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ABSTRACT
Object-oriented languages have enabled the creation of large
commercial applications, where high performance is critical.
To achieve high performance, dynamic optimization, which
is performed at execution time, must be continuously tai-
lored to the application’s changing runtime behavior. One
important technology to enable this continuous optimization
is phase shift detection, which allows a dynamic optimiza-
tion system to react appropriately to improve the system’s
performance.

However, there has been limited success in exploiting phase
shift detection in virtual machines. To help evaluate phase
detection algorithms, we attempted to find the canonical
phase structure of a program’s profile. Starting with a sim-
ple phase shift detection algorithm specified by three funda-
mental parameters, we demonstrate with examples and pro-
file data that two of the three parameters are non-monotonic
with respect to the phase shift detection algorithm’s deci-
sions. This result implies that to determine the “best” value
for a non-monotonic parameters may require an exhaustive
search of all possible values. Furthermore, once the “best”
value for a parameter is found for a particular profile, tuning
the parameter’s value for another profile is no easier than
attempting to find the value from scratch.

This fundamental result is important for dynamic opti-
mization systems because it implies that the choice of values
for a phase shift detection algorithm’s parameters can have
a dramatic impact on the quality of the information that is
produced, and thus the choices should be carefully studied.

1. INTRODUCTION
By making it easy to create reusable components, object-

oriented languages have played an enabling role in the cre-
ation of large commercial, web-based applications. A com-
pany’s business often depends on the availability and perfor-
mance of these applications, therefore, optimizing the appli-
cation’s behavior is important. Many of these applications
are written in dynamic languages, such as Java or C#, that
have features that preclude traditional static optimizations.
However, the rich runtime environment provided by these
languages allows optimizations to be performed at runtime
that are tailored to the application’s dynamic behavior [10,
6, 16, 11, 9, 2, 23, 26, 19, 30, 3, 27, 14, 15, 8].

Consider an application server for a stock brokerage’s web
site. One can expect the application server to have different
dynamic behavior in the morning than in the evening, on
a Monday than on a Friday, and on a weekday than on a
weekend. Although there are general trends in application’s

workload because of different transaction mixes and volume,
the behavior of the system on any given day, at any given
time cannot be predicted from the general trend because
of market factors. Therefore, to achieve peek performance,
such systems require continuous optimization [20, 19].

One important technology to enable continuous optimiza-
tion is phase shift detection; that is, to determine when the
application is executing in a phase or is transitioning be-
tween phases. Knowing the state of the system allows the
runtime to react appropriately to improve the system’s per-
formance. For example, Kistler’s [18] dynamic optimization
system for Oberon automatically performs data-layout of
objects based on online profile information and relies on an
online phase detection mechanism to trigger this optimiza-
tion. In addition to performing other forms of specialization
when a phase has been entered, some actions could take
advantage of the detection of the end of a phase. For exam-
ple, the runtime system could try to improve the efficiency
of garbage collection by optimistically schedule garbage col-
lection [32, 31] at the end of a phase with the hope that
many objects would be dead at this time, and thus, improve
both the performance and efficiency of the garbage collector.
However, heavily optimizing an application when it is in a
phase transition may not be a good use of resources, because
the program’s changing dynamic behavior may render the
optimizations obsolete.

Despite the promise, there has been limited success in ex-
ploiting phase shift detection in a runtime environment, such
as a virtual machine. Motivating by our own mixed success
using phase detection to optimistically schedule garbage col-
lection and adaptively tune the aggressiveness of a dynamic
optimization system, we decided to look closely at the phase
detection problem. To help evaluate different phase detec-
tion algorithms, we attempted to find the canonical phase
structure of a program’s profile, such as executed methods,
basic blocks, or instructions. The efficacy of a phase detec-
tion algorithm could then be determined by comparing it to
the canonical phase structure. This paper summarizes our
findings. Starting with a simple phase shift detection algo-
rithm specified by three fundamental parameters, we show
that two of the parameters are non-monotonic with respect
to the phase shift detection algorithm’s decisions; that is, as
these parameters’ values change, the phase shift detection
algorithm’s decisions are non-monotonic.

This result has an important consequence: when a param-
eter is non-monotonic, determining the “best” value for that
parameter may require an exhaustive search of all possible
values; that is, running the phase shift detection algorithm
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with every possible value for that parameter. Furthermore,
once the “best” value for a parameter is found for a partic-
ular profile, tuning the parameter’s value for another profile
is no easier than attempting to find the value from scratch.

Furthermore, this fundamental result is important for dy-
namic optimization systems because it implies that the choice
of values for a phase shift detection algorithm’s parameters
can have a dramatic impact on the quality of the information
that is produced, and thus the choices should be carefully
studied.

The remainder of this paper is organized as follows. Sec-
tion 2 demonstrates that an intuitive notion of a phase is
not well-defined, but instead requires the specification of
additional parameters. Section 3 presents a simple phase
detection algorithm that requires three parameters and the
profile of a program’s execution. Section 4 illustrates with
simple examples that two of the parameters are not mono-
tonic with respect to the phase shift detection algorithm’s
decisions. Section 5 demonstrates the non-monotonic prop-
erty with real profile data, a conditional branch trace of
Java benchmarks. Section 6 discusses other issues related
to phase detection problems. Section 7 summarizes related
work. Section 8 discusses conclusions and future work.

2. BACKGROUND
Intuitively, a phase occurs when the program’s execution

behavior is stable, and a phase transition occurs when the
program’s execution behavior changes. We model a pro-
gram’s execution behavior as a string of values (or execu-
tion events), denoted as a profile. Examples of such events
could be executed instructions, basic blocks, or methods, as
well as addresses of load instructions or the values loaded.
Given a definition of a phase, the general phase shift detec-
tion problem, PSD(P), can be stated as

Given a string of values, P, produce a set of
nonoverlapping substrings of P such that each
substring represents a maximal phase.

