
RC23062 (W0401-072) January 14, 2004
Computer Science

IBM Research Report

Shingle-Based Query Indexing for Location-Based
Mobile E-Commerce

Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Shingle-Based Query Indexing for Location-Based
Mobile E-Commerce

Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
{klwu, skchen, psyu}@us.ibm.com

Abstract

We present a shingle-based query index (SQI) for supporting location-based services
in mobile e-commerce. SQI is used to efficiently identify moving objects that are
currently located inside a geographical region. A set of virtual shingles is predefined,
each with a unique ID. One or more shingles are used to cover the geographical region
defined by a range query, where the covering shingles may overlap with one another.
SQI maintains a direct mapping from individual shingles to the range queries that
contain them. The use of covering shingles has two important properties. First, it
does not impose any limit on the object moving speed or direction. Second, it allows
the reevaluation of continual range queries to capitalize on the incremental changes in
object locations. Simulations are conducted to evaluate the effectiveness of SQI and
compare it with a cell-based approach.

Keywords: Location-Based Services, E-Commerce Enabling Technologies, Continual
Query, Moving Objects, Query Indexing, and Mobile Computing.

1 Introduction

Location-based services have become possible by the advances in mobile computing and
location-sensing technologies, such as the global positioning systems (GPS). Knowledge of a
potential customer’s location can be used to deliver relevant, timely, and engaging content
and information. Location-awareness can be added to many objects, such as humans, taxi
cabs, ambulances and laptops, opening up new business opportunities for many commercial
entities. For example, retail stores in a mall can send timely e-coupons to the PDAs or
cell-phones of potential customers who are in the vicinities of their stores. A mobile service
provider can provide location tracking service to the retail stores so that they know which
cell phones or PDAs are currently close to their stores.

To support location-based services, the service provider must quickly evaluate a set of
continual range queries, which locate the moving objects currently contained inside the
geographical boundaries defined by the queries. These range queries are termed continual
because they are repeatedly evaluated to provide up-to-date results as objects move around

1

continuously. For example, we can place a square or a circle with a radius of 2 miles around
the location of a hotel, apartment building, or a subway exit. A taxi cab company can
quickly dispatch a taxi to a customer at one of those locations if the company knows which
taxi cabs happen to be near the customer location at that moment. The range query that
locate the taxi cabs within 2 miles must be evaluated continually.

In this paper, we study the problem of efficient evaluation of numerous continual range
queries over moving objects. To do that, an object index or a query index can be used.
In this paper, we focus on maintaining an efficient query index because they change less
frequently. An object position is used to search the query index in order to find all the range
queries that contain the object. Once the containing range queries are identified, the object
ID is inserted into the results associated with the queries. Periodically, we reevaluate all
range queries by using each object location to search the query index.

With query indexing, it is paramount that the time it takes to perform the periodic
query reevaluation must be as brief as possible. This can be achieved in two ways. First,
each search operation must be efficient. Second, the query index must also allow the query
reevaluation to take advantage of incremental changes in object positions. Namely, certain
object positions need not be searched. We present a new query index that has such properties.

The concept of building a query index in itself is not new. Various methods have been
proposed to efficiently matching events in the contexts of predicate matching [11], pub/sub [2,
6, 23], and continual queries on the Internet [4, 14]. However, these query indexing methods
are mostly based on equality predicates, not range predicates. Thus, they are not generally
applicable for the evaluation of continual range queries over moving objects.

Query indexing was not used in the moving object environment until recently [12, 17].
In [17], an R-tree-based query indexing method was first proposed for continual range queries
over moving objects. In order to avoid excessive location updates, a safe region for each
mobile object was defined. The safe region allows an object not to report its location as long
as it has not moved outside its safe region. Unfortunately, determining a safe region requires
intensive computation. In [12], a cell-based query indexing scheme was proposed. It was a
main-memory based approach and we shown to perform better than an R-tree-based query
index [12]. Basically, the monitoring area is partitioned into cells. Each cell maintains two
query lists: full and partial. The full list stores the IDs of the queries that completely cover
the cell, while the partial list keeps those that partially intersect with the cell. During query
reevaluation, these lists are used to find all the queries that cover an object location.

However, using partial lists has a drawback.1 The object locations must be compared
with the range query boundaries in order to identify those queries that truly cover an object.
Because of that, it cannot allow query reevaluation to take advantage of the incremental
changes in object locations. Even if an object has not moved outside a cell, boundary
comparisons against all the queries on the partial list are still needed.

1.1 Our contributions

We propose a novel shingle-based query indexing (SQI) method. It is a main-memory based
index. A set of virtual shingles are predefined, each with a unique ID. A shingle is a tile-like
object that is conventionally laid in overlapping rows to cover an area, such as the rooftop

1Note that the cell-based query index [12] does not need partial lists if the cell size is 1 × 1. However, as
will be shown in Section 4.4, there will be a substantially large storage cost for the index.

2

Problem: Knowing that point A is in cell X
does not imply it is inside the query range.
Boundary comparisons are needed.

In contrast: There is no ambiguity whether
point A is covered by the query range since
it falls into one of the covering shingles.

