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Abstract

MEMPOWER is a tool set for analyzing memory traces to determine utilization and calculate the power and energy

consumption of the memory hardware. The goal of MEMPOWER is to provide a simple, relatively quick-to-run

estimation of memory power consumption based on how a workload uses the memory and the technologies used

to implement the memory subsystem. It also allows one to experiment with different power-management policies

and parameters. In addition to calculating memory power and energy, MEMPOWER also computes the performance

impact of power management in terms of the number of cycles of delay injected by power-management actions.

The major contribution of MEMPOWER is to provide an intermediate step in the power analysis of memory subsys-

tems between simple spreadsheet models such as the one provided by Micron [1] and full, power-aware simulations of

memory. Recent uses of it include the evaluation of cooperative, hardware-software, power management of memory

as reported in a recent paper [2].

This report describes the theory, structure and implementation characteristics of MEMPOWER. It also provides a

sample evaluation of memory power and energy under various policies based on a memory trace taken with the

Mambo full-system simulator [3].



Chapter 1

Introduction

MEMPOWER is a tool set for analyzing memory traces to determine utilization and calculate the power consumption

of the memory hardware. The goal of MEMPOWER is to provide a simple, relatively quick-to-run estimation of the

power and energy consumption of system memory based on how a workload uses it and its implementation.

MEMPOWER’s features include

• utilization, power and energy data broken down by physical layout of the memory

• support for different types and manufacturers of memory components and different memory timings

• division of the input trace to match the addressing of different physical portions or subdivisions of memory

• division of the input trace by process identifier to allow for the calculation of memory utilization, power and

energy values for individual processes

• calculation of request interarrival times by physical unit

• determination of the effects of various power-management policies such as power-down and self-refresh on

memory performance, power and energy.

Its results provide not only power and energy information but also insights into how the traced workload uses the dif-

ferent parts of physical memory. It has the additional advantage that one can do a full analysis of a substantial memory

trace of a server executing a standard benchmark in a few days using a commodity, multiprocessor workstation. Re-

cently, MEMPOWER was used to do all of the evaluation of the effects of various power-management policies on the

behavior of the memory for a paper on cooperative memory power management [2].

This report describes

• the relationship between MEMPOWER and other memory power calculators

• the inputs that it requires including the trace and information about the memory system

• the theory behind it and how it calculates its outputs

• the outputs that it produces

• its validation and performance

1



• a sample evaluation of a TPC-W trace done using it

• its strengths and limitations

• possible future enhancements.

The major contribution of MEMPOWER is to provide an intermediate step in the power analysis of memory subsys-

tems between simple spreadsheet models such as the one provided by Micron [1] and full, power-aware simulations

of memory. Current work in the IBM Austin Research Laboratory is developing a full, power-aware simulation of

memory, known as MEMSIM [4]. The intent over the longer term is to integrate this simulation into the Mambo

full-system simulator [3], thus providing a much more accurate and fully integrated memory simulation in the Mambo

environment. When the fully integrated memory simulator is complete, it will supersede the work reported here.
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Chapter 2

Different Types of Memory Power

Calculators

In order to understand the motivation for MEMPOWER, it is essential to put it into context, and the best way to do so

is to use a taxonomy of the possible ways of analyzing and modeling memory power. There are six (6) possible types

of memory power models as described in the following sections.

2.1 Simple Calculation from DIMM-level estimates

In this type of calculation, one does a simple multiplication of the number of DIMMs in the machine times the

power per DIMM as quoted by the vendor. Although amazingly simple, this approach is often used in practice. It

has the advantage of simplicity, but it is prone to inaccuracy. Since vendors generally overstate DIMM-level power

requirements for legal and business reasons, the estimates that it yields are generally higher than either the maximum

possible memory power or the largest values measured in practice. However, this is by no means guaranteed.

2.2 Speadsheet Models

The second type of memory-power-calculation methodology uses a spreadsheet to calculate the power based on cur-

rents, voltages, and simple usage models. A good example of this scheme is the spreadsheet that is available from

Micron. The major limitation of this model is that it becomes very complex to get all of the usage data into it, espe-

cially when the usage is derived from a memory trace. However, this method gives more accurate results than the first

approach and is also often used by practicing engineers.
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2.3 Trace-based Energy-per-operation Calculations

If a trace of the memory references made by a running workload, such as one produced by Mambo, is available,

one can perform energy-per-operation calculations to determine the energy consumption of the memory over intervals

of time and the average power dissipated during each interval. In an energy-per-operation scheme, the program

assigns energy values, Eread and Ewrite, to the read and write operations, respectively. It then divides the trace

into time intervals. Within each interval, it counts the number of memory operations – reads and writes – yielding

the read count, Nread, and the write count, Nwrite, for the interval. If the length of the interval in time is T , then

the total energy over the interval is Nread × Eread + Nwrite × Ewrite, and the average power over the interval is

(Nread × Eread + Nwrite × Ewrite) ÷ T .

2.4 Trace-based Time-and-utilization Calculations

MEMPOWER is an example of a trace-based, time-and-utilization power calculator. Such a power calculator con-

sumes memory traces with timing information in them and produces average power values for one or more intervals

of time based on that information, memory service-time parameters, if such information is not present in the trace, and

vendor-provided voltages, currents and part counts. From the average power over the interval or intervals, it can then

calculate the energy. The equations used in the power calculation are adapted from those published in technical notes

from the vendors. If power-management policies are also considered, such calculators can compute delay metrics for

different power-management policies and parameters.

MEMPOWER attempts to do a relatively complete calculation and takes into account the power contributions from

the support chips required on the DIMM as well as the SDRAM parts. It also incorporates support for all of the major

power-states supported for DDR SDRAM chips. Finally, it allows one to calculate the power over the whole trace

or the power and energy over a set of time-based intervals or a set of intervals representing the execution of different

processes on the machine.

2.5 Trace-driven Simulation

Another way to calculate memory power is to use a trace-driven simulation of the memory subsystem. The simulation

tracks the activity of the various components of the memory subsystem and simulates the currents drawn. Based on the

currents and known voltages, it can then dynamically calculate the power consumption of the memory over intervals

of different sizes. As the size of the intervals used approaches 0, it calculates something approaching the instantaneous

power dissipation of the memory. The MEMSIM simulator [4] is an example of a trace-driven simulation of memory

activity and power. Since the level of detail is much higher, trace-driven simulators like MEMSIM give more accurate

power numbers and much more detail on the performance effects of memory power-management than time-and-

utilization-based calculators like MEMPOWER can.

4



2.6 Execution-driven Simulation

Execution-driven simulation is similar to trace-driven simulation in that it simulates the behavior of the memory

subsystem and calculates power based on the activity of the memory. However, the simulation framework and the

source of the memory requests are different. One particularly interesting variant of execution-driven simulation is to

use a full-system simulator such as Mambo to drive the memory simulation, effectively incorporating it into Mambo.

In fact, the current direction of the MEMSIM work is to do just that. Execution-driven simulation is the most complex

way to implement a power calculator for memory, but it yields the most accurate results.
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Chapter 3

MEMPOWER Theory and Structure

As a trace-based time-and-utilization power calculator, traces of memory references including operation type, physical

address and timing drive MEMPOWER. Although there are actually two versions of MEMPOWER, the one described

here consumes memory traces generated by the Mambo full-system simulator. The other version processes traces that

are in a format used internally by IBM in gathering traces directly from the hardware. That version offers only a subset

of the features described here. MEMPOWER calculates memory power and energy for memory sub-systems that are

typical of IBM’s server products. The memory parts have a number of characteristics.

• DDR SDRAM technology

• registered memory

• ECC

• closed-page operation

• multiple DIMM and/or multiple controller and multiple DIMM subsystems

The details of the speed, currents and layout of the memory subsytem are parameters to MEMPOWER. Calculating

power and energy for other types of memory such as DDR-2 or RAMBUS requires minor changes to the tools.