To avoid trivial phases, where each value is a phase, it
is desirable to have the phase length be maximal; that is,
a phase is the largest substring such that it constitutes a
phase. There may be regions of P that are not in any phase
and thus, are in a phase transition.

At first glance, solutions to PSD with an intuitive defi-
nition of a phase seem straightforward. For example, if the
profile is

aaaaaaabbbbbbb (1)

where each symbol, a or b, represents an execution event,
then two phases can be identified: all a’s, and all b’s. How-
ever, the solution is less clear with the following profile:

aaaaaabbbaaaaaa (2)

Is there only one phase that includes all the elements, or a
phase consisting of a’s that repeats and one phase consisting
of b’s, or are the b’s a phase transition? The solution is even
less clear when considering the following profile:

aababcaabab (3)

In this profile, is c a separate phase, a phase transition, or
simply an outlying value that should be ignored for purposes
of detecting phases? How c is interpreted determines the
phases in string 3.

The above examples illustrate that a precise definition of
a phase is required, and there are two inherent aspects of a
phase definition:

• the atomic units of comparison, or granularity , and

• how to compute the similarity of two strings.

A trivial definition of granularity is to let the size of the
unit of comparison, which we will call the chunk size, be one;
that is, the values of single elements are pair-wise compared,
either the values are the same or they are not. With this
definition, a phase is the largest substring that contain the
same values. For example, if the string is aabccc, then
there would be three phases: aa, b, and ccc. Alternatively,
a larger chunk size would result in computing the similarity
value of two strings, such that the value ranges from 0.0 to
1.0, where 0.0 represents no similarity, and 1.0 represents
perfect similarity between the two strings. The two strings
are similar if their similarity value is at least some threshold.

Let’s consider the similarity computation. When the size
of the unit of comparison is greater than one, the similar-
ity value of substrings must be computed. An important
aspect of this computation is the manner in which the two
strings are modeled. For example, should order within the
strings be considered? If not, should the frequency of string
elements (weight) be considered? For example, what is the
similarity value for aaaaab and abbbbb? If the strings
are modeled as unweighted sets, both strings are modeled
as the set {a, b} and they have perfect similarity. If the
strings are modeled as weighted sets, then string aaaaab is
modeled as {〈a, 5〉, 〈b, 1〉}, where a has a weight of five
and b has a weight of one, and string abbbbb is modeled
as {〈a, 1〉,〈b, 5〉}, where a has a weight of one and b has a
weight of five. The weighted set similarity value of the two
strings is 0.33 because only two out of six elements are the
same.

Once chunk size and a model have been specified, we take
any two strings in the profile and compute a similarity value
between 0.0 and 1.0. The final step for determining if these
two strings are in the same phase is to compare this value
to a threshold , which states how similar two strings must be
to be considered in the same phase.

Our discussion reveals three fundamental parameters to a
simple phase shift detection algorithm that precisely define
a phase:

• size of substrings to compare, chunk size,

• how similarity between substrings is computed, model ,
and

• a threshold to determine if the similarity between the
substrings is sufficient.

Given values for chunk size, model, and threshold a phase
can be defined as follows:

A string S is a phase if the length of S is at least
2 ∗ chunk size, and the similarity of two consec-
utive chunks contained in S are greater than or
equal to T .

In the following section we present a simple algorithm
that takes as input these three fundamental parameters and
a profile, and computes the phases in the profile. The pur-
pose of the algorithm is to study the properties of these
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/* This algorithm assumes S1 is the first element in the profile

PSD (P, CS, M, T ) {
1: inPhase = false // state of algorithm
2: numPhases = 0 // number of phases
3: numV alues = CS + CS // place in profile
4: phaseStart = −1 // beginning of a phase, set below
5: while (numV alues < |P|) {
6: S1 = PnumV alues−CS−CS+1 · · · PnumV alues−CS

7: S2 = PnumV alues−CS+1 · · · PnumV alues

8: simV alue = similarity [M] (S1, S2)
9: if ( simV alue >= T && !inPhase ) { // start of phase
10: inPhase = true
11: phaseStart = numV alues− CS − CS + 1
12: numPhases = numPhases + 1
13: } else if ( simV alue < T && inPhase ) { // end of phase
14: inPhase = false
15: phaseBoundary[numPhases− 1] =

〈phaseStart, numV alues− CS〉
16: }
17: numV alues = numV alues + CS
18: }
19: if ( inPhase ) {
20: phaseBoundary[numPhases− 1] =

〈phaseStart, numV alues− CS〉
21: }
22: return phaseBoundary
23: }

Figure 1: A simple phase shift detection algorithm.

parameters, not to propose a new algorithm. Many phase
shift detection algorithms have been proposed in the litera-
ture that choose one value for each of these parameters [?,
24, 19]. Therefore, results we obtain are applicable to these
algorithms as well.

3. SIMPLE ALGORITHM
This section presents a simple phase shift detection algo-

rithm that takes as input a profile P and three parameters:

Chunk Size (CS) is an integer greater than one that speci-
fies how a profile is partitioned into fixed length atomic
units of comparison, denoted chunks.

Model (M) is a function that takes two strings, S1 and
S2, as input, converts each string into an abstract
representation, such as a set, weighted set, etc., and
computes a similarity value between the abstract rep-
resentations such that the value ranges from 0.0, if
there is no similarity, to 1.0, if there is perfect sim-
ilarity. For purposes of this paper, we consider two
models: weighted, a weighted set representation; and
unweighted, an unweighted set representations.

Threshold (T ) is a constant ranging from 0.0 to 1.0. Two
string are similar if their similarity value is at least T ;
that is, M(S1, S2) ≥ T .