(a) cell-based approach (b) shingle-based approach

X

A A

query range query range

A total of 4 overlapping shingles
are used to fully cover the query

Figure 1: An example showing the problem with cell-based approach.

of a building. It can be a square or a rectangle. One or more shingles are used to strictly
cover a range query. Namely, any point inside the query boundaries is covered by at least
one covering shingle, and vice versa. These covering shingles may overlap with one another
and are contained within the range query. SQI maintains a direct mapping from a shingle
to the range queries that contain the shingle.

The use of covering shingles has two important properties. First, no constraint is imposed
on the speed or direction of a moving object. An efficient algorithm is provided to identify
the shingles that contain an object at any location. The containing shingles are then used
to find all the range queries that contain the object. Second, more importantly, it reduces
the amount of computation during query reevaluation by taking advantage of incremental
changes in object locations. Computation is saved for those objects that have not moved
outside a shingle.

Fig. 1 shows an example to illustrate the problem of a cell-based approach and contrasts
it with the shingle-based approach presented in this paper. Under the cell-based approach
(Fig. 1(a)), the query range is intersecting with 9 fixed cells, where one of them is fully
covered by the query but the others are partially covered. The problem arises for objects
located in a cell that intersects partially with the query boundaries. In Fig. 1(a), knowing
that point A is in cell X does not imply that it is inside the query boundaries. Boundary
comparisons are needed. In contrast, under our approach (Fig. 1(b)), the same range query
is fully covered by 4 overlapping shingles (shingles and cells are of the same size). There is
no ambiguity as to whether or not point A is covered by the query since it falls inside one
of the covering shingles. Hence, incremental reevaluation approach can be easily pursued.
However, because a point can be covered by multiple shingles, we need an efficient way to
determine these covering shingles. We also need to find a set of shingles to strictly cover a
range query. Note that both of these issues are trivial under the cell-based approach.

1.2 Related work

Although range queries can be treated as rectangles, traditional spatial indexing meth-
ods [18], such as an R-tree or any of its variants [8, 10], are not effective because they
are mostly disk-based indexing methods. As shown in [12], R-tree-based query indexing is

3

not as effective as the cell-based approach even if it is modified for main memory access.
Moreover, the performance of an R-tree quickly degenerates when the ranges of queries start
to overlap one another [8, 11].

There are research papers focusing on other issues of moving object databases. For
example, various indexing techniques on moving objects have been proposed [1, 5, 13, 20, 15,
16]. The trajectories, the past, current, and the anticipated future positions of the moving
objects have all been explored for indexing. Different constraints are usually imposed to
reduce the overhead caused by location updates. The data modeling issues of representing
and querying moving objects were discussed in [7, 9, 19, 22]. Uncertainty in the positions of
the moving objects was dealt with by controlling the location update frequency [21, 22], where
objects report their positions when they have deviated from the last reported positions by
a threshold. Partitioning the monitoring area into domains (cells) and making each moving
object aware of the query boundaries inside its domain was proposed in [3] for adaptive query
processing. Objects must report to the server when they move across query boundaries or
domain boundaries.

The paper is organized as follows. Section 2 presents the shingle-based query indexing
method. Section 3 presents the algorithm for the computation of query reevaluation with
SQI. We show how to capitalize on the incremental changes in object locations. Section 4
shows the performance evaluation. Section 5 summarizes our paper.

2 Shingle-based query indexing

2.1 System model

The monitoring region is assumed to be partitioned into an RxRy virtual grid region. The
grid coordinates are then used to specify range queries and moving objects in terms of
positions and boundaries. Range queries are assumed to be rectangles defined along the grid
lines. Namely, query boundaries are specified with integer grid coordinates. 2 However,
object locations can be anywhere. We assume that continual range queries are stationary,
but they can be inserted or deleted dynamically. Objects are moving continuously. Fig. 2(a)
shows an example of a 13×13 monitoring region with 2 range queries and 3 moving objects.
For example, query q1 : (1, 3, 5, 6) is a continual range query whose bottom-left corner is at
(1, 3) and its width is 5 and height is 6. An object location is specified as its x-grid and
y-grid coordinates and they can be non-integers, e.g., o1 : (9.3, 4.15).

2.2 Virtual shingles

We define a set of B virtual shingles as basic building blocks for each integer grid point
(a, b), where 0 ≤ a < Rx and 0 ≤ b < Ry. These B shingles share the common bottom-left

2The RxRy virtual grid region can be used to model a physical area with different resolutions. Let g
denote the physical distance for the side length of a virtual grid cell. If g = 1/10 mile, a 50× 50 square-mile
monitoring region can be represented by a 500× 500 virtual grid region. On the other hand, if g = 1/2 mile,
the same 500 × 500 grid region represents a 250 × 250 square-mile physical region. We assume g is chosen
such that all range queries can be approximately and satisfactorily specified with integer grid coordinates.
If query boundaries need to be specified with a higher resolution, a smaller g must be used.

