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Abstract

This paper presents a dynamic interval index that, with a moderate storage cost,
performs fast event matching against a large number of predicate intervals specified by
content-based subscriptions. A set of virtual construct intervals (VCIs) is predefined,
each with a unique ID. Each predicate interval is decomposed into one or more VCIs,
which become activated by the predicate. The predicate ID is then inserted into the
ID lists associated with the decomposed VCIs. To facilitate fast search, we start with
a bitmap vector to indicate the activation of VCIs that cover an attribute value. Then,
we study various techniques to reduce the storage cost, including logarithmic construct
intervals (LCI) which reduce the total number of VCIs, bitmap clipping which prunes
certain positions of a bitmap vector, and bitmap virtualization which eliminates the
bitmap. Simulations are conducted to evaluate and compare these techniques.

Keywords: Subscription Services, E-commerce Enabling Technologies, Pub/Sub, Interval
Indexing, Virtual Construct Interval, Event Matching, and Event Monitoring.

1 Introduction

Content-based subscription e-commerce and services in a large distributed environment have
become popular in the advent of the Web [1, 11, 2, 12, 16]. Clients can subscribe to various
content-based services, usually expressed via predicates on a set of attributes, with a provider
on the Web. For example, a security analyst would like to be notified if the reading on
a certain sensor reaches a specific level. The service provider monitors these predicates
against continuously changing event data, such as the current stock prices, sensor readings,
interest rates, or business activities. Once an incoming event is matched with a subset of the
subscriptions, proper actions can be taken automatically. For example, alerts can be sent to
them via e-mails or cellphones. Specific actions, such as buying or selling stocks, can also
be triggered.

One of the most critical components of supporting large-scale content-based subscription
services is the fast matching of events against the predicates. A large number of events
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can occur in a short period of time. Each event must be matched against a large number
of predicates, perhaps in the hundreds of thousands or even millions. Hence, an efficient
event matching algorithm is required. Usually a main memory-based predicate index is
needed [1, 3, 7, 8, 9, 16]. The index must support dynamic insertions and deletions of
predicates as client interests are intermittently added into or removed from the system. The
search complexity and the storage cost must be minimized. Furthermore, predicates may
contain non-equality clauses, such as intervals. Interval predicates are particularly difficult
to index in the face of dynamic insertions and deletions.

In this paper, we study the problem of efficient interval predicate indexing for supporting
content-based subscription services. Formally, the goal is to support the finding of all pred-
icate intervals in a set Q = {I1, I2, · · · , In} which cover an event value. This was referred to
as a stabbing query problem [13]. It corresponds to finding all predicate intervals that match
an event value. Such an event value could be the rate of network attacks in a hosted data
center, the reading of a sensor, the price of a stock or the interest rate of a government bond.
Predicate intervals, such as [12, 19], (8, 45], (6, 100), (−10, 3] and [45, 200), represent user
interests on certain attribute. For example, a user may want to be notified if the reading of
a sensor falls within [12, 19].

We present a new and novel interval indexing method, called Virtual Construct Interval
(VCI) indexing. It is based on the following observation. For simplicity, assume that an
attribute A has R distinct values. All predicate intervals defined on attribute A are drawn
horizontally from the left endpoint to the right endpoint, as in Fig. 1(a). The stabbing
query problem can be solved by drawing a vertical line at an event value. All the predicate
intervals intersecting with this vertical line match the event value. For example, predicates
q1, q3, q7 and q9 match ai while q2, q4, q6, q8 and q9 match aj in Fig. 1(a).

Though conceptually simple, it is quite challenging to quickly identify those predicate
intervals intersecting with the vertical line of an event value. Without the help of an interval
index, one must perform event matching via linear search. Event matching can be unaccept-
ably slow, especially for a large number of predicate intervals. On the other hand, one can
pre-compute and maintain the IDs of predicate intervals intersecting with the vertical lines
at all possible event values. This is referred to as the direct listing approach. Event matching
becomes extremely fast via a direct lookup. However, the storage cost will be prohibitive
because each predicate ID is replicated by the number of event values it covers.