The memory power calculation computes the average memory power over an interval for a defined portion of mem-

ory using a time-and-utilization-based methodology. It does its energy calculations by performing an approximate

integration of the power over the time intervals. MEMPOWER calculates the delay introduced by the use of memory

power-management by tracking the total number of cycles spent recovering from the power-management actions taken

during an interval. Doing these computations involves the following general steps.

• Specification: specifying the parameters including the details of the memory subsystem and its timings.

• Process splitting: optionally splitting the original trace into multiple traces, each of which contains the memory

references associated with a single process or other software-defined entity. MEMPOWER does this step only if

the analysis is of per-process power and the potential differences in memory-power usage by different processes.

• Reformatting: converting the trace into a format that is more conveniently processed by the remainder of

MEMPOWER.
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• Spatial splitting: splitting the trace by address to match the layout of the physical memory. Depending upon

the configuration information, this step may be trivial.

• Interarrival calculation: adding interarrival time information.

• Collection of interarrival-time data: optionally collecting information about interarrival-time statistics.

• Diagramming and delay introduction: converting the trace to a format which tracks the state of the memory

over time, using the memory-service times specified as parameters. This step includes introducing the delays

associated with any power-management policy being applied to the trace.

• Utilization calculation: calculating the utilization of each part of the memory over a set of intervals or the

whole trace.

• Power calculation: calculating the average power over each interval or the whole trace. This step also calculates

the total energy for the interval or trace as well as any delay injected by the use of power-management modes.

• Post-processing: converting the power, energy and delay numbers into human-readable output and graphs.

MEMPOWER optionally splits a trace by process and typically splits it spatially by address. The subsequent process-

ing steps apply to the results of these splits, so that if there are, for example, 100 processes and sixteen (16) memory

subunits, it runs the remaining steps 100 × 16 or 1600 times. Most evaluations do not require a per-process split and

have far fewer subtraces to handle. Figure 3.1 illustrates the main steps in processing a trace with MEMPOWER while

Figure 3.2 shows a secondary set of steps used in interarrival-time processing.

Since MEMPOWER is capable of applying a number of different hardware-based, memory-power-management poli-

cies with different parameters to the same trace, one need collect only a single trace with no hardware-based power

management and run it through MEMPOWER many times with different power-management policies and parameters

to determine the effects of using the policies. Since MEMPOWER processing is generally significantly faster than

trace collection, this reduces the time required to explore the space of memory-power-management options.

Rather than being a single, very large, integrated program, MEMPOWER is a set of tools that one runs in sequence

to do the desired memory power, energy and delay calculations. As a side-effect, MEMPOWER also generates a set

of memory utilization statistics since, as indicated previously, MEMPOWER uses a time-and-utilization-based model

for memory power.

The following sections describe MEMPOWER’s inputs, theory, processing steps and outputs.

3.1 Inputs

MEMPOWER needs two distinct types of input – specification files and a trace of memory references.

3.1.1 Specification Files

Whenever possible, MEMPOWER is parametric to maximize its flexibility. To operate, it needs a description of the

memory subsystem including how ranges of addresses map to parts, the currents drawn by the various memory parts

when in different states, read and write service-time values and information about the power-management policies,
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input trace

mreformat

mspatial

msplitbypid

Post−processing, consolidation and graphing

minterarrivaltime

mdiagram
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mutilization

mpower

mprintintervaldata
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specification files

minterarrivaltime

mdiagram

mutilization
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mprintintervaldata

DIMM Group DIMM Group DIMM Group

Figure 3.1: MEMPOWER processing steps

8



trace with interarrival times

mcountinterarrivaltimes

mcdf

Post−processing, consolidation and graphing

Figure 3.2: MEMPOWER processing steps for counting and processing interarrival times

if any, that MEMPOWER is to apply to the input trace. Rather than using command-line parameters and scripts to

provide most of this information, MEMPOWER processes specification files. There are five types of specification

files.

• Memory: describes the characteristics of the DRAM parts used including the currents drawn in the various

operating states, the number of pins and the voltages.

• Register: provides the currents drawn by the register parts used on registered DIMMs and their operating

voltage.

• PLL: gives currents and voltage for the PLL or timing part used to generate the DIMM-level clock.

• DIMM: provides the number and organization of the parts on a single DIMM including the bank structure. This

file also includes the read and write service-time values used in the calculations.

• System: describes the overall layout of the memory including its total size, the number of different, separately

manageable portions of memory and the interleaving scheme, if any. It also gives certain features of the system

such as the processor speed and the cache-line size.

Each file is a set of lines of the form < keyword >=< value >. Rather than having each program in MEMPOWER

parse text files, there is single, separate program, mspecs, that converts all of the specification files for a particular

configuration to a set of binary files. Each MEMPOWER program reads the binary form of the files that are relevant

to it directly into internal data structures.

9



The only exception to this general strategy is the specification of the power-management policies. Since MEMPOWER

needs different delay and threshold values for each power-management policy that it tries and since only a single

program, mdiagram, needs them, they are command-line parameters. This makes it easy to write a wrapper script

that explores the implications of many different power-management options and avoids the creation of a very large

number of specification files.

3.1.2 The Mambo-generated Trace Format

As a trace-driven power calculator, MEMPOWER also requires a trace of memory references to process. Although

these traces may come from different sources and although there is a version of MEMPOWER that processes traces

collected directly from hardware, the version described in this report uses memory-reference traces collected using

emitter logic in the Mambo [3] full-system simulator. The trace format is a simple one that consists of a sequence of

records with most of the records describing references to the (simulated) real memory of the simulated system. These

records contain the following fields.

• type

• data

• dt

• alist

The type indicates whether the record describes a memory read or write or some other kind of information. The data

field is, for memory operations, the physical address referenced while the dt field is the number of processor clocks

since the previous record. The alist field is specific to the particular implementation and is used in the evaluation

in Chapter 5 to indicate which portions of memory the software has turned off, independently of any hardware-based

power management. Section 3.4 describes how MEMPOWER divides memory into separately power-manageable

units. Since there is no length information, MEMPOWER assumes that all memory operations are for the number of

bytes in a single cache line.

Other than memory reference operations, the traces contain information about process creation, switching and termi-

nation. From this information, MEMPOWER can determine the last process to gain control and, thus, what process

should be charged for the subsequent memory operations.

Each trace file has three distinct length attributes associated with it. The first, and least important, length attribute is

the number of bytes in the file. The primary effect that this form of length has on MEMPOWER is that to conserve

disk space, one may need to compress the stored trace files, increasing the overall running time of a MEMPOWER

analysis. The second length attribute is the number of trace records in the file. This length attribute affects the running

time of the MEMPOWER steps by determining the number of I/O operations the programs must do. Finally, the third

length attribute, referred to here as temporal length, is the length of the trace in processor clocks; that is, it is the sum

of all of the dt values in the trace.
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3.2 PID Splitting

MEMPOWER allows one to calculate the power and energy consumed by individual software-defined entities present

in the trace, typically processes as identified by process identifiers or PIDs. Rather than complicating its internal

representations, MEMPOWER provides an optional, initial processing step, msplitbypid, that divides the original

trace into multiple traces, all in Mambo format, with one output trace for each process. Thus, if the trace contains

references to 100 PIDs, msplitbypid produces 100 output traces. Each process trace includes all of the memory

references charged to the particular process by MEMPOWER. Each trace is of a subset of the original trace with a

length in processor clocks equal to the number of processor clocks that the process has control in the original trace.

For a uniprocessor, the sum of the temporal lengths of the subtraces is equal to the temporal length of the original

trace while for a multiprocessor, the sum is equal to the temporal length of the original trace times the number of

processors. All time, even idle time, is charged to a process. MEMPOWER executes msplitbypid only if it is

doing per-processor memory power calculations.

There are cases in which some of the processes in the trace, such as, for example, the Mambo kernel thread, generate

memory references that are irrelevant to or distort the study being done. To handle such situations, MEMPOWER also

has a program, mfilteroutpid, that removes all records from the original trace associated with one or more PIDs

that are not of interest.