4

0,0
5

10

5

10

X

Y

)6
,5

,3
,1

(:
1

q

)5
,5

,7
,4

(:
2

q

)2
.5

,6
.2

(:
2

o

)
15

.4
,3

.9
(:

1
o)5

.
10
,5

.6
(:

3
o

(a)

(0, 0)

(0, 1)

(0, 4)

(0, 0)

X
(1, 0)

Y

(0, 0)

Y

(0, 2)

X

X
(4, 0)

Y

(2, 0)

V
S: 0

V
S: 2

V
S: 1

4
2

;4
2

2
2

=
=

=
=

y
x

L
L(b)

F
igu

re
2:

(a)
S
p
ecify

in
g

ran
ge

q
u
eries

an
d

ob
ject

lo
cation

s
w

ith
v
irtu

al
grid

co
ord

in
ates;

(b
)

A
ssign

in
g

ID
s

to
v
irtu

al
sh

in
gles

sh
arin

g
th

e
sam

e
b
ottom

-left
corn

er.

corn
er

at
(a

,b)
b
u
t

h
ave

d
iff

eren
t

sizes.
W

e
assu

m
e

sh
in

gles
are

sq
u
ares. 3

If
th

e
m

ax
im

u
m

sid
e

len
gth

of
a

v
irtu

al
sh

in
gle

is
L

,
w

e
assu

m
e

L
=

2
k

an
d

B
=

k
+

1.
T

h
ese

B
b
asic

b
u
ild

in
g

b
lo

ck
s

are
d
efi

n
ed

su
ch

th
at

a
ran

ge
q
u
ery

of
an

y
size

can
b
e

strictly
covered

b
y

on
e

or
m

ore
v
irtu

al
sh

in
gles.

F
ig.

2(b
)

sh
ow

s
an

ex
am

p
le

of
3

v
irtu

al
sh

in
gles

sh
arin

g
th

e
sam

e
b
ottom

-left
corn

er
at

(0,0),
w

ith
sid

e
len

gth
s

of
1,

2
an

d
4,

resp
ectively.

E
ach

v
irtu

al
sh

in
gle

h
as

a
u
n
iq

u
e

ID
an

d
it

can
b
e

easily
com

p
u
ted

as
follow

s:

V
S

(a
,b,2

i,2
i)

=
B

(bR
x

+
a
)
+

i,
(1)

w
h
ere

(a
,b)

is
th

e
b
ottom

-left
corn

er
of

a
sh

in
gle

w
h
ose

sid
e

len
gth

is
2

i.
T

h
e

fi
rst

term
is

d
erived

b
y

h
orizon

tally
scan

n
in

g
th

e
in

teger
grid

p
oin

ts
from

(0,0)
to

(R
x −

1,0),
th

en
from

(0,1)
to

(R
x −

1,1),···,
u
n
til

(a−
1,b).

T
h
ere

are
(a

+
bR

x)
su

ch
grid

p
oin

ts
(see

F
ig.

2(a)).
F
or

each
grid

p
oin

t,
th

ere
are

B
sh

in
gles

d
efi

n
ed

as
th

e
b
asic

b
u
ild

in
g

b
lo

ck
s.

T
h
e

secon
d

term
is

d
erived

b
y

th
e

ID
assign

m
en

t
sh

ow
n

in
F
ig.

2(b
).

N
ote

th
at

th
ese

sh
in

gles
are

v
irtu

al.
A

v
irtu

al
sh

in
gle

b
ecom

es
activated

w
h
en

it
is

u
sed

to
cover

a
con

tin
u
al

ran
ge

q
u
ery.

E
ven

th
ou

gh
th

ere
are

(k
+

1)R
x R

y
v
irtu

al
sh

in
gles,

th
ere

are
far

few
er

activated
sh

in
gles.

2
.3

Q
u
e
ry

in
se

rtio
n

a
n
d

d
e
le

tio
n

L
et

(a
,b,w

,h
)

rep
resen

t
a

rectan
gle

w
h
ose

b
ottom

-left
corn

er
sits

at
(a

,b),
w

id
th

is
w

an
d

h
eigh

t
is

h
.

T
o

in
sert

a
ran

ge
q
u
ery

q,
sp

ecifi
ed

as
(a

,b,w
,h

),
w

e
fi
rst

fi
n
d

th
e

coverin
g

sh
in

gles
for

q.
T

h
en

,
th

e
q
u
ery

ID
q

is
in

serted
in

to
each

of
th

e
ID

lists
asso

ciated
w

ith
th

e
coverin

g
sh

in
gles.

M
an

y
w

ay
s

can
b
e

u
sed

to
cover

q
w

ith
a

set
of

v
irtu

al
sh

in
gles.

W
e

p
resen

t
a

very
sim

p
le

yet
sy

stem
atic

ap
p
roach

.
W

e
sim

p
ly

fi
n
d

th
e

largest
i,

0≤
i≤

k
,
su

ch
th

at
2

i≤
m

in
(w

,h
),

an
d

th
en

w
e

u
se

th
is

2
i×

2
i

sh
in

gle
to

cover
q.

T
h
e

sam
e

sized
sh

in
gle

is
u
sed

to
strictly

cover
q.

T
h
e

coverin
g

p
ro

ced
u
re

starts
from

th
e

b
ottom

-left
corn

er,
m

oves
tow

ard
s

th
e

righ
t

th
en

m
oves

u
p
w

ard
.

O
verlap

p
in

g
is

allow
ed

on
th

e
righ

tm
ost

colu
m

n
an

d
top

m
ost

row
(see

F
ig.

1(b
)).