VCI indexing is an attempt to implement the idea shown in Fig. 1(a) in a storage cost-
effective manner. We predefine a set of virtual construct intervals, each with a unique ID
and specific endpoints. A predicate interval is first decomposed into one or more VCIs. A
VCI is activated when a predicate interval using it in the decomposition is added into the
system. The predicate ID is then inserted into the predicate ID lists associated with the
activated VCIs in the decomposition.

Event matching becomes finding all the activated VCIs that intersect with the vertical
line at an event value. We predefine the VCIs in such a way that the candidate VCIs can be
systematically computed. Once activated VCIs are identified, the IDs of predicates matching
the event are stored in the associated ID lists. To make event matching fast, we start with a
bitmap vector to indicate the activation of VCIs that cover an event value. Then, we explore
a series of techniques to reduce the storage cost of VCI indexing while maintaining its fast
search time. These techniques include (a) reducing the total number of VCIs; (b) clipping
each bitmap vector, i.e., pruning certain bit positions from a bitmap vector; and (c) making
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Figure 1: (a) Event matching against predicate intervals; (b) An example of simple construct
intervals (SCI) with L = 4.

bitmap vectors virtual, i.e., eliminating them.
We conduct simulations to evaluate these different techniques for storage reduction. We

also compare VCI indexing with a direct listing and a state-of-the-art IS-lists [9] approaches.
The direct listing approach has O(1) search time and O(nw̄) storage cost, where w̄ is the
average interval length among the n predicate intervals. The IS-lists approach uses interval
skip lists to implement a balanced dynamic search tree. It has O(log(n)) search time and
O(n log(n)) storage cost. The results show that, compared with the IS-lists approach, VCI
indexing with bitmap virtualization is better in both search time and storage cost for a large
n, where n is the total number of predicates.

The paper is organized as follows. Section 2 presents two VCI indexing methods. Sec-
tion 3 introduces bitmap clipping. Section 4 describes bitmap virtualization. Section 5
shows the performance studies. Related work is discussed in Section 6. Finally, Section 7
summarizes the paper.

2 VCI indexing

2.1 System model

For clarity, predicate intervals are user-defined intervals in the predicates of subscriptions.
On the other hand, virtual construct intervals (VCIs) are virtual intervals that we use to
decompose predicate intervals. Each VCI has a unique ID, called interval coordinate or
simply coordinate.

We focus on simple predicates, where each contains a single range-based clause on an
attribute.1 The result is applicable to complex predicates, where each contains a conjunction
of more than one clauses. For example, an efficient interval index can be maintained for each
attribute in a two-phase event matching algorithm involving complex predicates, such as the
ones presented in [3, 16].

We assume that all predicate intervals are defined on an attribute A. A can be of integer
or non-integer data type. Predicate intervals include both endpoints, and the endpoints are

1We have also developed Virtual Construct Rectangles (VCR) for efficient predicate indexing for multi-
dimensional range predicates [14].

3



integers.2 Namely, we deal with the case that a predicate interval is represented as p : [x, y],
where p is the predicate ID, x and y are integer endpoints and y > x. Due to space limitation,
event values are assumed to be integers in this paper. However, event values can be relaxed
to be non-integers [15]. Moreover, the intervals can be open-ended or exclusive, and the
interval length can be zero (i.e., y = x) [15]. We assume that predicate intervals fall between
a0 and a0 + R − 1, i.e., the attribute range is R.

2.2 Simple construct interval (SCI) approach

In the SCI approach, we define L unique VCIs that start at each integer value and have
respective lengths of 1, 2, · · · , L. The coordinates for the L VCIs that start at value a0 + j
are jL, jL + 1, · · · , (j + 1)L − 1, respectively, where 0 ≤ j ≤ R − 1. Fig. 1(b) shows an
example of VCIs and their unique IDs (coordinates) with L = 4 in an SCI approach.