3.3 Trace Reformatting

The first mandatory step in MEMPOWER processing is to convert the Mambo-generated trace to a format that is easier

for the remaining programs in MEMPOWER to process. This reformatting, done by mreformat,

• converts the relative times to absolute time values, calibrated in processor clocks and with a clock value of 0 for

the starting time of the trace

• drops all trace records except those that are memory reads or memory writes

• incorporates the current process id in each record.

The result is a new trace of with approximately as many records as the original that tracks all of the memory activity

by address and process id. Since the first memory reference in the trace may have a non-zero relative time, the first

record in the reformatted trace may have a non-zero absolute time. The traces currently generated by the Mambo are

uniprocessor-only, and, thus, there is no provision for a maintaining a processor identifier in the reformatted trace.

PID tracking is done by maintaining the current PID based on the process creation, switch and termination and the

program execution events present in the original trace but removed by the reformatting process.

One may think of the step that converts relative to absolute times as trace clocking. Subsequent processing steps, in

some cases, re-clock the trace to account for delays introduced by power managing the memory.
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3.4 Spatial Splitting

For the purposes of memory power calculation, the most important features of the memory subsystem are its division

into multiple components that are separately power-manageable and the way in which the memory subsystem maps

the physical addresses generated by the processor or processors to the memory components. To manage power,

the hardware may group some number of separate components into a single group that it manages as a unit. For

example, it may treat a memory controller and all of the DIMMs controlled by it as a single power-management unit.

Although it is possible that the individual components within a group are subject to additional power-management

actions, MEMPOWER does not attempt to take this into account. Once the power-manageable units are defined,

MEMPOWER always treats each one as an indivisible entity. As an example, although they do not implement memory

power-management, the IBM Regatta systems [5] have multiple memory controllers that, in theory, are separately

manageable for power.

The other important feature of the memory subsystem that MEMPOWER takes into account is how the memory

hardware maps the physical addresses generated by the processor or processors to the power-manageable units of

memory. Some architectures use interleaving to extract additional parallelism from the memory. Other architectures

offer configurable interleaving or do a packed assignment of addresses to physical memory. MEMPOWER’s spatial

processing breaks up memory traces into sub-traces of the activity against each of the power-manageable units, taking

any interleaving of addresses across these groups into account.

MEMPOWER uses the term DIMM group to describe spatial units into which it splits memory. Each DIMM group

is the same size in terms of the amount of memory and the number of individual parts such as DIMMs and SDRAM

chips that it contains. The DIMM-group size is a parameter to MEMPOWER so that one can use it to analyze traces

with different memory sizes and different memory layouts. Each DIMM group is thought of as being somewhat

independent of all of the others. For example, a DIMM group may be a memory controller plus all of the components

it controls, a memory interface plus its associated DIMMs, a group of DIMMs or a single DIMM. Related work such

as PAVM [6] and cooperative DRAM power management [2] use terms such as node and memory module instead of

DIMM group.

MEMPOWER associates one or more DIMM groups together into an interleaving group in such a way that the in-

terleaving groups cover all of physical memory. An interleaving group represents a portion of memory to which the

system maps a contiguous range of physical addresses. The system interleaves consecutive cache lines across the

members of a single interleaving group before proceeding to the next interleaving group. Intuitively, the concept of an

interleaving group arises from the ability of some systems such as those in IBM’s pSeries family to interleave succes-

sive cache lines across multiple memory controllers. MEMPOWER requires that the total memory size, the number

of interleaving groups and the number of DIMM groups be such that all interleaving groups have the same number of

DIMM groups in them. Figure 3.3 shows a very simple interleaving and DIMM group configuration.

MEMPOWER assumes that all memory references are cache-line reads and writes, and the size of a cache line is

a parameter to it. This is a reasonable assumption since, in practice, essentially all of the memory traffic found in

the input traces is in cache-line-sized units and aligned on cache-line boundaries. 1 If i is the number of interleaving

1The Mambo trace format also assumes this and does not bother to encode the length the length of the request in the trace records that it produces.
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interleaving group 0 interleaving group 1

DIMM group 0 DIMM group 1 DIMM group 2 DIMM group 3

>= 512 MB< 512 MB

memory address

cache line 0 cache line 1 cache line n + 0 cache line n + 1

cache line 2 cache line 3 cache line n + 2 cache line n + 3

Figure 3.3: Sample interleaving and DIMM group structure with two (2) interleaving groups, four (4) DIMM groups

and a total memory size of 1 GB. The bytes of a cache line are assigned to a DIMM group based on the address of the

first byte.

groups, n is the total number of DIMM groups, m is the total memory size and l is the cache-line size, then given an

address a, its DIMM group d is given by the following equation.

d = (� a
m
n × i

�) + remainder(�a

l
�, i)

In most cases, the interleaving group is the natural unit of power management since the system maps consecutive

physical addresses to it, and MEMPOWER assumes that the system puts all of the parts in an interleaving group into

the same power state. (In the example of using MEMPOWER presented in Chapter 5, each interleaving group contains

precisely one DIMM group, and the concept of interleaving group is not used in describing such configurations.)

Thus, the next step in MEMPOWER processing, implemented by the mspatial program, divides the trace into

multiple subtraces by address range, with each subtrace representing a single DIMM group. The mspatial program

accepts a single file in the format written by mreformat and produces multiple files in the same format. The

output files are either empty, if there are no references to the DIMM group in the input trace, or are of approximately

the same temporal length as the input trace. The intuition behind mspatial is that MEMPOWER is generating

a trace of the activity of each subcomponent of memory. As described above, MEMPOWER’s primary application

is in the calculation of memory power for memory subsystems with multiple interleaving and DIMM groups. The

spatial split done by mspatial takes parameters that describe the memory and cache-line sizes, the number of

interleaving groups and the number of DIMM groups. The mspatial step is omitted if MEMPOWER is calculating

the power consumption of the whole memory rather than its individual parts. Once the original trace is spatially split,

Scans of the trace format used by the other version of MEMPOWER indicate that there is no traffic to and from memory other cache-line accesses.

13



all subsequent processing is done on a per-DIMM-group basis.

3.5 Interarrival-Time Calculation

The next step of the MEMPOWER calculation, implemented by the minterarrivaltime program, converts each

of the non-empty traces resulting from the spatial splitting to a different format that adds additional information to

each record in the trace about the time since the previous memory operation and the previous memory operation

of the same type (read or write). MEMPOWER treats empty DIMM-group-level traces differently, and the next

step in MEMPOWER processing handles them appropriately. In cases where the trace records interarrival times

of 0, MEMPOWER makes no attempt to serialize them by moving all arrivals with time 0 after the initial one in

such a sequence later in time. The output traces from minterarrivaltime are the input into the next step of

MEMPOWER. An experimental form of a program to serialize the DIMM-group traces exists, but so far it is not clear

that using it yields a more accurate estimate of the power. No systematic memory-power analysis done to date has

used it.

In addition to minterarrivaltime, there is a second program in MEMPOWER, called mcountinterarrival-

times that counts the number of memory references with each distinct interarrival time value. This allows a post-

processing program to create a random variable for the interarrival-time values for a single DIMM group. The m-

countinterarrivaltimes program takes as its input the output traces from minterarrivaltime for each

DIMM group and produces a unique output file that feeds directly to a post-processing program as shown in Figure 3.2.

3.6 Diagramming

Once MEMPOWER calculates the interarrival times, the next step is to convert the trace to what is called a diagram

format by running the mdiagram program on it. The result is a set of records describing the entire time covered by

the trace, explicitly including the idle periods and any time during which the memory is recovering from a power-

management action. A very loose analogy with the timing diagrams used in electrical engineering motivates the

terminology. The primary advantage of the diagram format is that it makes it easy to calculate the fraction of time that

the memory is in each state. The mdiagram program reads the output from minterarrivaltime and creates the

diagram for a DIMM group.