A
s

a
resu

lt,
th

e
n
u
m

b
er

of
sh

in
gles

u
sed

to
strictly

cover
q

is�
w2
i �∗�

h2
i �.

3N
ote

that
a

virtualshingle
need

not
be

a
square.

It
can

be
a

rectangle.

5

0
4

8
12

16

4 8 12 16
q

1
q

2

q
3

Q
S

M
⇒

q
2

o
2

S
hingle-based Q

uery Indexing

q
3

i
s

j
s

o
1

q
4

(a)

X

Y

(a-L, b-L)

(a, b)

(0, 0)

(a+
L

+
1, b+

L
+

1)

pivot point
(a+

1-L, b+
1-L)

(a+
1, b+

1)

1
and

1
w

here
)

,
(

+
<

<
+

<
<

b
y

b
a

x
a

y
x

(b)

F
igu

re
3:

(a)
A

n
ex

am
p
le

of
sh

in
gle-b

ased
q
u
ery

in
d
ex

;
(b

)
F
in

d
in

g
th

e
coverin

g
sh

in
gles

th
at

con
tain

an
ob

ject
lo

cation
.

A
fter

all
ran

ge
q
u
eries

are
in

serted
,
th

e
sh

in
gle-b

ased
q
u
ery

in
d
ex

m
ain

tain
s

a
m

ap
p
in

g,
M

S⇒
Q
,
from

S
to

Q
,
w

h
ere

S
is

th
e

set
of

activated
sh

in
gles

an
d

Q
is

th
e

set
of

all
q
u
eries.

F
ig.

3(a)
sh

ow
s

an
ex

am
p
le

of
S
Q

I.
A

total
of

8
sh

in
gles

are
activated

in
F
ig.

3(a),
2

for
q
1 ,

1
for

q
2 ,

4
for

q
3

an
d

1
for

q
4 .

F
or

each
activated

sh
in

gle
s∈

S
,
th

ere
is

a
q
u
ery

ID
list,

d
en

oted
as

Q
L

(s).
N

ote
th

at
s

is
con

tain
ed

w
ith

in
all

th
e

q
u
eries

in
Q

L
(s).

T
h
e

d
ata

stru
ctu

re
for

S
Q

I
in

clu
d
es

th
e

q
u
ery

lists
an

d
an

array
of

p
oin

ters
to

th
e

asso
ciated

q
u
ery

lists.
T
o

d
elete

a
q
u
ery,

w
e

fi
rst

fi
n
d

th
e

coverin
g

sh
in

gles
for

th
e

q
u
ery,

sim
ilar

to
q
u
ery

in
sertion

.
T

h
en

,
th

e
q
u
ery

ID
is

rem
oved

from
each

Q
L

(s),
w

h
ere

s
is

a
coverin

g
sh

in
gle

for
th

e
q
u
ery.

2
.4

S
e
a
rch

q
u
e
rie

s
th

a
t

c
o
n
ta

in
a

g
iv

e
n

o
b
je

c
t

T
h
e

search
algorith

m
w

ith
S
Q

I
is

b
ased

on
th

e
follow

in
g

ob
servation

.
L
et

o�
s

d
en

ote
th

at
sh

in
gle

s
con

tain
s

ob
ject

o;
s�

q
d
en

ote
th

at
q
u
ery

q
con

tain
s

sh
in

gle
s.

If
o�

s
an

d
s�

q,
th

en
o�

q.
H

en
ce,

to
fi
n
d

all
th

e
ran

ge
q
u
eries

con
tain

in
g

an
ob

ject,
w

e
fi
n
d

all
th

e
sh

in
gles

con
tain

in
g

th
at

ob
ject.

A
ssu

m
e

th
at

C
Q

(o)
is

th
e

set
of

q
u
eries

th
at

con
tain

an
ob

ject
o;

C
S

(o)
is

th
e

set
of

coverin
g

sh
in

gles
th

at
con

tain
an

ob
ject

o.
C

Q
(o)

can
b
e

com
p
u
ted

from
C

S
(o)

an
d

th
e

Q
L

(·)’s
m

ain
tain

ed
b
y

S
Q

I
as

follow
s:

C
Q

(o)
=

{
q|q∈

Q
L

(s)∧
s∈

C
S

(o)}
.

(2)

T
h
e

key
step

in
fi
n
d
in

g
C

Q
(o)

is
fi
n
d
in

g
C

S
(o)

sin
ce

Q
L

(s)’s
are

read
ily

availab
le.

B
ecau

se
th

e
w

ay
v
irtu

al
sh

in
gles

are
d
efi

n
ed

,
C

S
(o)

can
b
e

sy
stem

atically
an

d
effi

cien
tly

en
u
m

erated
.

C
S

(·)’s
for

all
p
ossib

le
ob

ject
lo

cation
s

sh
are

tw
o

com
m

on
p
rop

erties:
co

n
sta

n
t
size

an
d

id
en

tica
l
ga

p
pa

ttern
.

T
h
ese

tw
o

p
rop

erties
m

ake
th

e
en

u
m

eration
of

C
S

(·)
effi

cien
t.

F
irst,

th
e

n
u
m

b
er

of
v
irtu

al
sh

in
gles

con
tain

in
g

a
p
oin

t
is

th
e

sam
e

for
all

th
e

ob
ject

p
osition

s.
4

4Strictly
speaking,

this
is

only
true

for
a

location
that

is
not

in
the

boundary
regions.

