
RC23069 (W0401-092) January 19, 2004
Computer Science

IBM Research Report

Supporting Isolation for Fault and Power Management with
Fully Virtualized Memory Systems

Freeman Rawson
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Supporting Isolation for Fault and Power Management with Fully

Virtualized Memory Systems

Freeman Rawson

January 21, 2004

Abstract

Fully virtualized systems offer significant commercial advantages in certain markets by allowing

users to consolidate many small servers onto a single large system that offers lower total cost and more

efficient and flexible use of computing resources. With full virtualization, which means that the underly-

ing hypervisor virtualizes processor, memory and I/O resources, the system becomes even more flexible

since there is no fixed assignment of resources to partitions and operating system images. However, with

such systems, the costs associated with failures and power management are much higher. For example,

if a virtualized system fails, rather than losing a single system, the customer loses all of the consolidated

system images, often on the order of 102 or even 103 logical servers. Similarly, unless the larger sys-

tem offers power-management features comparable to those found in smaller systems, its power costs

and power-related problems such as heat and potential failures are higher than the systems that it re-

places. This work provides a partial solution to these problems in the area of system memory by offering

a scheme for identifying and isolating if necessary the memory used by particular virtual images. It

applies the well-known reverse-mapping technique to hypervisors and takes advantage of some likely

characteristics of the hypervised environment to provide a compact and simple reverse mapping. With

this reverse mapping, it then indicates how to reduce memory power consumption during periods of low

utilization and how to isolate faulty portions of memory, affecting only those system images using the

bad memory.

1 Motivation

IBM and other computer-systems vendors are increasingly relying on hypervisors supporting dynamic logi-

cal partitioning and full virtualization to support server consolidation, and it markets server consolidation to

its customers as a cost-saving idea. In this context, full virtualization means that all of the resources of the

system, the processors, the memory, and the I/O devices are all virtualized, so that each operating system

image that the hypervisor runs uses virtual resources, ones that have no necessary or fixed relationship to the

physical resources of the machine. In particular, the type of memory partitioning found in simple physical

and logical partitioning commonly used in some previous-generation systems including the IBM pSeries

assigned a fixed, static, contiguous region of memory to each partition and changed the assign only during

re-partitioning.

Two examples of fully virtualizing hypervisors are IBM’s zVM and its predecessors and the VMware

ESX hypervisor for x86-based server systems.

1

Moreover, much of IBM’s On-Demand strategy is based on the use of virtualized systems to support

a disparate set of customers with varying computing requirements. But the use of large, partitioned or

virtualized systems exacerbates the consequences of certain types of failures and complicates the problem

of power management. For example, in a fully virtualized memory environment, if a portion of memory

fails, the hypervisor may be unable to determine what partitions are affected and need to be terminated.

The historically acceptable approach of having the entire system fail is not viable in a server consolidation

environment where the failure of the machine may lead to the failure of hundreds of servers. Similarly, if

there is a need to reduce power consumption, due, for example, to low utilization, high operating temperature

or tight power supplies, the hypervisor needs to be able to determine what partitions are affected and make

intelligent decisions about what part of memory to put into a low-power state.

These changes motivate the investigation of techniques for memory management that retain the full

virtualization of memory while allowing one to control the scope of failures and reduce memory power

consumption whenever possible. In both cases, the key is successful isolation of the portions of memory

belonging to a particular partition, virtual machine or system image. Isolation allows the system to:

• identify affected system images when it detects a hardware error in a memory page frame

• limit the damage caused by a hardware memory error to a subset of the currently started system images

• put memory for inactive or lightly loaded system images into lower power states including turning it

off entirely.

2 Characteristics of Memory Management in Modern Hypervisors

In order to understand the use of reverse mapping and how it applies to memory power-management and

fault-isolation, it is helpful to standardize some terminology and describe some of the important features of

memory management in modern hypervisors. Since different implementations of hypervisors use somewhat

different memory management techniques, this document selects a particular hypervisor, VMware ESX [7],

that has a good, public description of its memory management given in a recent paper by Waldspurger [8].