As Mambo does not simulate the details of the memory, there is no information in the input trace about the time

that each memory operation takes. Instead, the MEMPOWER user must estimate the read and write service times

in processor clocks and pass them as parameters to the mdiagram program using the DIMM specification file. As

discussed in Chapter 4, this estimate of memory service times is one of the major potential sources of inaccuracy in

a MEMPOWER evaluation. The mdiagram program handles memory references of the same type that occur during

the service of a prior memory reference by extending the length of the current (active) state of the memory. Memory

references of the opposite type cause a state transition immediately after the current reference or string of references

of the same type finishes.
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Since the goal of MEMPOWER is to allow one to compare different memory-power-management policies, one must

allow for different power-management policies with various delay and threshold combinations. MEMPOWER sup-

ports three policy types – power-down, self-refresh and a combination policy of power-down followed by self-refresh

after an additional period of idleness. To incorporate the effects of power-management policies, mdiagram has fea-

tures that allow one to apply a particular power-management policy to a trace and get a diagram that is specific to

it. The mdiagram program accepts command-line parameters giving the delay values and idleness thresholds for

power-down and self-refresh. Using the default values of 0 for all of these parameters gives the base, unmanaged

diagram described above. Giving a non-zero value for the power-down delay and a 0 value for the self-refresh delay

yields a power-down policy. Similarly, giving a non-zero value for the self-refresh delay and a 0 value for the power-

down delay gives a self-refresh policy while using non-zero values in both delays causes MEMPOWER to apply the

combination policy. MEMPOWER uses inelastic or non-absorbing delays to account for the resynchronization of

memory following a power-management action. This means that all subsequent operations in the trace are delayed by

the accumulated delay injected by power management to the point in the trace where they occur. In other words, if

the operation occurs at time t in the original trace and there is an accumulated delay d t due to power management at

time t, the operation actually occurs at time t + dt. If at the beginning of an interval, the accumulated delay is d and

power management during the interval adds e more cycles of delay, the injected delay for the interval is e, and the

accumulated delay at the end of the interval is d + e.

The resulting diagram is a set of records that give an initial time, a duration and an operating state for each different

state that the memory enters during the trace. The durations from the diagram records sum to the temporal length of

the trace. The operating states are

• idle stand-by

• read

• write

• power-down

• self-refresh

• recovering before a read operation

• recovering before a write operation.

If there are no references to a DIMM group in the original trace andmdiagram is not applying any power-management

policy, it generates a diagram with a single record that covers the entire temporal length of the trace in an idle state.

It uses an input parameter to provide the required length in processor clocks. If mdiagram is applying a power-

management policy, it uses the threshold value or values specified to generate one or two subsequent records covering

the low-power state or states of the memory from the threshold point or points through the temporal length of the trace.

Figure 3.4 is a graphical depiction of a small segment of a diagram file.

In addition to the standard policies, MEMPOWER also has an experimental hybrid power-management policy. This

policy is a combination power-down, followed by self-refresh policy that uses the PID of the current process to select

the threshold for going to self-refresh mode. The underlying idea is that different processes have different levels of

memory activity for different DIMM groups. Processes that actively use a particular DIMM group may save energy

by having a higher idleness threshold before transitioning from power-down to self-refresh due to the relatively long
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time in processor clocks

Figure 3.4: A conceptual representation of a small segment of a diagram file

latencies associated with recovering from self-refresh mode.

Since each run of mdiagram produces a diagram file that describes the memory states for the DIMM group for a

particular combination of power-management policy and parameter values, one must run mdiagram and the programs

following it in the MEMPOWER chain repeatedly, once for each distinct policy that one wishes to consider.

3.7 Utilization Calculation

Using a diagram as input, the next step in the MEMPOWER calculation, implemented by the mutilization

program, computes the fraction of time spent in each state. This calculation may produce a single value for the whole

diagram or a set of values for equal-length time intervals. Typical interval lengths are on the order of 100 milliseconds

although there is no real restriction on the size or number of intervals.

MEMPOWER reads a diagram file and creates a binary file that contains the utilization and power data for the DIMM

group. There is one record in this file for each interval. Depending on how the user runs MEMPOWER, the file may

contain one record representing the utilization for the DIMM group over the entire duration of the trace, or it may

contain multiple records, one for each interval of the trace. The output file is called an interval-data file and is the

input to the power calculation step of MEMPOWER. In each interval, MEMPOWER counts

• the length of the interval in clock cycles

• the number of memory read operations
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Description Symbol

Number of cycles in the interval ntotal

Count of read operations cread

Number of read cycles nread

Count of write operations cwrite

Number of write cycles nwrite

Number of cycles in power-down npd

Number of cycles in self-refresh nsf

Table 3.1: Operation and cycle count notation

• the number of clock cycles that the memory spends reading

• the number of memory write operations

• the number of clock cycles that the memory spends writing

• the total number of clock cycles that the memory is active

• the number of clock cycles that the memory is in idle stand-by

• the number of clock cycles that the memory is in power-down

• the number of clock cycles that the memory is in self-refresh

• the total number of clock cycles of injected delay due to the re-synchronization needed after the application of

a power-management policy

• the average injected delay per memory operation.

MEMPOWER calibrates all of the values except the counts of read and write operations in processor clocks, and one

can translate these values into ordinary time values using the known frequency of the simulated processor. At this

point, MEMPOWER treats all elements of a DIMM group as being in the same operating state at the same time.

Table 3.1 summarizes the notation used for some of these values in Section 3.8.

3.8 Power, Energy and Delay Calculations

MEMPOWER calculates the memory power and energy for the whole DIMM-group trace or for each interval using

the counts and times computed in the previous step. These calculations use the equations and assumptions given in

this section as well as the voltages and currents given in the manufacturers’ datasheets and encoded in the specification

files. MEMPOWER supports optional scaling of the vendor’s current values based on experience.

The power calculation consists of two separate calculations, one for the power of a single SDRAM part under the

presented load and one for per-DIMM overhead of the memory packaging. MEMPOWER combines the results of

these computations together to produce a final power number for an interval. The power values calculated depend on

• the organization of the memory

• the memory access pattern
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• the use or non-use of various power-saving modes available from the memory components

• current and voltage values for the parts used

• the number of memory components involved.

The power metric calculated by MEMPOWER is the average power dissipation over an interval of time of the memory

parts. For short intervals of time, which are not necessarily always used in MEMPOWER calculations, the average

power becomes approximately equal to the instantaneous power dissipation at any time in the interval. This, of

course, begs the question of the actual power dissipation as a continuous function of time, but due to the nature of the

workloads of interest, which exhibit fairly constant load at a micro time-scale and the limitations on the response of

physical devices, it is quite likely that the variance in the power dissipation is small over short intervals of time, and

the curve is relatively flat. Even so, although it is beyond the scope of the current work, this question does bear further

investigation.

Once it calculates the average power over an interval, MEMPOWER then computes the energy used over the interval by

multiplying the average power by the length of the interval in standard time units such as milliseconds. The total energy

consumption over the whole trace is best calculated by calculating the power and energy over relatively short intervals

and adding. In effect, MEMPOWER does an approximate integration to get the energy, and its accuracy is dependent

on having intervals that are short enough that the power in each interval accurately represents an instantaneous value.

Also the power calculation passes through the values for the total delay and the average delay per operation injected in

each interval by whatever power-management policy, if any, is being applied that were computed during the utilization

step. These delay values allow one to quantify the performance impact of power management on the memory.

The following subsections describe in more detail the theory behind the power calculation and the operation of the

mpower program that implements it.

3.8.1 DDR SDRAM Parts

Most of the parts on a DIMM are DDR SDRAM chips, and the basis for modeling the power that they consume is

a power modeling methodology for individual SDRAM parts described by Micron in an application note on DDR

SDRAM power calculations [1]. MEMPOWER does not attempt to deal with the additional currents and states of

DDR-2 memory, and it also has no logic for calculating the power of a RAMBUS [7] memory. However, the extensions

to cover these cases should be relatively simple.

To get the average power consumption of an SDRAM part over an interval, the state of the SDRAM is first categorized

into distinct phases. Each phase corresponds to a certain type of activity for which the data sheet for the part contains

the average measured current. The power, P , consumed during that phase can then be computed as the product of the

data sheet (or measured) current, I , for that phase and the corresponding voltage, V , driving the current. Equation 3.1

summarizes this calculation.

