysis Engines as web 
services).  UIMA in turn provides support for deploying Collection Processing and Text Analysis steps in 
a variety of local, distributed, and parallel configurations, depending on the underlying computing infra-
structure.   
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When all of the documents have been processed, the Application Logic layer provides access to the proc-
essing results either via the Semantic Search Engine or through custom access functions to the Store.  The 
Semantic Search Engine is a key component of the system, providing the ability to express complex and 
sophisticated queries over both the raw text in the documents and the results of the text analysis process-
ing. 

Approach 
Task 1 
Our overall approach to solving the Task 1 problem (retrieve documents that describe the function of a 
given gene) was to parse and tokenize the MEDLINE abstracts, recognize gene mentions and annotate 
them with a canonical form, recognize “function words” that are indicative of gene function and annotate 
them with a canonical form, index the full text plus annotations with JuruXML, and automatically gener-
ate JuruXML queries.  The text analysis flow is summarized in Figure 2. 
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Figure 2 BioTeKS processing steps and dictionaries 

To recognize gene mentions and function words, we used a dictionary-based named entity recognizer im-
plemented as a UIMA Text Analysis Engine.  The dictionary contains an entry for each named entity, 
which in turn includes all known synonyms for the entity, a “canonical” or preferred name for the entity, 
and additional optional meta-data associated with the entity.  A synonym may be a single token or a 
multi-token phrase.  The entity recognizer TAE scans the input text and at each token searches for the 
longest matching synonym in the dictionary.  When a matching synonym is found an annotation is created 
in the text that spans the matching tokens.  The annotation includes the canonical form for the entity and 
all other meta-data specified in the dictionary entry for the entity.  The TAE will optionally perform stem-
ming and case folding when attempting to match the text against the dictionary of synonyms, and the set 
of characters used to separate tokens is configurable. 

The dictionary for finding gene mentions was automatically derived from the full LocusLink database, 
and included 156,533 genes with a total of 387,850 synonyms.  The preferred gene symbol was used for 
the canonical form and the synonyms were extracted from the LocusLink entry fields that contain the 
known gene or protein aliases used for the gene.  During dictionary matching we did not use stemming, 
but we did case fold all tokens that contained at least one numeric character, and the set of characters used 
to separate tokens included white space, punctuation characters, and in particular hyphen, forward and 
backward slash, and parentheses.  Tokenizing on these characters and eliminating them from the tokens 
improved the recall of our gene identifier and addressed some of the variability found in gene names as-
sociated with inconsistent use of space, hyphen, slashes, and parentheses. 

The dictionary of function words was derived in a semi-automatic fashion.  Using the training data for 
Task 1, we identified verbs that frequently occur in sentences with genes as the subject.  We sorted this 
list based on a scoring function of the significance of this co-occurrence, and then manually curated the 
list to select important gene function words, yielding a rather small list of 28 function words.  We used 
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Figure 3 Task 1 automatic query query generation. 

stemming and case folding during matching, allowing the function word finder to match noun forms as 
well as verb forms.  Samples of our dictionaries are shown in Figure 2. 

For the Task 1 queries, we explored using the gene canon, the species name (human, mice / mouse, rat, or 
Drosophila), the function word canon, and all given gene aliases as tokens or phrases.  We automatically 
generated queries for JuruXML based on the provided query source topics.  Our query generation process 
is summarized in Figure 3.   

Task 2 
For Task 2 (automatically extract and summarize a gene’s function given a document known to describe 
the gene’s function), we decided to chunk the document into whole sentences, score each sentence, and 
return the best scoring sentence as our answer.  A sentence’s score is based on whether or not it contains 
the target gene, how many gene function words it contains, what structural role the sentence plays (i.e., is 
it the title), and where in the document the sentence occurs.  To identify genes and function words in the 
documents we applied the text analysis processing steps shown in Figure 2, excluding the final step of 
indexing with JuruXML. 

Given that we had committed to extracting the single best scoring sentence as the summary, we per-
formed a simple analysis to determine if it was worthwhile to analyze the full article versus just the 
MEDLINE abstract.  For each document we scored every sentence in the document against the gold stan-
dard (the GeneRIF for the given gene and article) using the classic Dice coefficient (as implemented in 
the scoring code provided by the track) and identified the best scoring sentence.  We then returned this 
sentence as our answer and calculated the average performance over the set of documents.  This essen-
tially produces an upper bound the best possible score that could be obtained assuming a strategy of re-
turning the single best sentence.  
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Task 1 Test Set Performance
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Figure 4 Task 1 test set performance. 