T
he

boundary
regions

are
defined

by
0≤

x
<

L
or

R
x −

L
≤

x
<

R
x

or
0≤

y
<

L
or

R
y −

L
≤

y
<

R
y .

H
ow

ever,
w

e

6

Namely, |CS(oi)| = |CS(oj)| even if oi �= oj. Second, if we sort, in an increasing order, the
IDs of shingles in each CS(·), then soi

m+1 − soi
m = s

oj

m+1 − s
oj
m for 1 ≤ m < |CS(·)| and any two

objects oi and oj. Here, soi
m is the m-th virtual shingle in the sorted CS(oi). In other words,

the gap between any two virtual covering shingles of matching positions is identical for any
two locations.

To verify these two properties, let us look at an example. Fig. 3(b) shows CS(o) for an
object o whose location is (x, y), where a < x < a + 1, b < y < b + 1, and a and b are
integers. The bottom-left corners of these covering shingles must reside in the south-west
shaded area of (x, y) and the upper-right corners must reside in the north-east shaded area
of (x, y). It can be easily verified that if a shingle whose bottom-left and upper-right corners
are positioned in the respective shared areas, it will indeed contain (x, y). The two properties
can be proved by first grouping all the drawings in Fig. 3(b) as a unit and then moving it
around. When the center is moved from (a, b) to another point (c, d), the relative positions
of all the covering shingles stay the same.

With these two properties, we can design an efficient algorithm for computing CS(o) at
location (x, y). We first define a pivot point as PV whose location is (x
+1−L, 	y
+1−L)
and a pivot shingle as PS which is defined as (x
 + 1 − L, 	y
 + 1 − L, 20, 20). Namely,
the bottom-left corner of PS is at the pivot point PV and PS is a unit square. Then we
use a pre-computed difference array D, which stores the differences on the ID’s between
two neighboring shingles in a sorted CS(·), and the pivot shingle PS to enumerate CS(o).
CS(o) can be efficiently computed at runtime by simple additions of the pivot shingle ID to
each element stored in D.

Theorem 1 |CS(o)| = 4L2−1
3

, ∀o(x, y), where L ≤ x < (Rx − L) and L ≤ y < (Ry − L).

Proof: From Fig. 3(b), we know that there is 1 shingle with the size of 1× 1 that covers
(x, y); 4 shingles with the size of 2 × 2 that cover (x, y); 16 shingles with the size of 22 × 22

that cover (x, y). Hence, |CS(o)| =
∑i=k

i=0(2
i)2, which is 4L2−1

3
after a few manipulations. �

3 Evaluation of continual range queries using SQI

Here, we present an incremental reevaluation algorithm based on SQI. Query results are
maintained in an array of object lists, one for each query. Assume that OL(q) denotes the
object list for q. It contains the IDs of all objects that are inside the boundaries of q. We
periodically re-compute all OL(·)’s taking into account the changes in object locations since
the last reevaluation.

If the period between two consecutive reevaluations is short, many objects may not have
moved outside the shingle boundaries. As a result, many of the computations can be saved.
The use of covering shingles in SQI provides a convenient way to capitalize on the incremental
changes in object movements.

The pseudo code for Algorithm SQI IR is described in Fig. 4. IR stands for Incremental
Reevaluation. We assume that the object locations used in the last reevaluation are available.
These locations are referred to as the old locations,5 in contrast to the new locations for the

can also efficiently compute CS()’s for locations in these regions. For simplicity of presentation, we focus on
locations that are not inside the boundary regions.

5A double buffering approach can be used to maintain both the old and new locations.

7

Algorithm SQI IR
for (i = 0; oi ∈ O; i + +) {

if (L(oi) has not been updated) { continue; }
compute CSnew(oi); compute CSold(oi);
for (k = 0; sk ∈ CSnew(oi) − CSold(oi); k + +) {

q = QL(sk);
while (q �= NULL) { insert(oi, OL(q)); q = q → next;

}
}
for (k = 0; sk ∈ CSold(oi) − CSnew(oi); k + +) {

q = QL(sk);
while (q �= NULL) { delete(oi, OL(q)); q = q → next;

}
}

}
Figure 4: Pseudo code for Algorithm SQI IR.

current reevaluation. For each oi ∈ O, if the location of oi, denoted as L(oi), has not been
updated since the last reevaluation, nothing needs to be done for this object. For an object
whose location has been updated, we compute two covering shingle sets: CSnew(oi) with the
new location data and CSold(oi) with the old location data.

When an object has moved, we need to consider three cases: (1) It has moved into a
new shingle; (2) It has moved out of an old shingle; (3) It has remained inside the same
old shingle. With both CSnew(oi) and CSold(oi), we can easily identify the shingles under
each case. For any shingle sk that is in the new covering shingle set but not the old, i.e.,
sk ∈ CSnew(oi)−CSold(oi), we insert an instance of oi to the OL(q) list, ∀q ∈ QL(sk). This
accounts for the case that oi has moved into these shingles. On the other hand, for a shingle
sj that is in the old covering shingle set but not the new, i.e., sj ∈ CSold(oi)−CSnew(oi), we
delete an instance of oi from OL(q) list, ∀q ∈ QL(sj). This accounts for the case that oi has
moved out of these shingles. For any shingle that is in both covering shingle sets, nothing
needs to be done. It accounts for the case that oi has remained inside the boundaries of
these shingles.