P = I × V (3.1)

During each interval considered and for every memory access pattern of interest, one derives the fraction of time the

SDRAM is in each phase. Knowing the fractions, the average power consumption is then the weighted sum of the

power consumption for each phase. For example, if the memory access pattern over the interval has just two phases
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Description Symbol

read Idd4R

write Idd4W

active stand-by Idd3N

pre-charge stand-by Idd2F

active power-down Idd3P

per-charge power-down Idd2P

activation Idd0

auto-refresh Idd5A

self-refresh Idd6

Table 3.2: The operating states of an SDRAM part and the currents associated with them. This table includes the

currents for activation, auto-refresh and self-refresh that are used in the equations in this chapter.

with corresponding usage fractions of f1 and f2, currents I1 and I2, and voltages V1 and V2, then the average power

consumption is given by Equation 3.2.

P = f1 ∗ I1 ∗ V1 + f2 ∗ I2 ∗ V2 (3.2)

Normally, and in all cases considered here, the voltages are identical in all operating states and are taken to be equal

to the nominal maximum voltage, Vdd and later adjusted to the operational supply voltage of the chip. The use of the

nomimal maximum voltage is essential since the currents specified by the vendors are measured at that voltage.

In MEMPOWER’s modeling of the part, a DDR SDRAM has many possible states distinguished by the responsiveness

of the device when inactive and the nature of activity when active. The models presented here identify seven different

phases in the operation of the SDRAM part:

• read

• write

• active stand-by

• pre-charge stand-by

• active power-down

• pre-charge power-down

• self-refresh.

Table 3.2 gives the symbols used to refer to the currents associated with these states.

Not all of these phases are not necessarily used. Rather their usage depends on the access pattern and the power-

management policies applied to the SDRAM. Each phase has a distinct current value associated with it, and Table 3.2

gives the labels that the datasheets with them.

During normal operation the device receives a clock (CLK) input and a clock enable (CKE) input that indicates a

valid CLK signal. A fast-response, inactive, low-power mode for the device is power-down which the SDRAM enters
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when the CKE input is false. Power-down typically lowers the power consumption of an idle device by 80% or more

and requires a delay of 1 memory cycle or 2 data-transfer cycles for re-activation. For stable exit from power-down

the hardware must maintain the signal frequency at the CLK input as during normal operation. Further, it must issue

periodic refresh commands to maintain the data content in memory.

It is possible to save additional power by entering the self-refresh mode. In this mode, both the CLK input and

periodic refresh commands are unnecessary. Instead, the device uses an internal refresh mechanism that maintains the

integrity of the data stored in the device. The additional power savings are obtained by placing the clock-generation

circuitry in its power-down mode and by dispensing with the external refresh generation process. However, the power

consumption of the SDRAM device itself is very close to that at power-down. Moreover, the delay to come out of

self-refresh is significant, needing about 200 memory cycles or 400 DDR transfer-slots for re-synchronization with

the external CLK, upon re-activation. As a consequence of this delay, there is a trade-off between the added power

benefits and the performance penalty of using self-refresh. One of the objectives of MEMPOWER is to make it possible

to study these trade-offs as well to investigate combination policies that enter power-down after an initial period of

inactivity and then go to self-refresh after an additional period of idleness.

When not in self-refresh and independently of the CKE signal, that is, whether the device is in power-down or not, the

device can be in one of two states – pre-charge or active. SDRAM devices store data in cells that are organized by

rows and columns. Data are read and written to the memory cells in the device through intermediate buffers (or sense

amplifiers) that accommodate the data for an entire row of SDRAM cells: data are read or written to SDRAM cells

at a row-granularity through the buffers. When the data corresponding to a row of cells are ready in the buffer to be

read or modified, the device is said to be in the active state. Otherwise, it is said to be in the pre-charge state. These

states have different implications for the device’s responsiveness and power consumption. These two states combined

with the CKE status yield four of the six distinct phases of operation identified previously – active standby, pre-charge

standby, active power-down and pre-charge power-down.

Prior to the voltage adjustment, the power consumption for each phase is just the corresponding current multiplied by

the chip supply voltage, Vdd. MEMPOWER’s power calculations always use only the pre-charge modes, pre-charge

standby and pre-charge power-down, for the inactive phases and the active standby mode for the active phases. That is,

power-down is triggered only when all the banks on a device are pre-charged. This is a natural fit for closed-page-mode

operations where an active bank is automatically pre-charged once the current access to it ends. For open-page-mode

operations, where the accessed row is left in the row buffer in active state, the active power-down phase is entered

upon power-down. If the currents corresponding to the two power-down phases Idd2P and Idd3P are quite different,

then power estimates using only pre-charge power-down phases have some error for systems using open-page mode.

For closed-page mode, both of the non-idle phases, read and write, have a common power component, that of bringing

the SDRAM into the active mode. This involves reading the addressed row of SDRAM cells into the row buffer so

that the SDRAM can read or modify data. Once the activity is over, the SDRAM goes to one of the pre-charge modes.

The non-idle phases break down into three kinds of activity – one for the activation/de-activation pair, one for read,

and one for write. For the entire period that the device is active, during activation/de-activation, read or write, it is

consuming power corresponding to the active standby phase in addition to the power estimated below for activation

and read or write activity. As shown in Table 3.2, the data sheet current corresponding to the activation/de-activation
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pair is Idd0. It is the average current drawn when doing the activation/de-activation sequence at a period of t RC

nanoseconds. The value of tRC comes from the manufacturer’s datasheet for the DDR SDRAM part. A higher (lower)

rate yields a correspondingly higher (lower) current. Further, this average current measurement for the data sheet

is performed with the SDRAM in the active standby state, drawing an average current of Idd3N . Taking both into

account, if the observed average device activation period for a specific memory access pattern is t RC(observed), the

power component corresponding to the activation/de-activation pair is given by Equation eqn:activation-power.

Pactivation = (Idd0 − Idd3N) ∗ Vdd ∗ tRC/tRC(observed) (3.3)

The values for tRC and tRC(observed) are calibrated in nanoseconds.

Prior to calculating tRC/tRC(observed) or any of the fractions used in the final power calculation, MEMPOWER

adjusts the operation counts and cycle values for any multi-banking or ranking of the SDRAM chips. It divides c read,

cwrite, nread and nwrite by a rank count given in the DIMM specification file.

MEMPOWER calculates the value of tRC(observed) by calculating the number of active periods based on the number

of individual read, cread, and write operations, cwrite, intiated in each interval. The sum of the number of reads and

writes yields the total number of active periods in the interval. MEMPOWER computes the length of the interval

in nanoseconds and divides by the number of active periods to get the value of t RC(observed). This is shown in

Equation 3.4 where tl is the length of the interval in nanoseconds and is given by t l = (ntotal/f) × 109 if f is the

processor clock frequency.

tRC(observed) =
tl

cread + cwrite
(3.4)

This calculation, of course, results in an averaged value for tRC(observed) that assumes that the activations are

uniformly distributed over the interval, and, thus, it is a potential source of error although the error is likely to be small

if the intervals are sufficiently short. MEMPOWER interprets the tRC/tRC(observed) ratio as the fraction of the

interval that the memory is active. In addition, there are two potential hazards in this calculation that MEMPOWER

must handle. First, if the DIMM group is totally idle during the interval or if the only activity is an operation that

started in the previous interval, the operation counts sum to 0, and the division needed to get t RC(observed) is illegal.

MEMPOWER rectifies this problem by arbitrarily setting the number of active periods to 1 in this case. Second, it

is possible that the activation count is high that tRC/tRC(observed) is greater than 1. The source of this problem

is the inherent guesswork about memory service times that MEMPOWER uses and the mismatch between the values

supplied to MEMPOWER and the behavior of Mambo as it issues and times memory operations. This problem is

especially acute since Mambo does not currently model the temporal behavior of memory. To solve this problem,

MEMPOWER clamps tRC(observed) to 1. That is, if it is greater than 1, it is set arbitrarily to 1.