To avoid overlapping and confusing terminology, this document also provides a fixed set of terms used

subsequently along with some common synonyms for each.

2.1 Terminology

The definitions here roughly follow the ones that Waldspurger uses in [8]. Much of the terminology there is

taken from the earlier papers on Disco [2], [3].

• hypervisor: The hypervisor is the lowest layer of systems software that operates directly on the hard-

ware and supports the execution of multiple operating systems in isolation on a single machine. The

hypervisor is also called the virtual machine monitor in the literature.

2

• virtual machine (VM): A virtual machine is an isolated environment created by the hypervisor that is

sufficiently like the hardware that an operating system can run inside it with little or no modification.

The terms partition, domain and system image are sometimes used instead of virtual machine.

• guest system: A guest system is an operating system and the software running on it executing inside

a virtual machine.

• virtual address: A virtual address is an address generated by a program prior to translation by a guest

operating system.

• physical address: A physical address is the result of address translation by a guest operating system

and represents what would be the actual address if the guest operating system were running on real

hardware. However, here it represents an address within the address space of the virtual machine.

• machine address: A machine address is a true hardware address that the software can pass on the bus

to memory. It is the result of the final translation of the physical address by the hypervisor.

• logical page: A logical page is an operating system that is part of an address space and is not neces-

sarily tied to any particular physical unit of memory. In this context, a logical page is associated with

a guest operating system.

• physical page: A physical page is a page of the memory of the virtual machine.

• machine page: A machine page is a page-sized unit of hardware memory. The hypervisor maps the

physical pages of the virtual machines to machine pages or provides an invalid mapping indicating

that the page is not present in memory.

• virtual page number (VPN): A virtual page number is that portion of the virtual address that deter-

mines which page of virtual memory the address references. With 4096-byte pages, it is, for example,

all but the bottom 12 bits of the virtual address.

• physical page number (PPN): A physical page number is the result of a guest operating system trans-

lating a VPN using its translation tables. It gives the number of the physical page being referenced in

the virtual machine’s physical address space.

• machine page number (MPN): A machine page number is the result of the hypervisor’s translation

of a PPN to address a machine page in the hardware memory. It is worth noting that underneath this

address, the memory controller may do some additional mapping of addresses before converting the

address to the signals required to address the cells of DRAM.

2.2 Memory Management in Modern Hypervisors

Memory management for modern hypervisors must support operating systems that make use of address

translation, paging and memory overcommit and which assume that they control the details of the trans-

lations and the location of logical pages. At the same time, to be of value to customers, they must offer

features such as higher utilization and smoother resource re-allocation than one can get by running operat-

ing system images directly on the underlying hardware. This subsection recounts Waldspurger’s description

of the basic mechanisms for translation and memory control used in VMware ESX running on x86-based

machines along with a few comments on how it changes in an environment that uses software-managed

3

TLBs and does not define a hardware-page-table format.

2.2.1 Basic Translation Mechanism

ESX gives each virtual machine a zero-based set of pages that the guest operating system treats as its physical

memory. Although not explicitly mentioned, since most x86-based operating systems of interest (generally,

considered to be limited to members of the Windows, Linux and BSD families) assume either a completely

contiguous range of addresses or a small number of distinct memory regions, the assignment of pages to

virtual machines probably matches the assumed architecture.

To provide each virtual machine with its own physical address space, ESX must provide an additional

level of translation. To do so, ESX uses a pmap data structure for each virtual machine that maps the

physical addresses or physical page numbers to their corresponding machine addresses or machine page

numbers. Although the pmap effectively defines a virtual machine’s physical address space, the pmap is not

directly usable as the virtual machine’s page tables since it does not map from virtual to machine addresses

and because it is not in the proper, hardware-defined format. To avoid having to trap all references, ESX

constructs a shadow page table for each virtual machine, to which the x86 CR3 register points when the

virtual machine is running. This table is in the hardware-defined format and directly maps from virtual to

machine addresses. Figure 1 is a simplified representation of these structures.

For architectures that use software-managed TLBs, there is no need for the shadow page tables except

as a cache to speed up TLB reload.