The profile input to the algorithm, P, represents the be-
havior of a program’s execution as a string of values. The
algorithm outputs a sequence of pairs of integers that iden-
tifies the phase structure. Each pair denotes the start and
end points of a phase in P. The sequence specify nonover-
lapping substrings of P. The largest substrings in the profile
that do not overlap any phases are the phase transitions.

Similarity[weighted] (S1, S2) {
similarity = 0
W1 = weightedSet (S1)
W2 = weightedSet (S2)
forall 〈v, w2〉 ∈ W2 {

if ( 〈v, w1〉 ∈ W1 ) {
similarity+ = min(w1, w2)

}
}
return similarity / |S2|

}

Similarity[unweighted] (S1, S2) {
return |(unweightedSet(S1) ∩ unweightedSet(S2))| /

(|unweightedSet(S2)|)
}

Figure 2: Algorithms for computing the similarity
value for a weighted and unweighted models.

Fig. 1 presents our simple phase shift detection algorithm.
The inPhase boolean flag tracks the state of the algorithm:
inPhase is true when the algorithm has recognized a phase;
otherwise, the algorithm is in a phase transition. The vari-
able numPhases identifies the number of phases identified,
while the variable phaseStart is used to remember the start
point of a phase. The variable numV alues identifies the
number of elements processed, including the current itera-
tion, as well as the index of the last profile element currently
being processed.

The while loop partitions P into nonoverlapping consecu-
tive chunks of size CS starting from the leftmost element in
P. S1 and S2 are the current candidate chunks. The method
similarity is called with S1 and S2 to compute their sim-
ilarity value that is stored in the local variable simV alue.
If the candidate chunks are similar, simV alue >= T , and
inPhase is false, then a new phase has begun. If the can-
didate chunks are not similar, simV alue < T , and inPhase
is true, then the current phase has ended, the start and
end of phase is recorded in the phaseBoundary array, and
inPhase is set to false. After all the values in P have been
examined, if inPhase is true the last phase is added to the
phaseBoundaries array.

Fig. 2 illustrates how the weighted and unweighted mod-
els compute the similarity value of two strings. For the
weighted model, the sum of the minimum weight of each
element in the weighted sets is divided by the size of the
second string, which is the same as the first string. If an el-
ement is not in a set, its weight is zero. For the unweighted
model, the number of elements that are in both sets is di-
vided by the number of elements in the second set. These
definitions of similarity are similar to those used by others [?,
24, 19]. Section 7 provides more details.

4. SIMPLE EXAMPLES
This section provides simple examples that illustrate the

monotonic property of the phase shift detection algorithm’s
parameters. For each parameter, we determine if the pa-
rameter is monotonic or non-monotonic with respect to the
phase shift detection algorithm’s decisions. Monotonicity is
an important property, because it provides the insight into
how the phase shift detection algorithm will respond to pa-
rameter value changes.
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We demarcate the start and end of a phase using “[” and
“]”. For example,

[aaaa] bc [dddd]

specifies a phase structure for the string aaaabcdddd such
that there are two phases, aaaa and dddd, and one phase
transition, bc.

4.1 Threshold
This section demonstrates how the threshold parameter

is monotonic with respect to the phase shift detection al-
gorithm’s decisions. Assume that the parameter values are
CS = 3, M = weighted, and threshold may vary: T = 0.6
or T = 0.3. Consider the following example string that has
six chunks:1

aab abb bcc bcb ddd dee (4)

When T = 0.6, the phase structure for string (4) is

[aab abb] [bcc bcb] ddd dee

The first phase, aababb, is a result of the similarity value of
chunks aab and abb being 0.66 (> 0.6). The second phase,
bccbcb, is a result of the similarity value of chunks bcc and
bcb being 0.66 (> 0.6). A phase transition containing no
chunks occurs between the two phases because the similarity
value of chunks abb and bcc is only 0.33 (< 0.6). The
second phase transition is ddddee because the similarity
between bcb and ddd is 0.0 and the similarity between
ddd and dee is 0.33 (< 0.6) , both of which are less than
0.6.

When T is 0.3, the phase structure for string (4) is

[aab abb bcc bcb] [ddd dee]

The first phase is a combination of two phases that occurred
when T = 0.6 because the phase transition that occurred
between those two phases is eliminated. In particular, the
similarity value of chunks abb and bcc is 0.33, which is
above the threshold when T = 0.3, but below the threshold
when T = 0.6. The second phase is a combination of two
chunks that were in a phase transition when T = 0.6 because
the similarity value of chunk abb and chunk bcc is 0.33,
which is above T when T = 0.3.

This example demonstrates that the threshold parameter
is monotonic with respect to the phase shift detection algo-
rithm’s decisions: as threshold’s value decreases, a bound-
ary between two chunks may either stay in the same state
or change from inTransition to inPhase and as a thresh-
old’s value increases, a boundary between two chunks may
either stay in the same state or change from inPhase to
inTransition.

Even though threshold is monotonic with respect to the
phase shift detection algorithm’s decisions, it may not be
monotonic with other aspects of the profile’s phase struc-
ture. For example, threshold is not monotonic with respect
to the number of phases detected: when the threshold is
decreased, the number of phases identified might either in-
crease, decrease, or stay the same. The number of phases
can decrease because adjacent phases are combined, or in-
crease because phase transitions become phases. Section 5.2
provides more insight into this phenomena.

1When appropriate, how a string is divided into chunks is
illustrated by placing spaces between chunk boundaries.