Power consumption for a write phase is computed as indicated in Equation 3.5

Pwrite = (Idd4W − Idd3N) ∗ Vdd (3.5)

with Idd3N subtracted to account for the active standby power component, which is added separately for any active

period. For writes, the power to drive the pins is drawn from the system power supplies and not the DRAM supplies.

For a read phase there are two components – the in-device component of

(Idd4R − Idd3N) ∗ Vdd
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and an I/O component to drive the data and strobe pins of the device. Interestingly enough, the current per I/O pin,

IOL, does not appear to change much from generation to generation and part to part. The I/O pins also have a unique

voltage so that their power, PperDQ, is given by

PperDQ = (V tt − V tt adj) ∗ IOL

where V tt − V tt adj is the adjusted termination voltage for each pin. This is multiplied by the number of data pins,

nDQ, plus the number of data strobe pins, nDQS, for the device to get the total device I/O power consumption by

the pins during reads. Thus, the power for a read is given by Equation 3.6.

Pread = (Idd4R − Idd3N) ∗ Vdd + PperDQ ∗ (nDQ + nDQS) (3.6)

Every row in an SDRAM device needs to be refreshed once every 64 millisecond at nominal temperatures. When

the part is not in self-refresh mode, this implies that the controller must issue an auto-refresh command once every

64 milliseconds divided by the number of rows in the device on average. The power model presented here does not

account for the interference of auto-refresh with regular device operation because of the more complex modeling need

and the very small perturbation it produces due to its low frequency of occurence. This decision is a source of error

in MEMPOWER’s results. However, neglecting the interference probably has a very minor effect compared to that

caused by the need to estimate the service times of memory reads and writes. MEMPOWER also simplifies the current

expression by considering only Idd2P rather than Idd2P and Idd2F . This too is a source of error. Equation 3.7 gives

the auto-refresh power.

Pauto−refresh = (Idd5A − Idd2P ) ∗ V dd (3.7)

The power calculations described so far use a Vdd value for the device supply voltage. Data sheet current specifications

are at the worst-case device operation, that is, at the highest operational temperature and voltage. Devices are actually

operated at their nominal voltages. To adjust for nominal voltage operation requires using the fact that CMOS circuit

power consumption is proportional to the square of the voltage at a constant frequency of operation. So, with I phase

as the current corresponding to a phase, Vdd the peak voltage for the part at which datasheet measurements are done,

and Vdd op the nominal voltage at which the part is used, the power consumed during the phase is calculated by 3.8.

Pphase = Iphase ∗ Vdd ∗ (Vdd op/Vdd)2 (3.8)

Using the operation and cycle counts generated by mutilization, MEMPOWER calculates, for each interval, the

fraction of the interval that the memory is in each of the above phases. Table 3.3 defines the notation used below to

describe the computation of the required fractions.

Since the I/O pins are active during the read phase and not at any other time, f io = fread. MEMPOWER uses Equa-

tions 3.9 through 3.17 to calculate the fractions needed to compute the average power over the interval. Equation 3.9

is subject to clamping as discussed above.

factivation = tRC/tRC(observed) (3.9)
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Variable Meaning

factivation Activation current

fwrite Write

fread Read

fio I/O pins active

fact standby Active stand-by

fact pd Active power-down

fpre standby Pre-charge stand-by

fpre pd Pre-charge power-down

fsf Self-refresh

ntotal Total number of processor clocks in the interval

nwrite Write clocks

nread Read clocks

npd Pre-charge power-down clocks

nsf Self-refresh clocks

Table 3.3: Notation used to describe the phase fractions for an interval

fwrite = nwrite/ntotal (3.10)

fread = nread/ntotal (3.11)

fact standby = (nread + nwrite)/ntotal (3.12)

fpre pd = npd/ntotal (3.13)

fact pd = 0 (3.14)

fsf = nsf/ntotal (3.15)

fpre standby = 1 − (nread + nwrite + npd + nsf )/ntotal (3.16)

fautorefresh = fpre standby + fpre pd (3.17)
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Using all of the previous notation, Equation 3.18 gives the average power over an interval at the nominal voltage.

Pnominal = (Idd2P ∗ fpre pd

+ Idd3P ∗ fact pd

+ Idd2F ∗ fpre standby

+ Idd3N ∗ fact standby

+ (Idd0 − Idd3N) ∗ factivation

+ (Idd4W − Idd3N) ∗ fwrite

+ (Idd4R − Idd3N) ∗ fread

+ (Idd5A − Idd2P ) ∗ fautorefresh

+ Idd6 ∗ fsf ) ∗ V dd

+ (V tt − V tt adj) ∗ IOL ∗ (nDQ + nDQS) ∗ fio

(3.18)

Equation 3.1 applies the voltage adjustment.

PSDRAM = (Idd2P ∗ fpre pd

+ Idd3P ∗ fact pd

+ Idd2F ∗ fpre standby

+ Idd3N ∗ fact standby

+ (Idd0 − Idd3N) ∗ factivation

+ (Idd4W − Idd3N) ∗ fwrite

+ (Idd4R − Idd3N) ∗ fread

+ (Idd5A − Idd2P ) ∗ fautorefresh

+ Idd6 ∗ fsf )

∗ V dd ∗ (V dd op/V dd)2

+ (V tt − V tt adj) ∗ IOL ∗ (nDQ + nDQS) ∗ fio

(3.19)

3.8.2 Support-Chip Power Models

The DDR DIMMs use additional support chips besides the SDRAM chips: registers for buffered access, the PLL chip

for clock-generation, and an SPMD EEPROM for the serial-presence detect. This section describes the models used to

calculate the power consumed by the registers and the PLL. The SPMD EEPROM dissipates very little power during

normal operation and is not included in the MEMPOWER calculations.

Register Power Model

Each registered, ECC, 72-bit-wide, DDR SDRAM DIMM has register components on it that are are used for buffering.

Depending on the design of the DIMM, there may be two or three register parts on the DIMM. Texas Instruments [8]
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provides a methodology for calculating the power dissipated by a DDR-DIMM register part. Equation 3.20 gives the

total current drawn by a single register part. Power, Pregister is then the product of the current value, ICC , and the

voltage, Vdd.

ICC = ICCStatic + ICCClock × freq(clock) + ICCData × freq(clock) × # of data inputs (3.20)

The data sheets for the register part give the current values for ICCStatic, ICCClock and ICCData, which are

used without modification. The value for freq(clock) is the base, not the double-rate, DDR clock. So for DDR333

SDRAM memory, the clock value is 167 MHz, for example. The number of register data inputs used is a maximum of

13 for register parts used with stacked DIMMs and 14 for register parts used with unstacked DIMMs. Stacked DIMMs

typically use 3 register parts per DIMM, and unstacked DIMMs use 2 although this is a parameter that one specifies

in the DIMM specification file. Although unrealistic, the power calculations presented here assume that all of the data

inputs switch on every cycle to give an upper bound on the power dissipated.

When the DIMM goes to power-down, there is no effect on the register power. When it goes to self-refresh, MEM-

POWER takes the register power as 0.

PLL Power

Each DDR DIMM has a PLL part that is used to generate the clocking that the SDRAM chips require. For the PLL

part, there is less in the way of explicitly defined power calculation methodology. The PLL data sheets give two current

values, IDDPLL and AIDDPLL. Based on this information and the supply voltage, V dd, the PLL power is taken

to be PPLL = IDDPLL × Vdd + AIDDPLL × Vdd.

The PLL power is unaffected by a transition to power-down. However, when the DIMM goes to self-refresh, the PLL

power is taken to be 0. Since there is still some residual support-chip power consumed in self-refresh mode, the power

calculation uses a value, Psf , specified in a specification file for the DIMM overhead power while self-refresh mode.

3.8.3 Summarization Calculations

Once MEMPOWER has computed the average power for the SDRAMs on a DIMM and the DIMM-level, support-

chip power overhead, it calculates the total power for the DIMM and the DIMM group in the current interval using

the following formulas where nSDRAM is the number of SDRAMs on each DIMM and nDIMM is the number of

DIMMs in a DIMM group.