2.2.2 Memory Control and Minimization Techniques

Modern hypervisors like ESX such as often make aggressive use of memory sharing techniques beneath

the system images to reduce the overall load on memory and to increase the capacity of the hardware. As

described by Waldspurger, these techniques include

• memory overcommit

• ballooning

• page-content hashing.

Not all of the techniques described by Waldspurger are mentioned here since not all of them affect the

introduction of reverse mapping and its use within a hypervisor.

Ballooning creates artificial memory pressure within the executing system images, causing the operat-

ing systems running in them to discard or page-out pages and release page frames. These frames are released

to the program creating the memory pressure, which is a special driver under the control of the hypervisor.

Once it acquires the page frames, it notifies the hypervisor which steals them. Page-content hashing is a

form of blind sharing between operating system images. Since many of the pages in each system image

have the same contents such as shared library text pages for pages of the same library, the hypervisor can

4

Control Register 3

virtual−to−machine mapping

virtual−to−machine mapping

virtual−to−machine mapping

virtual−to−machine mapping

virtual−to−machine mapping

Shadow Page Table

physical−to−real mapping

physical−to−real mapping

physical−to−real mapping

physical−to−real mapping

physical−to−real mapping

pmap

Figure 1: The ESX pmap and shadow page table structures for a single, executing virtual machine

5

share these pages between system images without the support of the operating system images. If compar-

ison indicates that two pages have the same content, the hypervisor assigns them a single page frame with

read-only hardware permissions, so that any changes cause a hypervisor-handled fault whose processing

undoes the sharing operation.

2.3 Summary

The net effects of full virtualization and the memory sharing and reduction techniques of modern hypervisors

are that there is no stable, straightforward relationship between a system image and the page frames that it

uses and that a system image cannot unilaterally manage memory for fault isolation or power. This motivates

the hypervisor features described in the rest of this document.

3 Reverse Mapping in a Hypervisor

Reverse mapping is a technique often used in operating systems to enable them to track efficiently which

address spaces use which physical pages. Such reverse-mapping techniques are not new, and many operating

systems either implement or plan to implement them. For example, there is a reverse-mapping patch to

Linux [6] that provides a reverse paging from page frames to the Linux logical pages. A reverse mapping

is simply a data structure or a set of data structures that maps from the physical to the logical pages in

an operating system. In the case of a hypervisor, it is a mapping from the page frames to the pages of

the virtual machines. Since many page frames are shared across multiple virtual machines, this mapping

is one-to-many. Its primary advantage is that it makes it easy to go from knowledge about a page frame

to the set of pages and, thus, the set of virtual machines that are using the page frame. Figure 2 shows

the general relationship of the reverse mapping to the standard memory mapping tables maintained in an

ESX-like implementation.

3.1 Requirements and Assumptions

Although well-known and often used in system implementations, the specific reverse-mapping techniques

proposed here take advantage of the unique features of the hypervisor to reduce the overhead associated

with reverse mapping. The reverse mapping used must exhibit the following characteristics to be suitable

for a hypervior environment.

• The reverse mapping needs to be very space-efficient to reduce the memory overhead of maintaining

it.

• It must have a low maintenance overhead, so that when entries change it does cost very time in terms

of processing time to update the reverse mapping.

• The reverse mapping should take advantage of the relative stability of the operating system images.

Partitions come and go less frequently than operating system processes.

6

Logical Page StructureLogical Page Structure Logical Page Structure Logical Page Structure Logical Page Structure

Logical Page StructureLogical Page Structure Logical Page Structure Logical Page Structure Logical Page Structure

Page Frame Page Frame Page Frame Page Frame Page Frame Page Frame

Figure 2: The relationship between standard and reverse memory maps in an ESX-like hypervisor

7

Despite the fact that many reverse-mapping schemes are possible, the one proposed here is optimized

for a particular type of hypervisor environment in order to allow for the discussion of some of its details.

The proposed design makes the following assumptions.