4.2 Model
This section illustrates how the choice of a model affects

the identification of phases. Assume that the parameter
values are CS = 6, T = 0.6, and we vary the model between
M = unweighted or M = weighted. Consider the following
example string:

abbbbb aaaaab aaaaac accccc (5)

When M = unweighted, the phase structure for string
(5) is

[abbbbb aaaaab] [aaaaac accccc]

Two phases and one phase transition are identified. The
phase transition occurs between chunk aaaaab, which has
an unweighted set representation of {a, b}, and chunk aaaaac,
which has an unweighted set representation of {a, c}, be-
cause their unweighted set representations have a similarity
value (see Fig. 2) of 0.5 (< 0.6). The first phase is abbbb-
baaaaab because the unweighted set representation of the
chunks abbbbb and aaaaab are the same, {a, b}, and re-
sults in a perfect similarity value. Similar reasoning explains
the second phase is aaaaacaccccc.

When M = weighted, the phase structure for string (5)
is

abbbbb [aaaaab aaaaac] accccc

One phase and two phase transitions are identified. The
phase is aaaaabaaaaac because the similarity value for the
weighted model (Fig. 2) of aaaaab and aaaaac is 0.83 (>
0.6). The first phase transition exists because the similarity
value of abbbbb and aaaaab is 0.33 (< 0.6). The second
phase transition exists because the similarity value of accccc
and aaaaac is 0.33 (< 0.6).

This example demonstrates that the model parameter is
not monotonic with respect to the phase shift detection al-
gorithm’s decisions: a boundary between two chunks may
change from inPhase to inTransition and from inTransition
to inPhase when the model is changed from unweighted to
weighted.

4.3 Chunk Size
This section demonstrates the that chunk size parameter

is non-monotonic with respect to the phase shift detection
algorithm’s decisions. Assume that the parameter values
are M = weighted and T = 0.6, while chunk size may vary:
CS = 3, CS = 6, or CS = 12. Consider the following string:

aaa bbb bbb aaa aaa ccc ccc acc (6)

When CS = 3, the phase structure for string (6) is

aaa [bbb bbb] [aaa aaa] [ccc ccc acc]

Three phases and three phase transitions are identified. Be-
cause the similarity value of a string and itself is perfect, the
chunks aaa, bbb, ccc are perfectly similar with themselves;
however, each of these chunks has no similarity with one of
the other chunks. Finally, the similarity value of chunk ccc
and chunk acc is 0.66 (> 0.6). One might argue that CS = 3
is optimal for string (6) because, other than the last chunk,
every chunk contains elements that have the same value.

When CS = 6, the phase structure for string (6) is

[aaabbb bbbaaa] [aaaccc cccacc]
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Two phases and one phase transition are identified. The
phase transition is identified between chunk bbbaaa and
chunk aaaccc because their similarity value is 0.5, which is
below T . The first phase is aaabbbbbbaaa because the
similarity value of the chunks aaabbb and bbbaaa is per-
fect. The second phase is aaaccccccacc because the simi-
larity value of the chunks aaaccc and cccacc is 0.66, which
is above T . Surprisingly, a phase transition is identified be-
tween a string of six a’s that were identified as a phase when
CS = 3

This example demonstrates that the chunk size parameter
is non-monotonic with respect to the phase shift detection
algorithm’s decisions: a boundary between two chunks may
change from inPhase to inTransition or from inTransition
to inPhase when the chunk size is increased.

When CS = 12, the phase structure for string (6) is

aaabbbbbbaaa aaaccccccacc

No phases are identified because the similarity value of chunk
aaabbbbbbaaa and chunk aaaccccccacc is 0.33, which is
below T . CS = 12 demonstrates that a large chunk size may
hide phase transitions and hide recurring phases.

5. EMPIRICAL DATA
The section presents the application of the phase shift

detection algorithm, presented in Section 3, on conditional
branch profiles of Java benchmarks to illustrate the mono-
tonic property of the algorithm’s parameters. Section 4
demonstrated, at least for contrived examples, the mono-
tonic properties of the algorithm’s parameters. This section
demonstrates the monotonic properties also occur in the pro-
file of real programs.

5.1 Experimental Methodology
We gather a profile representing an exhaustive conditional

branch trace of the seven Java applications from the SPECjvm98
benchmark suite [29] and the SPECjbb2000 [28] benchmark.
We used the size 10 inputs for SPECjvm98. For SPECjbb2000
we ran with a 5-second ramp up followed by a 10-second
measurement period. The trace was collected during the
measurement period. We generated the profile by modifying
the Jikes RVM [1, 17] baseline compiler to trace conditional
branches and table jumping (lookupswitch and tableswitch)
bytecodes. This conditional branch trace models the byte-
code semantics of an application. Each traced conditional
branch is encoded as a 32-bit word that consists of a nu-
meric representation of the method in the first 16 bits, the
bytecode offset in the next 15 bits and whether a branch was
taken or not as the last bit. Each encoded word is written
to a trace file.

We use a similarity graph to help illustrate our point in
the subsequent subsections. A similarity graph’s vertical
axis is the range of similarity values and the horizontal axis
represents time where each conditional branch is a clock
tick. Each point in the graph is the similarity value for
two consecutive chunks. The higher the value in the vertical
axis, the more similar the two consecutive chunks. Each line
segment between two points represents a chunk. The first
chunk, that is, the first line segment, is not included in the
graphs. The similarity values in the graph are the values
assigned to the simV alue variable at line 8 of the algorithm
given in Fig. 1.

5.2 Threshold
This section demonstrates that the threshold parameter

is monotonic with respect to the phase shift detection algo-
rithm’s decisions when the profile is from a real program’s
execution. Fig. 3(a) presents the similarity graph that is
computed from a conditional branch trace for the SPECjvm98
javac benchmark. For this example, the model and chunk
size parameter values are fixed: model is M = weighted,
and chunk size is CS = 85, 504, chosen to partition the pro-
file into 30 chunks. For a given threshold T , the algorithm
detects that the program’s execution is in a phase when the
line is above T and is in a phase transition when the line
is below T . Because the line segment that drops below T
represents the end of a phase and the line segment that rises
above T represents the start of a phase, the length of a phase
is the number of consecutive points above T plus one and
the length of a phase transition is the number of consecutive
points below T minus one.