To construct a VCI index, a bitmap vector Bj is allocated for each integer value a0 + j,
where 0 ≤ j ≤ R − 1 (see an example in Fig. 3(a)). Each Bj has N = RL bits, each
representing a unique VCI. N is the total number of VCIs. Associated with each interval
coordinate c, 0 ≤ c < N , we maintain a predicate ID list. An array H of size N is used to
maintain a header pointer to each predicate ID list. Hc denotes the pointer to the predicate
ID list for VCI c.

A predicate interval is first decomposed into one or more VCIs. These VCIs strictly cover
the predicate interval. In other words, any attribute value covered by the predicate interval
is also covered by at least one of the decomposed VCIs, and vice versa. The decomposition
is very simple. We repeatedly use a VCI with length of L to cover a predicate interval from
its left endpoint. Hence, a predicate [x, y] is decomposed into �y−x−1

L
� VCIs with length L

and a remnant.
Fig. 2 shows the algorithm for inserting a user-defined predicate interval p : [x, y]. De-

pending on the length of p : [x, y], a simple decomposition may be needed. If y − x > L,
we first decompose it into m + 1 VCIs, c0 : [x, x + L], c1 : [x + L, x + 2L], · · ·, cm−1 :
[x + (m − 1)L, x + mL] and cm : [x + mL, y], where m = �y−x−1

L
�. Each of the first m VCIs

has a length of L. On the other hand, if y − x ≤ L, p : [x, y] itself is one of the N VCIs and
no decomposition is needed.

For each decomposed VCI, the coordinate cj , 0 ≤ j ≤ m, is computed via find coordinate().
The coordinate cj is then used to insert p into Hcj

via insert pid() and to set the proper
bits of certain bitmap vectors to 1 via set bitmap(), if necessary.

The function find coordinate() for the SCI approach is rather simple. Given any VCI
[a, b], its unique ID c is computed as follows:

c = (a − a0)L + (b − a) − 1. (1)

We can easily verify Eq. (1) using the example shown in Fig. 1(b). The function in-
sert pid(p, cj) inserts p into the head of Hcj

. The function set bitmap(cj) sets proper bits
to 1, if necessary. Assume bi,j represents the bit position j of Bi, where 0 ≤ i < R and
0 ≤ j < N . It sets every bi,cj

to 1 for a ≤ i ≤ b, where cj is the coordinate of VCI [a, b].

2If the endpoints are not integers, we can expand them to the nearest integers. The expanded intervals are
then decomposed and indexed. VCI indexing is still effective in identifying candidate predicates. However,
a final checking is needed to determine if the candidate predicates indeed match the event.
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INSERT(p : [x, y], SCI) {
if (y − x > L) {

m = �y−x−1
L

�;
break p : [x, y] down to m+1 VCIs, c0 : [x, x+L], · · · , cm : [x+mL, y];
for (j = 0; j < m; j++)

cj = find coordinate([x + jL, x + (j + 1)L], SCI);
cm = find coordinate([x + mL, y], SCI);

} else { m = 0; c0 = find coordinate([x, y], SCI); }
for (j = 0; j ≤ m; j++) {

if (Hcj
== φ) set bitmap(cj);

insert pid(p, cj);
}

}

Figure 2: Algorithm for inserting a predicate interval in SCI.
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Figure 3: (a) An example of VCI indexing using SCIs with bitmap vectors; (b) An example
of logarithmic construct intervals (LCI) with L = 4.

Note that set bitmap(cj) function needs to be executed only if Hcj
is φ before the insertion

of p into Hcj
. Similarly, a corresponding reset bitmap(cj) needs to be executed only if Hcj

becomes φ after the removal of p from Hcj
in the deletion of a predicate interval from the

interval index. This is due to the fact that bi,cj
is used to indicate if construct interval cj is

activated by some predicate interval.
To illustrate the simplicity of insert pid() and set bitmap(), Fig. 3(a) shows an ex-

ample of inserting two predicate intervals p : [a0, a0 + 6] and q : [a0, a0 + 2] using the SCI
example in Fig. 1(b). Each Bi has 28 bits (R = 7 and L = 4). To insert q, we set b0,1, b1,1