For the set of full-length articles, the optimal classic Dice score is 70.61%.  For the set of MEDLINE ab-
stracts, the optimal classic Dice score is 71.09%.  This result is somewhat surprising given that the ab-
stract should be a proper subset of the full-length article.  This anomaly is due to the following: most 
GeneRIFs are extracted directly from the MEDLINE abstracts.  The full-length article contains SGML 
entities that must be translated to ASCII for the MEDLINE abstract, e.g., ‘&agr;’ -> ‘alpha’.  This transla-
tion is not done consistently, such that a fragment extracted from the full text may not exactly match the 
GeneRIF using the Dice measures.  Given this result, we chose to use the abstracts rather than the full-
length articles for our actual Task 2 run. 

Results 
Task 1 
Using the training queries for Task 1 we explored a variety of query generation options and measured the 
performance of the system.  On the training queries we were able to obtain an 11pt average precision of 
0.4259.  Based on these results, we submitted two runs on the test queries.  Run IBMbt1 was generated 
using queries that comprise only the gene canonical form and the species name.  This run produced an 
11pt average precision of 0.2823, but found only 456 of 566 possible relevant documents. Run IBMbt2 
was generated using queries that comprise the gene canonical form, species name, function keyword, and 
all alias forms from the source query topic.  This run produced an 11pt average precision of 0.2259 while 
returning 534 of 566 possible relevant documents.  Adding more terms to the query improved recall but 
resulted in poorer overall ranking.   
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With the relevance judgments for the test queries we performed a more detailed analysis of various query 
generation options on the test data.  These results are shown in Figure 4.  From the plot we see that the 
relatively simple query s-idx5 (species name and gene canonical form) produces better precision at low 
recall, while the queries with additional terms produce worse precision at low recall but better precision at 
higher recall levels. 

Task 2 
Although we explored a variety of parameter settings for our sentence scoring function, we were not able 
to obtain a scoring function that performed better than simply returning the title.  We are currently explor-
ing a number of ways to improve our scoring function, such as incorporating a shallow parse in the analy-
sis to more accurately connect the target gene with the function words in the sentence. 

Conclusion 
Based on our results, we conclude that using a comprehensive gene dictionary with appropriate normali-
zation during matching is an effective way to annotate gene mentions in biomedical text.  The normaliza-
tion and matching heuristics are very important, however, given the considerable variability found in gene 
names, especially in the use of capitalization, spaces, hyphens, slashes, and parenthesis.  Unfortunately, 
identifying gene “function words” is not necessarily useful in a bag-of-words query context.  We suspect, 
however, that they might be more effective when identified in syntactic relationships with genes.  This 
will require the addition of parsing (e.g., shallow parsing) to the analysis phase.   

The significant difference in our training and test results for Task 1 (a phenomenon observed by many of 
the Task 1 participants) suggests that the overall test set is not stable.  There may be too few relevant 
documents for some of the test queries, or the relevance judgments may be too incomplete.  This latter 
issue is particularly important and was raised by a number of the track participants. 

Given the exploratory nature of Task 2 and the relatively late decision by the track to collect official runs 
for the task, we did not invest as much time in this Task.  In the process of developing our sentence scor-
ing function, we observed a number of cases where our extracted sentence appeared to convey the same 
meaning as the gold standard, but due to the wording the sentence scored poorly using the various Dice 
measures.  Based on our experience and the experience of others on this task, we are not convinced that 
this particular evaluation accurately measures a system’s ability to perform what is arguably an important 
real world task. 

Given the overall constraints under which this inaugural Genomics track was run, we feel the track was 
very successful and accomplished its goals for the first year.  In particular, it brought this important area 
of research to the attention of the Information Retrieval community and made a positive step in the direc-
tion of building useful test sets in this domain, which currently suffers from a severe lack of well con-
structed test sets.  We look forward to next year’s track and the development of more realistic tasks sup-
ported by more thorough evaluation. 
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