• The hypervisor does not necessarily allocate the pages in any particular fashion. In particular, in a

running system, there is no reason to believe that it allocates runs of machine pages to the same virtual

machine.

• The hypervisor does not use super-pages to map physical pages to machine pages.

• From the perspective of the reverse mapping, the discovery of shared machine pages through the use

of content hashing, for example, further randomizes the usage.

• Even with aggressive sharing techniques, there are a very large number of machine pages that are

private to a particular virtual machine. It is, therefore, worthwhile to consider the private machine

pages as a special case.

• Data structure compactness is more important than search or update speed.

• From the virtual machine identifier and a physical page number, it is easy to find the address of the

appropriate data structure for the physical page from other data structures or algorithms. In particular,

there is no need to store address structure addresses for the virtual machine machine and the physical

page in the reverse mapping.

3.2 Reverse Mapping Design

The reverse mapping uses a single, contiguous table indexed by MPN, referred to here as the rtable. The

rtable entries have one of two formats, depending on the value of the first of three flag bigs. The first format,

used for private, unshared machine pages starts with three flag bits – the format bit that indicates whether

or not the machine page is private, a bit that indicates whether or not the remaining contents of the entry

are valid and a bit that indicates whether or not the contents of the machine are discardable. If the entry

is a private machine page and is valid, the virtual machine identifier of the owner of the machine page and

the PPN of the corresponding physical page in the virtual machine follow the flag bits. The second format,

which the hypervisor uses for shared pages, includes the initial flag bit, which, in this case, indicates that

the entry is a shared machine page entry, and the address of the first array of reverse mapping pointers:

each array is called an rarray. Although it may not be true in every case, in most implementations, the

use of virtual machine identifiers and physical page numbers reduces the total number of bits required in

the representation over the number needed if pointers were used instead. This leaves room for the flag bits

without increasing the size of the data structures or making the alignment awkward. Each rarray consists

of a set of entries in a format similar to the private entries in the base rtable. However, in the rarray, the

first flag bit is not used. The second flag bit indicates whether or not the the entry is valid: this is necessary

since the deallocation of mappings leaves unused entries in the rarray. As before, the third flag bit indicates

whether or not the page is discardable. Since the rarrays are of fixed size, the reverse mapping may require

multiple rarrays for a single machine page if it is heavily shared. As a result, the last entry of each rarray is

a pointer to another rarray for the same machine page if it is marked as valid. Setting the size of the rarrays

8

rtable

MPN vm id PPN

vm

PPN

PPN

rarray

vm id PPN

next rarray

rarray

rarray

vm id PPN

Figure 3: The rtable and the rarrays

a priori is difficult, and the optimal setting depends on the expected number of virtual machines sharing a

machine page. This design allows the developer to fix the number at compilation or make it a parameter to

the hypervisor. Figure 3 is a conceptual representation of these data structures.

The reverse mapping table proposed above explicitly allows a single machine page to map to the

physical pages of multiple virtual machines since with techniques like content hashing, different virtual

machines may share the same physical memory if the contents are identical. It also tracks whether or not

the contents are discardable due to the presence of a copy on disk managed by the hypervisor or due to an

indication from the operating systems involved. In this case, the hypervisor can quietly discard the contents

of the memory and either re-allocate physical memory in another location or reduce the memory sizes of

the affected partitions. Using the MPN to index the rtable and virtual machine ids and PPNs reduces the

amount of space needed.

9

3.3 Search

The search procedure for the reverse mapping is very simple. The MPN indexes the rarray with a prior check

to ensure that it is in range. If the selected rarray entry indicates a private machine page, the algorithm uses

the virtual machine id and PPN to determine the address of the data structures describing the physical page.

Otherwise, the address in the rtable entry is that of the first rarray for the machine page. The search then

scans each rarray in linear order, accepting the valid entries and ignoring the invalid ones. For the last

entry, rather than treating it as another reverse-mapping entry, the search checks the valid bit. If the bit is

invalid, the search ends. Otherwise, the entry is a pointer to the next rarray for the machine page. Since

the goal of the reverse-mapping search is to find all of the physical pages affected by some event occurring

in the machine page, a linear search of each rarray is a perfectly acceptable method of access. Although

search requires some form of locking or serialization, its details are very specific to the particular hypervisor

implementation and are beyond the scope of this document.