and b2,1 to 1 and insert q into H1. In contrast, the length of p is greater than 4. We first
break it down to two VCIs: 3 : [a0, a0 + 4] and 17 : [a0 + 4, a0 + 6]. Hence, we insert p to H3

and H17 and set b0,3, b1,3, b2,3, b3,3, b4,3, b4,17, b5,17, b6,17 to 1.
To find all the intervals that cover an attribute value s, we simply find all the Ht, where

bs,t = 1 for 0 ≤ t < N . The matched predicate interval IDs are stored in these ID lists. Note
that bs,t is the bit that indicates if VCI t is activated. The search time is independent of the
number of predicate intervals maintained in the system.
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The deletion algorithm is very similar to the insertion algorithm. It differs in (a) the
removal of p from the corresponding predicate ID lists and (b) the reset of proper bits when
the last predicate interval that uses a VCI is deleted. Because every new p is inserted at the
head of Hj , we need to traverse 1/2 of Hj on average to find p.

2.3 Logarithmic construct interval (LCI) approach

In contrast to SCI, the LCI scheme uses log(L) + 1 VCIs beginning at each integer value.
Assume L = 2k, the lengths of virtual construct intervals in LCI are 20, 21, · · · , 2k. Fig. 3(b)
shows an example of an LCI with L = 4 and k = 2. Compared with the SCI example in
Fig. 1(b), LCI has in general less number of VCIs for the same L.

The insertion algorithm for LCI is mostly similar to that for SCI. The only exceptions
are the find coordinate() function and the decomposition process for the case where the
length of a remainder interval is less than L.

The find coordinate() function for LCI is also rather simple. The coordinate c for any
VCI [a, b], where b − a = 2l, 0 ≤ l ≤ k, is computed as follows:

c = (a − a0)(log(L) + 1) + log(b − a). (2)

This is because there are log(L) + 1 VCIs for each attribute value and the coordinate starts
from 0.

If y − x �= L, we may need to find more than one VCIs that can fully cover an interval
whose length is less than L. For example, if L = 16, we need [a, a + 4], [a + 4, a + 6] and
[a+6, a+7] to cover an interval p : [a, a+7]. This is different from SCI where we can always
find a single VCI when y − x < L.

The search algorithm for LCI is exactly the same as that for SCI. The deletion algorithm
of LCI is similar to the insertion algorithm of LCI, except for the removal of p and the reset
of proper bits when the last predicate using a VCI is deleted.

3 Bitmap clipping

Some positions for each bitmap vector will never be used. This is because certain VCIs
will never cover an event value. For example, [4 10] will never cover any event value less
than 3 or greater than 11. Hence, we do not need N bits for each bitmap vector. In this
section, we use bitmap clipping to reduce the storage requirement for each bitmap vector Bj

for attribute value a0 + j, 0 ≤ j ≤ R − 1. Bitmap clipping cuts unnecessary bit positions
from the top and/or bottom of a bitmap vector. However, we need to map a bit position
from a clipped bitmap vector to the actual coordinate. To facilitate bitmap clipping, we
introduce the concept of a covering segment.

A covering segment of an integer value is defined as the minimal set of contiguous VCIs
that can possibly cover the value. Note that some of the VCIs within a covering segment
may not cover the value. We could eliminate them from the covering segment to further
reduce bitmap storage. However, in so doing we need a more complex function to map a bit
position to the actual interval coordinate and vice versa. For simplicity, we chose to keep
the covering segment as a contiguous VCI segment.
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Figure 4: (a) Covering segment for an SCI scheme; (b) Covering segment for an LCI scheme.

Fig. 4(a) shows an example of the covering segment for the SCI scheme. On the left-hand
side of Fig. 4(a), VCIs are grouped by their starting points. The set of VCIs that share the
same starting point is viewed as a group of L intervals. Their coordinates are contiguous.