Poverhead = Psf ∗ fsf + (nregisters ∗ Pregister + PPLL) ∗ (1 − fsf ) (3.21)

PDIMM = (PSDRAM × nSDRAM) + Poverhead (3.22)

PDG = PDIMM ∗ nDIMM (3.23)

Based on the length of the interval in ordinary time units, the energy calculation is a straightforward multiplication of

the power calculated for the interval times its length in ordinary time. The injected delay passes through unchanged

from the utilization step.
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Description Producer Primary Consumer(s)

Original trace Mambo msplitbypid, mreformat

Reformatted trace mreformat mspatial, minterarrivaltime

Trace with interarrival times minterarrivaltime mdiagram, mcountinterarrivaltimes

Diagram mdiagram mutilization

Interval-data mutilization, mpower mpower, mprintintervaldata

Interarrival-time counts mcountinterarrivaltimes mcdf

Table 3.4: MEMPOWER’s files

3.8.4 Implementation

The mpower program implements the power, energy and delay calculations described above. It is a filter that reads

an interval-data file produced by mutilization and writes an updated interval-data file containing power, energy

and delay values in each interval record. The next section describes this file in more detail.

3.9 Outputs

MEMPOWER produces a variety of output information, with each stage capable of producing its own output file or

set of them. Table 3.4 lists the files that MEMPOWER uses. However, for reasons of disk space and computational

efficiency, most of these files are never actually written, and MEMPOWER runs many of the steps using a shell script

that pipelines from one step to another.

There are two sets of files that are usually written to disk, one file of each type for each DIMM group. The first type

of file summarizes information about the interarrival times of memory requests to the DIMM group, and the data are

in terms of the probability mass function and cumulative distribution function of the interarrival-time random variable

for the DIMM group. One uses these results to determine where to set power-management thresholds, for example,

and to determine how uniformly the trace references memory across the DIMM groups.

The second, and more important, type of output file, the interval-data file introduced previously, is the one containing

the utilization, power, energy and injected-delay data for the time intervals into which MEMPOWER divides the

trace. MEMPOWER calibrates the power in milliwatts and the energy in millijoules. In addition, this file contains

information about the number of cycles of delay injected into the trace by any power-management policies applied

during the interval.

Each DIMM group results in a separate interval-data file that gives the utilization, injected delay, average power and

total energy for the DIMM group in each interval of the trace. The post-processing programs and scripts combine the

information from the interval-data files for all of the DIMM groups, for example, to give the total energy consumed

by the memory during the trace.
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3.10 Post-processing

Finally, there is a set of post-processing scripts and programs that MEMPOWER uses to produce human-readable

output including tables and graphs.

The mcdf program processes the memory-reference interarrival-time counts produced by mcountinterarrival-

times and computes the probability density and cumulative distribution functions of the interarrival-time-counts

random variable.

The mprintintervaldata program reads the binary form of the interval-data file written by mpower and pro-

duces an ASCII rendering of it. The remaining post-processing programs use the ASCII file, selecting portions of it,

totalling the results or graphing the output. In particular, the whole-memory results are the result of post-processing

programs that total across the intervals in an interval-data file and then add those results across all of the DIMM groups.

27



Chapter 4

Validation and Performance

Given the size of the traces and the number of processing steps, MEMPOWER’s accuracy and execution performance

are critically important. If MEMPOWER’s calculations are too inaccurate, its results mislead its users. If it takes

excessively long to run for reasonably sized traces, it has little or no value over a full simulation of the memory.

4.1 Validation

MEMPOWER’s implementation raises important issues of accuracy and validation. Although relatively simple, MEM-

POWER processes very large files, limiting the value of manual verification on small input streams. Moreover, the

only true validation of MEMPOWER is to take power measurements on system memory while collecting a trace that

MEMPOWER then processes. By comparing the results, one can determine how accurate MEMPOWER is. Since

this is not generally feasible, there are two precautions taken in the implementation of MEMPOWER to attempt to

ensure a reasonable level of accuracy. First, there are number of checks inserted in the code that verify the rationality

of intermediate results. For example, mpower adds the utilization fractions in each interval to ensure that they sum

to 1 before calculating the power and energy. Second, since MEMPOWER is a set of discrete processing steps, each

producing an intermediate set of data structures, there are a number of separate programs that verify that there are no

inconsistencies and serve as debugging aids. The most important of these include the following.

• mprintreformatted: renders a reformatted or clocked trace in ASCII for visual inspection.

• mprintinterarrival: prints the output file from minterarrivaltime for visual inspection.

• mcheckdiagram: verifies a diagram file. This program checks a diagram file to ensure that the intervals cover

the temporal length of the trace, that there are no overlaps and that there are no illegal state transitions.

• mprintdiagram: prints a diagram file for visual inspection.

• mcheckutilization: checks an interval-data file produced by mutilization to ensure that the times

assigned to the various states in each interval sum to the length of the interval.
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Description Source File Lines of Code

Calculates the cumulative distribution of memory reference interarrival times mcdf.c 271

Validates the diagram files produced by mdiagram mcheckdiagram.c 235

Collects about the input trace mcounter.c 23

Counts the interarrival-time values mcountinterarrivaltimes.c 250

Creates an empty diagram file for totally idle DIMM groups mcreatediagram.c 127

Produces a diagram file for a DIMM group mdiagram.c 707

Removes all of the memory references associated with a set of PIDs from a trace mfilteroutpid.c 200

Adds interarrival-time information to a reformatted trace minterarrivaltime.c 200

Performs the power, energy and delay calculations mpower.c 519

Header file for common structures and includes mpower.h 198

Prints a trace file mprint.c 82

Prints the maximum clock value found in a trace mprintclock.c 68

Renders a diagram file into ASCII mprintdiagram.c 123

Renders a reformatted trace with interarrival times added in ASCII mprintinterarrival.c 72

Prints an interval-data file for post-processing mprintintervaldata.c 243

Prints a reformatted trace mprintreformatted.c 112

Reformats a Mambo-generated trace mreformat.c 216

Determines maximum interarrival time for memory references mscaninterarrivaltimes.c 109

Breaks a trace into smaller sub-traces msegment.c 194

Splits a trace into sub-traces, one per DIMM group mspatial.c 549

Parses specification files and generates binary versions of them mspecs.c 539

Splits a trace by PID, generating one sub-trace for each PID found msplitbypid.c 187

Optionally splits a diagram file into multiple intervals and calculates the memory utilizations in each interval mutilization.c 549

An initial trace printing program realmemory bin.c 71

Header file for common structures and includes realmemory bin.h 112

Another initial trace printing program realmemory bin parse.c 86

total 6266

Table 4.1: MEMPOWER lines-of-code sizes for the programs written in C

4.2 Implementation Considerations

All of the MEMPOWER programs except for some post-processing scripts are in C with, in most cases, bash shell

wrappers to ensure consistency of execution. The following Table 4.1 lists the individual programs and their sizes in

lines of code. It includes only those programs currently used by MEMPOWER in processing Mambo-generated traces

and does not include the bash wrappers.

Most of the programs are filters that use standard C library functions for I/O. However, msplitbypid reads a single

input and writes mulitple output files, one per PID discovered in the trace. The mspatial program not only writes

multiple output files but also optionally compresses them using functions from libbzip.

Most of the post-processing code except mprintintervaldata and mcdf consists of either Perl or R scripts.

The Perl scripts are used for table preparation and reformatting while the R scripts graph the results for presentation.

Currently, the post-processing done with MEMPOWER does not make use of the statistical capabilities of R [9].

4.3 MEMPOWER’s Performance

The goal of MEMPOWER is to run relatively quickly when processing a trace of significant size. Although there has

never been a formal evaluation of MEMPOWER’s performance, anecdotal evidence suggests that it meets this goal,

and most of the performance problems encountered in running MEMPOWER are associated with the amount of disk

space consumed by the input traces and the data that MEMPOWER generates.