Fig. 3(b) illustrates the decisions that are generated by the
simple phase shift detection algorithm, presented in Fig. 1,
for different values of the threshold parameter, but the same
javac profile and parameter values for chunk size and model
that were used by Fig. 3(a). The y-axis specifies threshold
values, and the x-axis is profile time. Each decision is iden-
tified in the figure by a rectangle: black rectangles indicate
that the program is in a phase (inPhase == true), and
white rectangles indicate that the program is in a transi-
tion (inPhase == false). The black rectangles are raised
slightly and the white rectangle lowered to help the eye pick
out the pattern. Each decision is the value of the inPhase
variable at the end of the while loop (line 18) in the phase
shift detection algorithm presented in Fig. 1. When the
threshold is high, T = 1.0, no phases as detected; result-
ing in the horizontal tiled white line across the top. When
the threshold is low, T = 0.3 for this example, all the
chunks are in one phase, resulting in the horizontal black
line at T = 0.3. As the threshold is varied between these
two extremes, the number of phases varies; however, for ev-
ery point, there is only one transition between states going
from inPhase to inTransition as the threshold is increased.
Thus, the threshold parameter is monotonic with respect to
the phase shift detection algorithm’s decisions: when the
threshold increases, chunks that were in a phase can become
in a transition; and when the threshold decreases, chunks
that are in a transition can become in a phase.

In addition, Fig. 3(b) illustrates that the threshold pa-
rameter is not monotonic with respect to the number of
phases: as the threshold value increases, the number of
phases can increase because multiple phase transitions form
a new phase, or the number of phases can decrease because
a multiple phases form a single phase. For example, when
T = 0.8 there are nine phases; however, when T = 0.9 there
are six phases, and when T = 0.6 there are seven phases.

Finally, because threshold is monotonic with respect to
the phase shift detection algorithm decisions, picking a rea-
sonable value for T when exploring the other parameters
is appropriate. In particular, in the next two sections we
choose the average of the similarity value to be the thresh-
old when the model, profile, and chunk size parameter values
are fixed.
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Figure 3: Similarity graph computed from a conditional branch trace of javac and phases detected for different
threshold values.

5.3 Model
This section demonstrates that the model parameter is

non-monotonic with respect to the phase shift detection al-
gorithm when the profile is from a real program’s execu-
tion. Fig. 4 shows the similarity graphs for the benchmark
suite. Each graph shows the similarity values for both the
unweighted (solid line) and weighted (dashed line) models
for a particular benchmark. The chunk size is fixed for each
benchmark so that 30 intervals were created, and the chunk
size is a multiple of 128 to enable the varying chunk size
experiments described in Section 5.4. Fig. 3 is replicated in
Fig. 4 as the unweighted model’s similarity graph in javac.
Because each point in the graph represents the similarity
of two consecutive intervals, each graph contain 29 points.
The second and third columns of Table 1 give the number
of values in each profile, and the chunk size used to produce
30 intervals.

Although the similarity graphs for all of the benchmarks,
except jbb, illustrate significant variance between the two
models, we use phase correlation [?] to quantify the differ-
ences.2 In particular, we fix the profile input and chunk size
and model parameter values. The threshold for a particu-
lar similarity graph is the graph’s average similarity value.
The last two columns of Table 1 provide the thresholds that
are used. The phase correlation for a benchmark between
one model’s similarity graph and threshold and the other
model’s similarity graph and threshold is the percentage of
profile points that the phase shift detection algorithm makes
the same decision.

Fig. 5 presents the phase correlation between the weighted
and unweighted models for each of the benchmarks. Only
two of the benchmarks (db and mtrt) have a phase corre-
lation above 82%. Five of the other six of the benchmarks
have a phase correlation between 72 and 76%, and jbb has
a phase correlation below 50%. The high phase correlations
for db and mtrt are expected because the benchmark’s sim-
ilarity graphs for each model follow the same general trend
of moving up and down.

2Although Dhodapkar and Smith [?] use the term “correla-
tion”, we prefer the term “phase correlation” to prevent any
confusion with the mathematical concept of correlation.
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Table 1: Profile Characteristics.
Threshold

Benchmark Values in Profile Chunk Size Used weighted unweighted

compress 133,359,828 4,445,184 0.8508 0.8726
jess 16,643,781 554,752 0.9288 0.9027
db 2,876,618 95,744 0.8840 0.8633
javac 2,568,401 85,504 0.6041 0.6845
mpeg 41,663,308 1,388,672 0.9773 0.9477
mtrt 7,559,094 251,904 0.8564 0.8548
jack 4,351,129 145,024 0.8550 0.7606
jbb 15,821,020 527,360 0.9868 0.9952
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Figure 6: Similarity graph for jbb from Fig. 4 when
y-axis is expanded, M = unweighted (solid line), M =
weighted (dashed line), and chunk size is 527, 360.
The thresholds are computed as the average of each
model’s similarity values.

jbb’s low phase correlation is surprising because its sim-
ilarity graphs for the two models are indistinguishable in
Fig. 4. Fig. 6 illustrates why jbb has poor phase correlation:
the y-axis is expanded and the corresponding model specific
thresholds are drawn as straight horizontal lines. A point
on the x-axis is phase correlated if the corresponding points
in each similarity graph are either both above or both below
their respective thresholds. For example, the first point in
both similarity graphs are phase correlated because they are
both below their respective thresholds, however, the second
point is not phase correlated because it is out of phase in
the weighted model and in phase in the unweighted model.