On the right-hand side of Fig. 4(a), we show all the VCIs that cover an attribute value
a0 + j for j ≥ L. At the top, there is a group of 1 VCI that begins at a0 + j −L and ends at
a0 + j. At the bottom, there is a group of L VCIs that all begin at a0 + j but end at different
points. Note that the coordinates of the VCIs that do cover a0 + j may not be contiguous.
However, all the IDs of VCIs that can possibly cover a0 + j fall into this covering segment
range. The minimum VCI ID is (j − L)L + L − 1 and the maximum VCI ID is jL + L− 1.

Let Cmin
j (Cmax

j ) denote the minimum (maximum) ID of a VCI that covers attribute value
a0 + j. The covering segment of an attribute value a0 + j, where j ≥ L, is defined as the
(Cmax

j −Cmin
j + 1) = L2 + 1 consecutive VCI IDs beginning at Cmin

j . Note that the covering
segment size is a constant and is independent of j for j ≥ L.

The same covering segment concept can be applied to the LCI scheme. Fig. 4(b) shows
the VCIs and their IDs that cover attribute a0 +j in an LCI scheme. Assuming L = 2k, Cmin

j

is (j − L)(k + 1) + k and Cmax
j is j(k + 1) + k, for j ≥ L. These two can be easily derived

from Eq. (2). Hence, the size of the covering segment is Cmax
j −Cmin

j + 1 = L(k + 1) + 1, for
j ≥ L.

4 Bitmap virtualization

In VCI indexing, a bitmap vector Bj for attribute value a0 + j provides one major function.
If a bit bj,c is 1, it indicates that all the predicate IDs pointed to by Hc cover attribute value
a0 + j (see Fig. 3(a)). Without the bitmap vector, this piece of information is lost.

Fortunately, the activation of the VCI with coordinate c can be derived from the fact
that Hc is not NULL. Remember that a predicate ID p is inserted into the list pointed to by
Hc if the VCI with coordinate c is one of its decomposed VCIs. Hence, we can examine all
Hc, for Cmin

j ≤ c ≤ Cmax
j , to see if a VCI within the covering segment of a0 + j is activated.

However, some of the VCIs whose coordinates fall within the covering segment of attribute
value a0 + j may not cover a0 + j. Hence, we need to know the right end point of a VCI
from its coordinate to see if the VCI does cover the attribute value. This can be done by
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a few computations. For example, to compute the right end point of a VCI [a, b] from its
coordinate c for LCI, we can use Eq. (2). First, we can compute a as a0 + � c

k+1
�, which

involves an integer division and an addition. Then, we can compute b as a + 2l, where l is
an integer remainder of c ÷ (k + 1).

Note that the search time complexity remains at O(1) with bitmap virtualization. For
an event value j, we need to examine Cmax

j − Cmin
j + 1 header pointers. For SCI, this is

L2 + 1. For LCI, it is L(log(L) + 1) + 1. Both are independent of n. If a pointer header is
not NULL, then it needs extra computations to find the right end point of a VCI.

4.1 Minimizing computation

Let us define those VCIs that do cover a0+j as the covering VCIs of a0+j. Let us also define
a distance table, called DT j , as the differences between all the coordinates of the covering
VCIs of a0 + j and Cmin

j . Namely, with Cmin
j and DT j, we can reconstruct the coordinates

of all the covering VCIs of a0 + j.
There is an important property among the distance tables for all the attribute values

(a0 + j)’s where L ≤ j. That is DT i and DT j are exactly the same even if i �= j. This
property can be easily observed from Figs. 4(a) and 4(b). Essentially, we can shift the entire
drawings on the right-hand side of those two figures and the drawings become the covering
VCIs of another attribute value. In other words, the relative distance among the covering
VCIs of an attribute value stay the same.

Since DT i and DT j are exactly the same even if i �= j, we can pre-compute, store and use
a single DT to enumerate the coordinates of all the covering VCIs for any attribute value.
In so doing, we can replace the more complex division operations with simple additions in
bitmap virtualization. Instead of computing the ranges of a VCI from its coordinate and
check if it covers an attribute value, we can now check if a covering VCI is activated. As will
be shown in Section 5.4, the use of DT under bitmap virtualization can reduce the search
time quite substantially. From Figs. 4(a) and 4(b), the size of the distance table, i.e., | DT |,
can be derived as follows:

| DT |=




L∑
i=1

i + L =
L(L + 3)

2
, for SCI

k∑
i=1

i2k−i + 2(k + 1) = 2L + k, for LCI

(3)

5 Performance evaluation

5.1 A direct listing approach

For comparison purpose, let us also look at a simple interval indexing scheme, called direct
listing Dlist, that can achieve O(1) search time. For each attribute value z, we simply
maintain a direct ID list DLz that contains all the IDs of predicate intervals that cover z.