3.4 Addition of a New Reverse-Mapping Entry

Upon any change in the mapping from physical to machine pages, the hypervisor must update the reverse

mapping, and there are a number of different cases to consider depending on the current state of the reverse

mapping and the change the hypervisor is making. The descriptions given here assume that other code

ensures that all accesses and updates are properly serialized.

If the hypervisor is adding a new reverse mapping of a machine page to a virtual machine and physical

page, it first determines if there is any entry in the machine page’s slot in the rtable. If not, it creates a private

rtable entry for the machine page using the virtual machine identifier and physical-page number mapping

to the machine page. It marks the entry as private and sets the discardable bit based on other information

about the use of the page. If there is no indication that the page is discardable, the hypervisor marks it as

non-discardable.

If there is a private entry in the rtable slot for the machine page, this is the first use of the machine

page as shared. The hypervisor allocates an rarray for the machine page, copies the reverse mapping from

the rtable slot to the first entry in the rarray and converts the rtable slot to a pointer to the rarray. Finally, it

marks the last entry in the rarray to indicate that there are no additional rarrays.

If the rtable entry for the machine page indicates that it is already shared, the hypervisor searches the

first rarray for an invalid entry that it can use for the new mapping. If one is found, it marks the entry as

valid and sets the virtual machine identifier and physical page number in it. As always, the discardable bit is

set based on other information that the hypervisor may have about how the virtual machine uses the page. If

there are no available entries in the first rarray, the hypervisor checks the final entry. If it is valid, it goes to

the next rarray and repeats the search. This process continues until either it finds an invalid entry or it finds

the final rarray entry in the current rarray marked as invalid. In this situation, the hypervisor allocates a new

rarray, uses the first entry in the newly allocated rarray for the new reverse mapping and updates the last

entry in the previous rarray to point to the next rarray. Finally, it marks the last entry in the newly allocated

10

rarray as invalid to indicate that there are no more rarrays for the machine page.

3.5 Removal of a Reverse-Mapping Entry

As with the addition of a reverse-mapping entry, the hypervisor handles the removal of one on a case-by-

case basis. It begins by locating the machine page’s slot in the rtable. Barring a problem with the hypervisor

implementation, the entry must be valid, and it has to match the mapping being removed. If the rtable entry

is marked as private, the hypervisor marks it as invalid. Otherwise, the hypervisor searches the rarrays

for the entry to remove. It follows the pointer to the first rarray and searches the entries, looking for a

valid entry that matches the virtual machine identifier and physical page number being removed. During

the search it counts the number of valid entries in the rarray. If it finds a matching entry, it marks it as

invalid but continues the search. The hypervisor does this to determine if the machine page is now private as

opposed to shared. When the hypervisor reaches the final entry of the rarray, if there are no remaining valid

entries in the rarray, the pointer must be valid since the machine page was originally shared. The hypervisor

deallocates the now completely invalid rarray and chains the next rarray to the rtable.

If there is no matching valid rarray entry in the first rarray, the hypervisor moves on to the next rarray

and repeats the search on it, continuing through the rarrays until it finds the matching entry. If it has already

found the match, it continues the search, deallocating a newly empty rarray if necessary. When it finally

gets to the end of the rarray chain, indicated by an invalid final, pointer entry, the hypervisor compares the

count of valid entries to 1. If it is equal, it copies valid entry to the rtable and marks it as private. It then

deallocates the surviving rarray. Otherwise, the machine page is still shared, and the surviving rarrays all

contain at least one valid entry.

3.6 Super-pages

Although there is an explicit assumption that the hypervisor, due to its aggressive virtualization does not

use super-pages, one can modify the reverse mapping to accomodate them. With a mix of super-pages

and regular pages, the reverse mapping consists of two tables, one for the machine pages that back the

hypervisor’s super-pages and one for the hypervisor’s regular pages. The super-pages reverse mapping

maps an appropriately sized group of machine pages to the super-page but, otherwise, has the same format

as the ordinary reverse mapping.