5.4 Chunk Size
This section demonstrates that the chunk size parameter

is non-monotonic with respect to the phase shift detection
algorithm’s decisions when the profile is from a real pro-
gram’s execution. We study this property for a particular
profile and both models. As described in the Section 5.2,
choosing an appropriate threshold can significantly impact
the number of phases that are detected. For this study, we
chose a threshold of the average similarity values for each
profile, chunk size, and model. Fig. 7 presents the average
similarity values for the weighted and unweighted model,
respectively. The initial chunk size, first bar for each bench-
mark, was chosen for each benchmark so that it results in

30 intervals, as was done in Section 5.2. The number of in-
tervals is doubled repeatedly from 30 to 1920, resulting in
the chunk size being divided by two as bars go to the right.

Interestingly, the average similarity values are relatively
similar (within 22%) for each benchmark other than mpeg,
which drops radically for the smallest chunk size studied.
Nevertheless, the average similarity values do vary, some-
times increasing and sometimes decreasing. Using one thresh-
old value for all chunk sizes for a given profile and model
would bias the phase shift detection algorithm for some
chunk sizes over others. Therefore, we chose the thresh-
old value as the average similarity value for a given chunk
size and profile.

Given a profile, and values for the model and threshold pa-
rameters, we specify how different chunk sizes can be phase
correlated: different chunk sizes have a different number of
decision points. Previously, phase correlation has only been
defined when chunk size is fixed [?]. In particular, when
the difference in chunk sizes is a factor of two, the smaller
chunk size will have twice as many decision points. Half of
the decision points, denoted aligned points, coincide with
the decision points of the larger chunk size and the other
half, denoted intermediate points, do not coincide. For in-
termediate points we use the decision of the greatest point
that is less than the current point. For example, in a profile
with 100 events, comparing chunk sizes 5 and 10 will have
aligned points at 10, 20, etc., and intermediate points at 5,
15, 25, etc. For each such point 10i + 5, we use the decision
at point 10i.

The bar charts in Fig. 8 illustrate the phase correlation of
the adjacent chunk sizes that we studied in Fig. 7 for each
benchmark and model. Each benchmark bar represents a
phase correlation between chunk sizes that differ by a factor
of two. There are seven chunk sizes and six bars. The first
bar compares the largest chunk size studied with the second
largest chunk size, which is half the larger chunk size. For
most of the benchmarks and models, the phase correlation
between adjacent chunk sizes is less than 20%. Two excep-
tions are compress, where there is a sharp 22% decrease from
the first and second comparisons in the weighted model, and
mpeg, where the second to last comparison is a local maxi-
mum followed by a sharp decline for both models. We sus-
pect that as a chunk size gets smaller the phase correlation
between chunk sizes that differ by a factor of two will be less
because the chunk sizes will become smaller than the nat-
ural size of a phase, and that eventually every benchmark
will have a tail if the chunk size gets small enough.

Although the phase correlation between adjacent chunks
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appears reasonable, usually differing by less than 20%, we
now determine if the chunk sizes converge on a canonical
phase structure. Before exploring the real data, we use the
example data in table below to explain this concept.

Decision Chunk Size
Points 120 60 30 15

a P P P P
a+15 P P P T
a+30 P P T T
a+45 P P T P

This table shows four phase shift detection algorithm’s de-
cisions (a, a+ 15, a+ 30, a+ 45) for the four different chunk
sizes (120, 60, 30, 15). (A real profile will have many more
decision points.) For purposes of this discussion, we assume
that a is a multiple of 120, and a + k is a profile execu-
tion event that occurs k events after a. For each decision
point and chunk size, the decision is recorded in the table,
where “P” signifying in a phase, and “T” signifying in a
phase transition. The row at decision point a, all chunk
sizes agree that the profile is a phase. The row at decision
point a + 15 and the row at decision point a + 30 each il-
lustrate that there is disagreement, but reading from left to
right, only one decision change (from P to T) occurs. How-
ever, the row at decision point a + 45 illustrates that two
transitions occur, and thus at this decision point, chunk size
is non-monotonic with respect to the phase shift detection
algorithm’s decisions.

Fig. 9 illustrates that the chunk size parameter is non-
monotonic with respect to phase shift detection algorithm’s
decisions for our benchmark data. The y-axis is the percent-
age and the x-axis is number of times the decision changes
between chunk sizes. The first two sets of bars, buckets 0
and 1, in Fig. 9 indicate how often the chunk size parame-
ter is monotonic with the phase shift detection algorithm’s
decisions. The first set of bars, bucket 0, represents that
the phase shift detection algorithm’s decision is consistent:
all chunk sizes agree on the same phase shift detection algo-
rithm’s decision. The second set of bars, bucket 1, represents
that the decision changes only once across all chunk sizes.
The third through seventh set of bars, buckets 2 through
6, demonstrate that the chunk size parameter is not mono-
tonic with respect to the phase shift detection algorithm’s
decisions. For example, the third set of bars, bucket 2,
represents when the phase shift detection algorithm’s de-
cision change twice across all the chunk sizes: either going
from inPhase to inTransition to inPhase again, or from
intransition to inPhase to intransition again. Surpris-
ingly, all of the benchmarks have some decisions points that
flip flop between all the chunk sizes. The non-monotonic
behavior makes tuning the chunk size particularly difficult.

Fig. 10 illustrates in more detail the phase shift algo-
rithm’s decision-making process for db when M is unweighted
and for jbb when M is weighted using the same format as
Fig. 3(b) in Section 5.2. We picked these two benchmarks
and models because they represent the extremes of the set
of benchmarks. On the one hand, over 64% of db’s deci-
sion, the third bar in each bucket, are consistent and over
82% are monotonic across all decision points. On the other
hand, less than 3% of jbb’s decisions, the last bar in each
bucket, are consistent and less than 15% of its decisions are
monotonic across all decision points.