To insert a predicate interval p : [x, y], we insert p at the head of DLz, for all x ≤ z ≤ y.
The insertion time is proportional to the length of the interval y−x+1, but it is independent
of the number of intervals maintained. To search for all the intervals that cover any given
data point z, we immediately have the answer and they are all linked in the list DLz.
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To delete an interval p : [x, y], we have to search each DLz, where x ≤ z ≤ y, and then
remove p from the lists. The delete time is proportional to the product of the interval length
and the average size of the DL lists.

5.2 Simulation studies

Simulations were conducted to evaluate and compare various VCI indexing schemes. In the
simulations, we implemented the different VCI indexing methods and the Dlist scheme. We
also compared our schemes with a previous IS-lists approach [9]. The IS-lists approach has
O(log(n)) search time and O(n log(n)) storage cost. For the IS-lists approach, we downloaded
an implementation from the Web [6] and used it to run our input data.

Attribute values ranged from 1 to R with 5,000 as the default value of R for a moderate
R. We also used a large R of 250,000 in the comparison of IS-lists and our approaches. The
starting point of a predicate interval was chosen randomly between 1 and R−1 with a length
w randomly chosen between 1 and W . Namely, w̄ = W

2
. Different values of W were used.

Since the maximum attribute value was R, any predicate interval p : [x, y] where y > R was
reduced to p : [x, R].

A total of n predicate intervals were generated and inserted. In the experiments, n was
varied from 1,000 to 1,024,000. After insertion, we performed 10,000 random searches and
computed the average search time and storage cost.3

5.3 Comparison of various VCI indexing schemes

We first compare the different VCI indexing schemes with bitmap clipping and bitmap
virtualization. Namely, we compare SCI, SCI-BC, LCI, LCI-BC and LCI-BV schemes. In
particular, we show the storage requirements of these five schemes with various Ls. For
simplification, we only chose those Ls such that L = 2k, starting from L = 2. Note that if
L = 1 the five schemes degenerate into one that is similar to the Dlist scheme.

3Note that, the covering segment size and the distance table size are smaller for a non-integer event than
for an integer event [15]. Search time for a non-integer event is in fact smaller than that for an integer event.
Hence, we conducted our simulations based on integer event values.
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Figure 6: Comparison of LCI schemes with Dlist and IS-lists in event matching time with:
(a) a moderate R (5000); (b) a large R (250,000).

Fig. 5 shows the total storage costs for the five different schemes. For this experiment, we
chose R = 5, 000, W = 500 and n = 10, 000. We varied L from 2, 4, 8, · · · , 256. Logarithmic
scale was used for the x-axis. Fig. 5 clearly demonstrates a few important results. (i) Bitmap
clipping is critically important in lowering the storage requirement for both SCI and LCI
schemes. (ii) The LCI approach is generally more effective than the SCI approach. (iii) With
a relatively small L, e.g., ≤ 128, SCI-BC requires less storage than LCI. (iv) For a small or
moderate R, LCI-BC and LCI-BV are hardly distinguishable and both are the best among
the various schemes.

5.4 Comparison of LCI with IS-lists in search time

In this section, we compare the average event matching times of LCI, LCI-BC, LCI-BV
and LCI-BV(DT) schemes with Dlist and IS-lists. In LCI-BV(DT), we pre-computed the
distance table DT and used simple additions to locate the activated covering VCIs under
bitmap virtualization. Fig. 6(a) we show the event matching times for the six different
schemes. For this experiment, R was a moderate 5,000, W was 200 and L was 128. We
varied n from 1,000 to 1,024,000.