4 Uses of the Reverse Mapping

For the purposes of this document, the hypervisor uses the reverse mapping described above for two primary

purposes. The first is to support power management, especially cooperative power management of the

memory. The second is to isolate memory failures to particular virtual machines to reduce their overall

impact on the users of the system.

11

For the purposes of the following discussion, the schemes described below assume that memory is

physically manageable for power and fault isolation by groups of contigous machine pages. In the best and

limiting case, the group size is a single machine page, but the physical design of the memory generally

makes it significantly larger, especially for power management. The sizes of the groups used for power

management and fault isolation are not necessarily the same.

4.1 Memory Power Management by the Hypervisor

With the information provided by the reverse mapping, the hypervisor can implement memory power-

management techniques that take the behavior and activity levels of the system images running within the

virtual machines into account. This subsection considers two specific schemes that depend critically on the

use of the reverse mapping introduced above.

4.1.1 Reactive Memory Power Management with Notification

Reactive memory power management with notification puts the responsibility for the power state of the

memory primarily on the memory controller with some help from the hypervisor. This scheme uses three

low-power states – power-down, self-refresh and destructive-off, where destructive-off turns off the memory

entirely, destroying its contents. The memory attempts to remain in the lowest power state by first requesting

that the hypervisor scan the rtable and determine which machine pages are used. The hypervisor returns a

list of the unused pages to the memory hardware. For any unused machine pages that are grouped into

power-manageable units, reactive memory power management puts the memory into the destructive-off

state to minimize power. Whenever the hypervisor allocates a page from a group in the destructive-off

state, it must put the remaining machine pages in the group into a higher power state, generally self-refresh.

The hypervisor must also update all of its data structures including the reverse mapping to reflect the new

allocation.

Although it is possible to have the memory-controller hardware do the scan, the complexity of the data

structures involved and the need for flexibility when changing the hypervisor suggest that the hypervisor

should do it instead. This also avoids a number of serialization questions that arise when the hardware and

the hypervisor share a data structure.

In addition, in order to save additional power, the memory controllers notify the hypervisor of page

groups not recently accessed that they have put into a lower power state. The hypervisor uses the reverse

mapping to notify the guest systems that the memory is in a lower power state and, thus, has a higher-than-

normal latency. It may also use the notification to request that the hypervisor either check for discardable

pages or page out pages. This is helpful if there only a few pages in use in a power-manageable group. The

memory hardware can request their removal so that it can turn off the group. To a first-order approximation,

neglecting the performance cost, this is beneficial if and only if there is a net conservation of energy. This,

12

in turn, is the case if the following inequality holds.

Psf × E(duration) > Premoval × tremoval

Here Psf is the self-refresh power of the memory group, E(duration) is the expected value of the duration

that the memory group is off and Premoval and tremoval are power and time required to remove all of

the pages that the system from powering off the memory group. In general, the value of E(duration) is

unknown, but one can approximate it adaptively by collecting a history of the durations and averaging them.

4.1.2 Hypervisor-Directed Memory Power Management

In the hypervisor-directed memory power management scheme, the hypervisor monitors the usage of ma-

chine memory on a page-by-page basis and uses the reverse mapping table to correlate that usage with the

virtual machines and physical pages using the memory. Based on some function of the usage and the rela-

tive importance of the guest systems running in the virtual machines using a particular piece of memory, the

hypervisor selects a power state for the memory. The goal is to optimize, for a chosen objective function,

the power and performance of the collection of virtual machines running on the hypervisor. This scheme

also provides for an optional notification to the guest operating systems affected that they have less or lower

performance memory than previously allocated to them.

4.2 Memory Fault Isolation and Handling

One of the worst scenarios that can occur in a server-consolidation environment is a memory failure that

brings down all of the guest systems running on top of the hypervisor. If this happens, rather than losing

a small percentage of the capacity, as would occur in a cluster of smaller machines, the user loses all of

the guest systems or, effectively, the entire capacity. Avoiding such failures is critically important if server

consolidation is to be a commercial success.