Looking at Fig. 10(a), it is evident that the first half of

the execution of db is monotonic because all the decision
points are inPhase. However, Fig. 10(b) illustrates that for
jbb there are few decision points that are monotonic.

Furthermore, these two graphs illustrate that looking only
at the phase correlation between adjacent chunk sizes is mis-
leading because one could draw the conclusion that the dis-
tance between the chunk sizes may not matter.

6. DISCUSSION
This paper explores the monotonic properties of the phase

detection problem’s parameters. We chose a simple algo-
rithm for phase detection to illustrate our point. A more so-
phisticated algorithm might have more parameters, but be-
cause this difficulty arises even in a simple algorithm means
that it would likely persist in a more complex algorithm. In
many cases, the complex algorithm can be reduced to an
instance of the simpler algorithm by a particular choice of
extra parameters.

One might argue that the choice of a fixed chunk size
is too restrictive, that the chunk size should be allowed to
vary according to the local properties of the profile under
consideration. However, determining the appropriate choice
of chunk size becomes a problem similar to the phase de-
tection problem. One would like the chunk size within a
phase to be uniform and representative of the phase being
considered. But that implies that we have either identified
the phase, or the appropriate choice of chunk size requires
additional parameters to specify some criteria. Our work
suggests that some of the additional parameters would be
non-monotonic with respect to the chunk size detection al-
gorithm’s decisions.

Many practical applications of phase shift detection, such
as in a dynamic optimization systems, require an online al-
gorithm; that is, the algorithm cannot look into the future
of the profile and will be unable to store a complete history
of the profile. The simple algorithm we present is an on-
line algorithm, provided the three parameters are specified.
However, choosing the threshold value as the average of the
similarity values for the whole profile is clearly not possi-
ble in an online environment. One could vary the threshold
based on the local similarity values, such as the current av-
erage. This would yield a more sophisticated algorithm, but
would have the same difficulty, namely, the results may be
sensitive to the criteria used to vary the threshold. However,
as we saw, the results of phase shift detection is monotonic
with the variation in threshold. So it may be possible to
vary the threshold in some systematic way and get phases
which are more useful and meaningful.

There is a common perception that phases are likely to re-
cur. For example, the stock brokerage web site may have a
particular behavior on most mornings or during peak activ-
ity periods. If a phase detection algorithm can detect such
recurrences, it can use the previous phase behavior to more
accurately predict program behavior. Further, speculative
optimizations can be further tailored based on the effective-
ness of such optimizations performed during the previous
occurrence of the phase. Although we did not supply an
algorithm for detecting phase recurrence, such an algorithm
would share the same underlying monotonic properties of
parameters discussed in this paper.
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Figure 9: Histogram of monotonicity of phase shift detection algorithm’s decisions across seven different
chunk sizes. The x-axis of each graph specifies the number of decision changes when chunk size is varied.
For each bucket, 0..6, we give the percentage of profile points that are monotonic with respect to phase shift
detection algorithm’s decisions for each benchmark in the order listed in Table 1: compress, jess, db, javac,
mpeg, mtrt, jack, jbb. For example, the eighth bar in bucket 0 (the smallest one) signifies that in only 2.6%
for weighted and 5.4% for unweighted of the interval comparisons for jbb do all chunk sizes give the same
phase shift detection algorithm decisions; that is, when all chunk sizes agree that the phase shift detection
algorithm’s decision is either a phase or a transition. The two white bars give the average number, across all
benchmarks, of points from buckets 0 and 1, and greater than 1, respectively. The first white bar shows how
often the decisions are monotonic, 43% for weighted model and 45% for unweighted model.
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7. RELATED WORK
Prior work can be categorized into phase shift detection

and related algorithms, and phase shift detection in other
fields.

7.1 Phase Detection and Related Algorithms
The concept of phases in a program’s execution is not new.

Madison and Batson [22] in 1976 describe the phase behavior
of references to array segments of Algol 60 programs. Their
application domain is operating systems. They use an un-
weighted working set, which corresponds to our unweighted
model, and described an algorithm that is similar to the one
described in this paper. One of the parameters in their al-
gorithm is the size of the working set, or chunk size in our
terminology. They consider a new reference to be in the
same phase if it is a member of the working set. They are
interested in phases that are at least a constant multiple (3
in their figures) of their working set size.

Dhodapkar and Smith [?] study online phase shift detec-
tion in the context of multi-configuration hardware, such as
instruction caches. They describe algorithms for 1) detect-
ing changes in working sets; 2) identifying recurring work-
ing sets; and 3) estimating the number of elements in a
working sets. Their technique is an example of the algo-
rithm described in this paper. They employ an unweighted
set representation, which corresponds to our unweighted
model. Because they are interested in large windows (they
use a window size of 100, 000 instructions), they present
a lossy-compressed representation called working set signa-
tures. Their experiments run each benchmark until 20, 000
non-overlapping intervals are collected. They define their
similarity threshold value empirically, to be 0.5 to remove
most noise and detect only significant phase changes. They
report that their experiments indicated that detecting phase
changes were relatively insensitive to the threshold value.
This is to be contrasted with our results, such as the one
shown in Fig. 3, which show that the phases can be sensi-
tive to this parameter.

Sherwood et al. [24] present a technique for finding a por-
tion of a profile that is representative of the entire profile
where the profile represents the execution behavior of a pro-
gram. The smaller profile can then be studied intensively
using simulation techniques that would be not be possible
with the much larger profile created by the full execution
of the program. Their technique is offline; they partition
the full profile into equal-size intervals and then use tech-
niques to compare these intervals to all intervals. They em-
ploy a weighted set representation, which corresponds to our
weigthed model, and take the component-wise difference of
two equal-size intervals, that is, the Manhattan distance be-
tween two vectors representing weighted sets at their dis-
similarity metric. This is related to the similarity metric
given in Fig. 2 as their dissimilarity metric plus twice our
similarity metric is always equal to 2.