As expected, Dlist is the best in terms of event matching time (very close to the x-axis).
On the other hand, the event matching time for the IS-lists approach degrades quickly as
n increases. In fact, the average search time exceeds 100 µ seconds when n is greater than
4,000. In contrast, the average event matching time remains less than 10 µ seconds for the
LCI or LCI-BC schemes even when n is as large as 1 million.

The search time for LCI-BC is only a little bit higher than that for LCI. However, the
average search time for LCI-BV can be much higher than that of LCI. This is because, in
LCI-BC, we only need to perform a simple addition of Cmin

j to the clipped bitmap index to
obtain the coordinate of an activated VCI. In contrast, from Section 4, we need to perform
division operations in LCI-BV, which takes more CPU time. As n increases, more and more
VCIs are likely to be activated. Hence, there is a higher probability that Hc is not empty for
a VCI c in the covering segment and the endpoint of c needs to be calculated as described
in Section 4. Note that the search time for LCI-BV is bounded by the size of the covering
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Figure 7: Comparison of LCI schemes with Dlist and IS-lists in storage cost with: (a) a
moderate R (5000); (b) a large R (250,000).

segment (as shown in Fig. 6(a)). However, with a pre-computed distance table, the search
time of LCI-BV(DT) becomes even better than that of LCI. This is due to the fact that
bitmap manipulations required in LCI are more complex than the simple additions needed
in LCI-BV(DT).

Fig. 6(b) shows the average event matching of LCI-BC, LCI-BV, LCI-BV(DT) and IS-
lists approaches when R is a rather large 250,000. For this experiment, we did not show
the results from Dlist and LCI because the storage costs are too high for them under most
cases (see Section 5.5). Similar to Fig. 6(a), the average search time for IS-lists degrades
quickly as n increases, albeit at a lower rate. Note that, in our experiment, the predicate
intervals are randomly chosen within the attribute range. Hence, the search time is larger
for a smaller R because more predicates need to be examined for a given attribute value.
Fig. 6(b) also clearly shows that LCI-BV(DT) substantially reduces the search time for
bitmap virtualization, especially for a large n.

5.5 Comparison of LCI with IS-lists in storage cost

In this section, we compare the storage costs of LCI, LCI-BC and LCI-BV schemes with Dlist
and IS-lists. Fig. 7(a) shows the storage requirements for the five schemes as n increases
from 1,000 to 1,024,000 for a moderate R (5,000). This was the same experiment we used
to obtain the average event matching times in Fig. 6(a). The storage cost of LCI-BV (not
shown explicitly) is similar to that of LCI-BV(DT) because the size of the distance table DT
is negligibly small when compared with that of LCI-BV.

As expected, the storage cost of LCI is higher than the other four schemes for a smaller
n because of the bitmap vectors. However, the storage cost of Dlist crosses over that of
LCI when n is about 32,000. The storage cost of IS-lists also crosses over that of LCI
when n is about 128,000. For the Dlist case, we can only run our experiment up to n =
128, 000. Beyond that, our system (an RS 6000 system running AIX 4.3.3) ran out of memory.
Similarly, we can only run our experiment up to n = 512, 000 for the IS-lists case. However,
we did not encounter the similar problem for the three LCI cases.
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Fig. 7(a) shows that, without bitmap clipping or bitmap virtualization, the benefits of
fast event matching time of LCI (see Fig. 6(a)) is achieved at the expense of more storage
overheads, especially for a small n. However, with bitmap clipping or bitmap virtualization,
the storage overhead is no worse than that of the IS-lists approach. In fact, for a moderate
R, the storage overhead of LCI-BC or LCI-BV(DT) is smaller than that of IS-lists even for
a small n. Moreover, LCI-BC and LCI-BV(DT) have a much better performance in average
search time than IS-lists. (see Fig. 6(a)).