4 Performance evaluation

4.1 A cell-based query indexing approach

Here, for comparison purpose, we describe the implementation of a cell-based query indexing
approach, similar to the one described in [12]. The cell size is an integer multiple of the virtual
grid size in Fig. 2(a). Each cell is associated with two lists: one full and one partial. The
partial list maintains all the IDs of the queries that partially intersect with the cell. In order
to check if o � q, one must perform comparisons using the boundaries of q and the location
data of o.

The pseudo code for continual query reevaluation using CQI is shown in Fig. 5. Due to the

8

Algorithm CQI CR
for (i = 0; qi ∈ Q; i + +) { cleanup(OL(qi));

}
for (i = 0; oi ∈ O; i + +) {

q = QLP (C(oi));
while (q �= NULL) {

if (oi � q) { insert(oi, OL(q)); }
q = q → next;

}
q = QLF (C(oi));
while (q �= NULL) {

insert(oi, OL(q)); q = q → next;
}

}

Figure 5: Pseudo code for CQI CR.

use of partial lists, it is difficult, if not impossible, to capitalize on the incremental changes
in object locations with CQI. Hence, it must perform a complete reevaluation. In CQI CR,
it first cleans up all the OL(·)’s. Then, for each object oi ∈ O, it performs comparisons to
test if oi � q for every q ∈ QLP (C(oi)), where C(oi) is the cell ID in which oi is located and
QLP (·) is the associated partial list. If oi�q, then oi is inserted into OL(q). For every query
q stored in the full list, QLF (C(oi)), oi is simply inserted into OL(q).

4.2 Simulation studies

Simulations were conducted to evaluate and compare SQI with CQI for periodic reevaluations
of continual range queries over moving objects. Since it has been shown in [12] that a cell-
based approach outperforms query indexing schemes based on various R-trees, we focus on
comparing our schemes with the cell-based approach. For the simulations, the monitoring
region was defined by Rx = Ry = 500. A continual range query was represented as a rectangle
with width of Wx and height Wy. Both Wx and Wy were randomly and independently chosen
between 1 and W . Its bottom-left corner was chosen uniformly within the monitoring area.
The maximum side length of a shingle was L, L = 2k and k was an integer.

A total number of |Q| continual range queries were inserted into the query index. A total
of |O| objects were generated. The initial locations of these moving objects were uniformly
distributed within the monitoring area. Then, their subsequent locations were calculated
based on the following rule. We define M as the maximal horizontal or vertical movement in
terms of virtual grids between two consecutive reevaluations. The new location of a moving
object was calculated based on its old location and the horizontal and vertical movements,
which were independently chosen for directions and magnitudes. Namely, if an object was at
(x, y), then its new location at the next reevaluation was at (x+dxx, y+dyy), where dx and
dy were equally likely to be 1 or -1 and x and y were independently and uniformly chosen
from [0, M]. Query results were first computed with the initial object locations. Then,
the locations were updated based on the movements defined by M . Afterwards, a query

9

10
0

10
1

10
2

0.8
0.9

1
1.1
1.2
1.3

re
−

ev
al

ua
tio

n
tim

e
(s

ec
on

ds
)

re−evaluation time

10
0

10
1

10
2

3.5

4

4.5

5

5.5

6

in
de

x
st

or
ag

e
(M

 b
yt

es
)

max. shingle side length (L)

(a) W=20

index storage

10
0

10
1

10
2

5

10

15

20

25

re
−

ev
al

ua
tio

n
tim

e
(s

ec
on

ds
)

re−evaluation time

10
0

10
1

10
2

4

6

8

10

12

in
de

x
st

or
ag

e
(M

 b
yt

es
)

max. shingle side length (L)

(b) W=40

index storage

10
0

10
1

10
2

100

200

300

400

500

re
−

ev
al

ua
tio

n
tim

e
(s

ec
on

ds
)

re−evaluation time

10
0

10
1

10
2
0

10

20

30

40

in
de

x
st

or
ag

e
(M

 b
yt

es
)

max. shingle side length (L)

(c) W=80

index storage

Figure 6: The impacts of maximal shingle size L on reevaluation times and index storage
costs for SQI with overlapping shingles when (a) W = 20; (b) W = 40; (c) W = 80.

reevaluation was performed. We measured the time it took to complete the reevaluation and
the total storage cost for the query index. We assumed that there were no changes to the
query index between two query reevaluations. We conducted our simulations on an RS6000
44p model 170 machine (CPU 333 MHz; memory size 768 Mbytes) running AIX 4.3.3.

4.3 The impact of shingle size

The maximal shingle size, L = 2k, has important impacts on index storage cost and reeval-
uation time. In this section, we use both simulations and analyses to study the optimal L
for minimizing the index storage cost and query reevaluation time.