In the case of a memory failure, the hardware detects the failure and notifies the hypervisor through

a standard, hardware-defined mechanism such as a machine check. The reporting of the failure is in terms

of the machine address of the affected memory. Using the machine address, the hypervisor computes the

machine page number. It then uses the MPN as an index into the rtable to find the affected virtual machines

and physical page numbers. Using that information, it can either terminate all of the affected virtual ma-

chines, leaving all of the other virtual machines running, or it can present a virtual machine check to the

guest operating systems if they have machine-check-handling logic. Once each affected virtual machine

either is terminated or has handled the machine check, the hypervisor can instruct the memory hardware to

isolate the failing memory. The hypervisor then marks the memory, perhaps using an additional feature of

the rtable to indicate that it can no longer be used.

13

5 Related Work and Prior Art

Hypervisors have a long history dating back to the 1960s. One of the very first hypervisors was IBM’s CP-67

developed to support multiple virtual machines, primarily for testing and interactive computing purposes,

running either a specialized monitor program or a copy of IBM’s OS/360. IBM has marketed the successors

of CP-67 continously since the early 1970s, and the current generation is known as zVM. It is heavily

marketed today as a server consolidation solution that allows a very large number of Linux guests to run on

a single IBM zSeries machine.

During the 1990s, researchers at Stanford developed Disco [2] and Cellular Disco [3] in support of

their work on the Flash [4] project. They believed that it was difficult or impossible to scale the existing

standard operating system for the processor that they were using to their unique hardware, and they used

their hypervisors to allow them to run the standard operating on their research prototype.

Using some of the technology developed in the Disco work, a number of the Stanford researchers

formed VMware. VMware has introduced two fundamentally different types of hypervisors, a hosted ver-

sion that executes on top of an underlying, standard operating system such as Linux, and ESX, which is a

traditional hypervisor in the spirit of zVM.

Finally, a group from the Cambridge University Computing Laboratory has released a hypervisor called

Xen [1]. Xen supports what the Cambridge team calls paravirtualization in that it requires small modifica-

tions to the source of every operating system that it runs.

None of these efforts are particularly concerned about either fault isolation or memory power, and none

of them have published anything indicating that they use a reverse-memory-mapping technique to support

either of these features. However, it is possible to view the reverse-mapping technique, when applied to

memory power management, as an implementation of the selective-memory-powering or file-cache-pruning

techniques described in [5].

6 Conclusion

By adding a specialized, compact reverse mapping, it is possible for a hypervisor to track accurately the

usage of the page frames of physical memory by the operating system images that it runs. With this infor-

mation, the hypervisor can, based on the apparent memory demands of the operating-system images that it

is running, determine the most efficient power state for each page frame of physical memory. In addition,

should the hardware detect a memory failure in a particular page frame, the reverse mapping allows the

hypervisor to determine the affected virtual machines. This, in turn, permits it to minimize the number of

operating system images that are either notified of the memory failure or terminated.

14

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the ACM Symposium

on Operating Systems Principles (SOSP), October 2003.

[2] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running commodity operating sys-

tems on scalable multiprocessors. ACM Transactions on Computer Systems, 15(4), 1997.

[3] Kingshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular Disco: resource

management using virtual clusters on shared-memory multiprocessors. ACM Transactions on Computer

Systems, 18(3):229–262, 2000.

[4] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira,

J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stanford FLASH multiproces-

sor. In Proceedings of the 21st International Symposium on Computer Architecture, April 1994.

[5] Freeman Rawson. Selectively powering portions of system memory in a network server to conserve

energy. United States Patent Application US20030061448A1.

[6] Rik van Riel. Towards an O(1) VM. In Proceedings of the 2003 Ottawa Linux Symposium, 2003.

[7] VMware, Inc. VMware ESX Server 1.5.

[8] Carl A. Waldspurger. Memory resource management in VMware ESX server. In Proceedings of the

Fifth USENIX Symposium on Operating Systems Design and Implementation, 2002.

15