Table 4.2 summarizes the characteristics of the Mambo-generated trace discussed in Chapter 5. When processing
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Trace size in bytes as compressed by bzip2 528790191

Trace size in bytes 6043055280

Number of trace records 302152764

Length of the trace in 2 GHz processor clocks 1205007557625

Length of the trace in seconds 561.125370

Number of memory references 301344968

Number of memory reads 277681544

Number of memory writes 23663424

Table 4.2: Trace statistics for the test trace

this trace to produce the results in Chapter 5, MEMPOWER ran on an IBM IntelliStation Z Pro machine with two

(2) processors, executing as four (4) by means of hyperthreading, 2 GB of main memory, and two (2) local, 36 GB,

15000 RPM, SCSI disks. The machine uses the Fedora Core 1 distribution of Linux, and all data is accessed from the

local disks. To reduce the consumption of disk space, MEMPOWER stored all of its data files in compressed form and

used a pipeline to run the mdiagram, mcheckdiagram, mutilization and mpower sequence of programs.

Total processing time, prior to post-processing, was less than 48 hours with some idle stretches overnight.

In considering the reasons why MEMPOWER takes as much time as it does, it is apparent that one of the most vexing

problems with MEMPOWER is that every power-management policy considered requires that one run a sequence of

programs – mdiagram, mutilization andmpower, usually in a pipeline – for every DIMM group and potentially

for every PID and every DIMM group. This means that the DIMM group interarrival-time file is read repeatedly. It also

leads to a combinatorial explosion in the number of runs needed when one is exploring the space of power-management

options.
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Chapter 5

A Sample MEMPOWER Analysis

This chapter presents a MEMPOWER analysis of two Mambo-generated [3] traces of the TPC-W benchmark. The

power results shown here are illustrative of what MEMPOWER can produce and include whole memory, per-DIMM-

group and per-DIMM-group and per-process power and energy values under a number of different power-management

policies. The goal of this particular study is to determine the best power-management policy or combination of policies

for the memory controllers in a system with power-aware virtual memory(PAVM) [6] running a transaction-processing

workload [10]. The results presented here form a subset of a larger study reported in the work of Huang, et al, [2].

That paper also provides more details on the power management policies mentioned here and their motivation.

5.1 Benchmark

The benchmark used in generating the trace is based on the TPC-W e-commerce specification. The traces are from

runs using

• Linux 2.4.19

• Apache

• PHP

• MySql

• an implementation of the TPC-W logic originally done at Rice University [10].

The Linux 2.4.19 is a PowerPC version with an implementation of PAVM ported from the x86 environment. For

comparison purposes, the study also references a separately generated trace that uses a standard Linux 2.4.19 kernel

without the PAVM enhancement. The trace is for 20 TPC-W clients and is nominally 600 seconds in length. The

assumed processor speed is 2 GHz with 1 GB of memory, and the machine simulated is a uniprocessor system.

MEMPOWER divides the memory into 32 DIMM groups with an interleaving factor of one (1), so that it effectively

ignores interleaving in this case. MEMPOWER treats each DIMM group as having a single DIMM.
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5.2 Memory Layout and Parameters

As mentioned previously, MEMPOWER gets the information about currents and voltages from the specification files

that it processes. However, that data, in turn, comes from the data sheets provided by the parts vendors. In particular,

MEMPOWER requires voltage and current data that the memory vendors provide in their datasheet documents. The

results presented here use datasheet values for the Micron 64 megabit DDR SDRAM parts using the DDR333 speed.

These are packaged on ECC registered DIMMs, with five (5) DRAMs, two (2) registers and one (1) PLL on each

DIMM. For a variety of business reasons, the currents quoted in the vendor’s data sheets are often significantly higher

than those observed in practice. To model this feature, MEMPOWER has the ability to scale the data sheet currents:

the scaling factor is a parameter that the user must set based on experience. In processing these results, it is set to 0.8.

5.3 Trace and Power-Management Characteristics

The trace used here is, unfortunately, not as memory-intensive as one might like, so that relatively simple power-

management policies do quite well in terms of reducing the overall memory power. Table 4.2 summarizes some of its

characteristics. This study considers four general policies for power management beyond PAVM – none, power-down

after an idleness threshold, self-refresh after an idleness threshold and a combination policy under which the memory

goes to power-down as soon as it goes idle and then goes to self-refresh after a threshold. Much of the effort in the

evaluation is directed toward determining how to set the threshold values.

5.4 Interarrival Times

One important question for memory power-management policies is whether the system uses the memory uniformly

across the entire range of physical addresses. For the TPC-W trace, it does not. The results from the MEMPOWER

interarrival-time processing shown in Figure 5.1 demonstrate this. Figure 5.1 graphs the cumulative distribution func-

tions for DIMM groups (labelled here as “memory modules”) 0, 2 and 24.

5.5 Whole Memory Results

One of the most important comparisons is the amount of energy expended by the entire memory in the course of the

whole run. Figure 5.2 compares the total energy over the course of the run for entire memory using different policies.

The cooperative policy shown here uses power-down, followed by self-refresh with different thresholds for entry to

self-refresh for different processes in the trace. These results are illustrative of the ability of MEMPOWER to analyze

traces rather than a final evaluation of any architectural ideas about how to manage memory power.
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Figure 5.1: The cumulative distributions of the memory-reference interarrival times for DIMM groups 0, 2 and 24

5.6 Results for Individual DIMM Groups

Figure 5.3 shows the normalized energy consumed under different power-management policies while Figure 5.4

presents the injected delay normalized to the temporal length of the original trace.

5.7 Per-Process Power Consumption

To illustrate the results that MEMPOWER can produce for individual processes, Figure 5.5 shows the difference in

normalized energy consumption for DIMM group 0 by two processes using a combined power-down and self-refresh

power management policy with different self-refresh thresholds.
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Figure 5.3: DIMM group 0 normalized energy under different power-management policies
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Figure 5.5: DIMM group 0 normalized energy for two different processes with different self-refresh thresholds and a

combination power-management policy
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Chapter 6

Future Work

The schedule for MEMSIM determines how much future investment should be directed to MEMPOWER. If MEM-

SIM is going to be ready in the near future, there is little reason to continue developing MEMPOWER. However, if

there will be a substantial delay before MEMSIM is generally usable, there is good reason to continue investing in

MEMPOWER.

Currently, MEMPOWER has two major implementation deficiencies. First, it is difficult for anyone but the author to

use since it requires using parameters and scripts to run a relatively large number of programs that must all execute in

the proper sequence. This problem is best solved by adding a Java-based graphical user-interface that allows the user

to enter the necessary parameters and then runs the programs in the correct order. This interface can also integrate the

data-reduction and visualization phases that one must currently do largely by hand. Second, there is a performance

problem due to the combinatorial explosion in the number of runs required to explore a set of power-management

policies. Exploring the threshold space in parallel in mdiagram may help solve this problem. However, the logic to

do the parallel exploration is reasonably complex.

There are a number of other extensions possible beyond correcting these two deficiencies in the implementation. The

current version of MEMPOWER takes traces generated by Mambo simulations of uniprocessor systems, and there is

no processor identification information in the trace. An SMP simulation can produce a trace that tags each memory

reference with the processor issuing it as well as tagging all of the PID-related records with a processor identifier

as well. MEMPOWER can use that information to determine the memory power associated with either a particular

processor or a particular process running in an SMP environment where processes may move from one processor to

another.

The next generation of memory technology is beginning to appear in system designs. DDR-2 SDRAMs have a slightly

different set of operating states and associated currents than DDR. Properly calculating memory power for DDR-2

requires a slight modification of the mpower program. RAMBUS memory also has a different set of operating states

and currents as well as a more complex set of power management modes: supporting RAMBUS requires noticeably

more effort than just adding DDR-2.

MEMPOWER needs more extensive use on memory traces of a variety of workloads. One can experiment with
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different service times and delays in the memory system, different current values for different parts and different

traces of other workloads.

Finally, there is the challenge of validation. In an optimal environment, one would do the validation work described in

Chapter 4 to ensure that MEMPOWER is yielding accurate results.
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