The storage cost of SQI can be estimated as follows:

Cstorage � 4BRxRy + 8|Q|Cov(·), (3)

where Cov(·) represents the average number of covering shingles per query. The first term
is the storage cost for an array of pointers to query lists and the second term for the query
lists. Here, we assume each predicate ID requires 4 bytes and each pointer also requires 4
bytes. Each element in a query list contains a query ID and a pointer to the next element.
Hence, we have the constant 8 in the second term. Cov(·) depends on W and L. With a

smaller L, more shingles are needed to strictly cover a query, increasing Cov(·). However,
B, which is log(L), becomes smaller.

Because B = k + 1 = log(L) + 1 and Cov(·) � �W
2L
� × �W

2L
� (note that the average query

size is W
2
× W

2
), Eq. (3) can be approximately expressed as follows:

Cstorage � 4(log(L) + 1)RxRy + 8|Q|(W

2L
)2. (4)

We can calculate the optimal L by taking the first derivative of Cstorage and setting it to
zero. As a result, to achieve the minimal index storage cost, L can be chosen as follows:

Lopt
storage � W

√
Q

RxRy
. (5)

10

Table 1: The optimal L for minimizing reevaluation time.

|Q| |O| optimal L optimal L optimal L
(W = 20) (W = 40) (W = 80)

10,000 10,000 4 8 16
20,000 10,000 8 16 32
40,000 10,000 8 16 32
10,000 20,000 4 8 or 16 16 or 32
20,000 20,000 8 16 32
40,000 20,000 8 16 32
10,000 40,000 8 16 32
20,000 40,000 8 16 32

Query reevaluation time can be approximately expressed as follows:

Ctime � |O| × |CS(·)| × |QL(·)| × f × |OL(·)|
2

, (6)

where f is the fraction of covering shingles that require insertions or deletions of object
instances, |QL(·)| and |OL(·)| represent the average sizes of a QL(·) and OL(·), respectively.
We assume that, on average, the insertion and deletion of an object instance need to traverse
half of an OL(·). Among these terms, |CS(·)| depends on L; f depends on L, M and W ;
|QL(·)| depends on |Q|, L and W ; |OL(·)| depends on |O| and W . When L is small, |QL(·)|
becomes large because more shingles are needed to cover a query. When L is large, |CS(·)|
becomes large as well.

From Theorem 1, |CS(·)| = 4L2−1
3

. Furthermore, QL(·) � |Q|Cov(·)
(k+1)RxRy

because each query

on average is covered by Cov(·) shingles and there are a total of (k+1)RxRy virtual shingles.

OL(·) � |O|W 2

4RxRy
because the average query size is W

2
× W

2
and the monitoring area is RxRy.

However, it is nontrivial to express f in terms of L, M and W . As a result, we use simulations
to find the optimal L that minimizes the reevaluation time in Eq. (6).

Figs. 6(a), 6(b) and 6(c) show the reevaluation times (in seconds) and index storage costs
(in M bytes) of SQI with overlapped covering shingles when W = 20, 40, and 80, respectively.
The reevaluation time is on the left y-axis of each figure while the index storage cost on the
right y-axis. For these experiments, |Q| = 10, 000, |O| = 50, 000 and M = 1. As predicated
by Eq. (5), the optimal L’s for achieving the minimal index storage costs when W = 20, 40
and 80 are 4, 8, and 16, respectively. The optimal L’s for achieving the minimal reevaluation
times when W = 20, 40 and 80 are 8, 16 and 32. Note that the optimal L for minimal
storage cost is different from that for minimal reevaluation time.

Many experiments with various |Q|’s, |O|’s and W ’s were conducted to find the optimal L
for achieving minimal reevaluation time. Table 1 shows the optimal L for achieving minimal
reevaluation time under a given |Q|, |O| and W . In general, the optimal shingle size for
minimizing reevaluation time can be approximately expressed as follows:

Lopt
time = 2i, where 2i ≤ W

2
< 2i+1. (7)

11

For example, the optimal L’s are 8, 16 and 32 for W = 20, 40 and 80, respectively, for most
of the cases in Table 1. However, there are exceptions when both |Q| and |O| are relatively
small. For instance, when |Q| = |O| = 10, 000, the optimal L’s are 4, 8 and 16 for W = 20, 40
and 80, respectively. In this case, 2i ≤ W

4
< 2i+1.

4.4 Comparisons of SQI and CQI

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

7

8

9

10

total number of continual range queries |Q|

re
−

ev
al

ua
tio

n
tim

e
(s

ec
on

ds
)

(a)

CQI (1x1)
CQI (4x4)
CQI (8x8)
SQI overlapping
SQI non−overlapping

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

20

40

60

80

100

120

total number of continual range queries |Q|

in
de

x
st

or
ag

e
co

st
 (

M
 b

yt
es

)

(b)

CQI (1x1)
CQI (4x4)
CQI (8x8)
SQI overlapping
SQI non−overlapping

Figure 7: The impacts of |Q| on (a) reevaluation time and (b) index storage cost.