Fig. 7(b) shows the storage costs of LCI-BC, LCI-BV(DT) and IS-lists when R is a rather
large 250,000. We did not show the case of LCI because the storage cost is too high for most
of the cases. With a large R, the benefits of fast search time in LCI-BC and LCI-BV(DT) are
achieved at the expense of higher storage overhead (see Figs. 6(b) and 7(b)). For example,
the storage cost of IS-lists is lower than that of LCI-BC and LCI-BV(DT) for a small n in
Fig. 7(b). However, as n increases, the storage cost of IS-lists crosses over that of LCI-BC
or LCI-BV(DT).

Finally, bitmap virtualization combined with a pre-computed distance table, or LCI-
BV(DT), is the most effective among the VCI indexing schemes. Compared with the IS-lists
approach, LCI-BV(DT) is very effective, especially for a large number of predicates. This is
true even if R is relatively large.

6 Related work

Various interval indexing approaches have been proposed, including segment trees, interval
trees [13], R-trees [5], interval binary search trees (IBS-trees) [8] and interval skip lists (IS-
lists) [9]. Segment trees and interval trees generally work well in a static environment, but
are not adequate when it is necessary to dynamically add or delete intervals. Originally
designed to handle spatial data, such as rectangles, R-trees can be used to index intervals.
However, as indicated in [9], when there is heavy overlap among the intervals, the search
time can degenerate rapidly.

Both IBS-trees and IS-lists were designed for main memory-based interval indexing [8, 9].
They were the first dynamic approaches that can handle a large number of overlapping pred-
icate intervals. As with other dynamic search trees, IBS-trees and IS-lists require O(log(n))
search time and O(n log(n)) storage cost, where n is the total number of predicate intervals.
Moreover, as pointed out in [9], in order to achieve the O(log(n)) search time, a complex
“adjustment” of the index structure is needed after an insertion or deletion. The adjustment
is needed to re-balance the index structure. This adjustment increases the insertion/deletion
time complexity. For example, the insertion time complexity for IS-lists is O(log2(n)). More
importantly, the adjustment makes it difficult to reliably implement the algorithms in prac-
tice. Previous studies [9] indicated that IS-lists are easier to implement compared with
IBS-trees, even though dynamic adjustments of the interval skip lists are still needed. In
contrast, no dynamic adjustment is needed in VCI indexing.

There are other spatial indexing methods that can be used to handle one dimensional
intervals [10, 4, 13]. However, most of them are designed specifically for multidimensional
spatial objects. In addition, they tend to be secondary storage-based indexes. In contrast, a
main memory-based index is usually needed for the monitoring of events for content-based
pub/sub, continual queries, or profile-based applications.
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7 Summary

In this paper, we have studied a virtual construct interval (VCI) indexing approach for
efficient interval predicate indexing, which is critical to large-scale content-based subscription
services. Its goal is to perform fast event matching against a large number of interval
predicates with a moderate storage overhead.

We introduced a new concept called virtual construct intervals. Each predicate interval
is first decomposed into one or more VCIs. A VCI is activated when a predicate interval
using it in the decomposition is added to the system. The predicate ID is then stored in
the ID lists associated with the activated VCIs. Event matching is simple. The matched
predicates are stored in the ID lists of the activated VCIs that cover the event value.

To facilitate fast search, we started with a bitmap vector for each attribute value to
indicate the activation of VCIs that cover the value. Various techniques have been examined
to reduce the storage overhead while maintaining the fast search time. First, the number of
VCIs is reduced via the LCI approach. It reduces the bitmap size. Second, the bitmap is
clipped, further reducing the bitmap size. Third, the bitmap is virtualized, i.e., eliminated.
Finally, a pre-computed distance table is used to reduce the computation overhead needed
after bitmap virtualization.

Simulations were conducted to compare the performance of various VCI indexing schemes
and a state-of-the-art IS-lists approach. The results show that (1) LCI is generally more
effective than SCI; (2) bitmap clipping is effective in reducing the storage cost when R is
moderate; (3) the best VCI indexing scheme is to combine LCI with bitmap virtualization
and a pre-computed distance table; (4) compared with the IS-lists approach, LCI with bitmap
virtualization and a pre-computed distance table is better in storage cost and search time
for a large number of predicates.
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