Sherwood et al. [25] present an online version of the al-
gorithm in [24]. They used the algorithm to detect phases,
and then capture a signature of the phase, which they use to
detect repeated occurrences of the same phase. This allows
them to reuse the optimization from the previous occurrence
of that phase. They introduced the idea of phase prediction,
which allows them to anticipate the next phase in the exe-
cution of the program.

Dhodapkar and Smith [?] compare three phase shift de-

tection techniques previously published in the literature against
a set of metrics. Each technique uses a different form of pro-
filing, as well as a different phase shift detection algorithm.
They studied (1) conditional branch counts [5], which track
the number of conditional branches executed in a given inter-
val of executed instructions; (2) instruction working sets [?],
the technique of Dhodapkar and Smith described above; and
(3) basic block vectors [24], the technique of Sherwood et al.,
also described above. Their metric of phase quality is how
uniform the number cycles per instruction (CPI) is within
the phase. Their techniques found regions of program ex-
ecution where the CPI varies only 2%. In contrast to our
work, they do not explore varying the chunk size with re-
spect to their metrics, and when they vary the model, they
also vary the profile, which makes interpreting their results
more difficult because multiple parameter values are var-
ied simultaneously. Finally, they not draw any conclusions
about the underlying phase shift detection problem.

Kistler and Franz [19] propose an online phase detection
technique that captures the number of occurrences of an
event, such as basic block counter, during the two most re-
cent nonoverlapping time intervals. They employ a weighted
set representation, which corresponds to our weigthed model,
and represent their information as a vector. Their similarity
metric is the sum of the geometric angle between two vec-
tors and a term that reflects the absolute size of the change.
This gives a value between 0.0 and 1.0, where 1.0 is perfect
similarity. They use a threshold of 0.95. They conclude that
the expense of their approach is ameliorated by computing
it only once every five minutes.

Duesterwald et al. [12] study the behavior of programs
using metrics derived from hardware counters. They show
that programs exhibit significant behavior variation that can
be exploited using online statistical and table-based predic-
tors. They also introduce a cross-metric predictor that uses
one metric to predict another, and show that table-based
predictors outperform statistical predictors by up to 69%.

Dynamo [4] is a transparent dynamic optimizer that per-
forms optimizations at runtime on a native binary based
on the execution frequency of hot traces of instructions. It
maintains a code cache of optimized versions of these traces
by detecting hot code fragments, optimizing them, and stor-
ing them in the code cache. Changes in the code cache’s
working set are observed by tracking the creation rate of
optimized code fragments to determine when a phase shift
occurs.

Diniz and Rinard [11] describe dynamic feedback , a com-
piler optimization technique that produces multiple opti-
mized versions of the program with different optimization
strategies. At runtime they execute each version briefly and
determine which gives the best performance. They periodi-
cally re-execute each version to account for program phase
shifts.

Chilimbi and Hirzel [8] describe an online optimization
system for dynamic prefetching based on data references
profiles. To account for potential phase shifts, they period-
ically re-gather the profile. The trigger mechanism is based
on a fixed duration, not on the profile data.

Arnold et al. [3] describe an online optimization system
that gathers control flow edge execution frequencies for se-
lected methods to drive optimizations in the Jikes RVM [1].
The profile is gathered only after the method is sufficiently
executed, as determined by a cost/benefit model. The au-
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thors discuss the possible need to re-gather a profile when
a phase transition occurs, but do not provide an algorithm
for detecting phase transitions.

7.2 Related Problems
The problem of detecting phases in a sequence of data oc-

curs in many domains other than the ones we have discussed
in this paper.

One example is phase detection in biological data. In this
domain they use techniques such as hidden Markov mod-
els [13]. This technique has more parameters, and therefore,
requires more profile values to train and to detect phases.

The problem of phase detection is called change-point de-
tection in the statistics literature [21]. The bulk of work in
this area deals with continuous variables, rather than dis-
crete symbols as in the domain addressed in this paper.

One example of phase detection or change point detection
is the detecting the change of speakers in broadcast news.
For example, Chen et al. [7] use the maximum likelihood
approach to change detection via the Bayesian information
criterion, to detect change of speakers in broadcast news.

8. CONCLUSIONS AND FUTURE WORK
Object-oriented languages have enabled the creation of

large, long-running commercial applications where high per-
formance is critical. To achieve high performance, dynamic
optimization, which is performed at execution time, must
be continuously tailored to the application’s changing run-
time behavior. One important technology to enable contin-
uous optimization is phase shift detection, which allows a
dynamic optimization system to react appropriately to im-
prove the system’s performance.

Starting with a simple phase shift detection algorithm
specified by three fundamental parameters, we demonstrate
with examples and profile data that two of the three pa-
rameters are non-monotonic with respect to the phase shift
detection algorithm’s decisions. That is, as the parameter’s
value changes monotonically, the output of the algorithm is
non-monotonic. Our results implies that to determine the
“best” value for a non-monotonic parameters may require an
exhaustive search of all possible values. Furthermore, once
the “best” value for a parameter is found for a particular
profile, tuning the parameter’s value for another profile is
no easier than attempting to find the value from scratch.

This fundamental result is important for dynamic opti-
mization systems because it implies that the choice of values
for a phase shift detection algorithm’s parameters can have
a dramatic impact on the quality of the information that is
produced, and thus the choice should be carefully studied.

We are interested in pursuing the following future work:

1. determine, by brute force, if a program’s execution has
a canonical phase structure,

2. determine how best to choose values for the fundamen-
tal phase shift detection parameters,

3. study how the various choices of parameter values im-
pact different phase detection clients, and

4. study the effectiveness of different types of profiles.
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