Now we compare SQI with CQI. We varied the total number of range queries |Q|. For
the CQI scheme, three different cell sizes were used: 1 × 1, 4 × 4 and 8 × 8. Figs. 7(a)
and 7(b) show the reevaluation times and index storage costs, respectively, for the 3 CQI
schemes and the SQI schemes with and without overlapped covering shingles.6 For these
experiments, W = 40, |O| = 20, 000, and M = 1. For the CQI scheme, a smaller cell size can
achieve a better reevaluation time, but the storage cost increases (see the 1×1 cases in both
Figs. 7(a) and 7(b)).7 Both the SQI with or without overlapped shingles performs better
in reevaluation times than the CQI schemes, especially when |Q| is large. This is because
SQI allows the query reevaluation to capitalize on incremental changes in object locations.
The performance advantage of SQI in reevaluation time is achieved at a modest increase in
storage cost. Note that the CQI scheme with a cell size of 1 × 1 incurs significantly larger
storage cost compared with the SQI schemes, especially for a large |Q| (see Fig. 7(right)).
The storage cost of CQI quickly decreases as the cell size increases, but the reevaluation time
also increases.

5 Summary

In this paper, we have presented a novel shingle-based query index (SQI) for efficient evalu-
ation of continual range queries against moving objects. It is fundamental to support many

6Note that, in the case of SQI without overlapping shingles, we use different sized shingles to fully cover
a query range, similar to using various sized tiles to cover a floor.

7Note that when the cell size is 1 × 1, CQI does not have partial lists. CQI is then equivalent to SQI
with L = 1. However, there will be a substantially large storage cost for both CQI and SQI. As a result, the
optimal cell size or shingle size is larger than 1 × 1.

12

location-based services in mobile E-commerce environments. SQI is a main-memory based
index. The objective is to quickly provide answers to continual range queries that locate the
moving objects contained inside the query boundaries.

SQI is based on the concept of covering a range query with one or more overlapping
shingles. A shingle is a tile-like object that is conventionally laid in overlapping rows to
cover an area, such as the rooftop of a building. A set of virtual shingles is predefined, each
with a unique ID. One or more of these virtual shingles are used to strictly cover each query.
SQI maintains a direct mapping between a shingle and the range queries that contain the
shingle. The use of covering shingles in SQI has two important properties. First, it imposes
no restriction on the speed and direction of a moving object. Second, it allows the query
reevaluation to capitalize on incremental changes on object positions.

Simulations and analyses have been conducted to find the optimal shingle size for SQI
and to evaluate and compare SQI with a cell-based approach. The results show that (1)
the optimal shingle size for minimizing index storage cost is different from that for minimiz-
ing query reevaluation time; (2) SQI performs better than the cell-based scheme in query
reevaluation time.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving objects. In Proc. of ACM
PODS, 2000.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching
events in a content-based subscription system. In Proc. of Symp. on Principles of
Distributed Computing, 1999.

[3] Y. Cai and K. A. Hua. An adaptive query management technique for real-time mon-
itoring of spatial regions in mobile database systems. In Proc. of Int. Performance,
Computing, and Communication Conference, 2002.

[4] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query
system for Internet databases. In Proc. of ACM SIGMOD, pages 379–390, 2000.

[5] H. D. Chon, D. Agrawal, and A. E. Abbadi. Query processing for moving objects with
space-time grid storage model. In Proc. of 3rd Int. Conf. on Mobile Data Management,
2002.

[6] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast publish/subscribe systems. In Proc. of the
ACM SIGMOD, 2001.

[7] L. Forlizzi, R. H. Guting, E. Nardelli, and M. Scheider. A data model and data structures
for moving objects. In Proc. of ACM SIGMOD, 2000.

[8] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys,
30(2):170–231, June 1998.

13

[9] R. H. Guting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider,
and M. Vazirgiannis. A foundation for representing and querying moving objects. ACM
TODS, 25(1):1–42, Mar. 2000.

[10] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of
ACM SIGMOD, 1984.

[11] E. Hanson and T. Johnson. Selection predicate indexing for active databases using
interval skip lists. Information Systems, 21(3):269–298, 1996.

[12] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Hambrusch. Efficient evaluation
of continuous range queries on moving objects. In Proc. of 13th Int. Conf. on Database
and Expert Systems Applications, 2002.

[13] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In Proc. of
ACM PODS, 1999.

[14] L. Liu, C. Pu, and W. Tang. Continual queries for Internet scale event-driven informa-
tion delivery. IEEE TKDE, 11(4):610–628, July/Aug. 1999.

[15] H. K. Park, J. H. Son, and M. H. Kim. An efficient spatiotemporal indexing method
for moving objects in mobile communication environments. In Proc. of Int. Conf. on
Mobile Data Management, 2003.

[16] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches to the indexing of moving
object trajectories. In Proc. of VLDB, 2000.

[17] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query
indexing and velocity constrainted indexing: Scalable techniques for continuous queries
on moving objects. IEEE Trans. on Computers, 51:1124–1140, Oct. 2002.

[18] H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[19] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving
objects. In Proc. of ICDE, 1997.

[20] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions
of continuously moving objects. In Proc. of ACM SIGMOD, 2000.

[21] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost and imprecision
in modeling the position of moving objects. In Proc. of ICDE, 1998.

[22] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying
databases that track mobile units. Distributed and Parallel Databases, 7(3):257–387,
1999.

[23] K.-L. Wu and P. S. Yu. Efficient query monitoring using adaptive multiple key hashing.
In Proc. of ACM CIKM, pages 477–484, 2002.

14

