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Minimizing makespan in no-wait job shops

Nikhil Bansal∗ Mohammad Mahdian† Maxim Sviridenko‡

Abstract

In this paper we study polynomial time approximation schemes (PTASes)
for the no-wait job shop scheduling problem with the makespan objective
function. It is known that the problem is MaxSNP-hard in the case when
each job is allowed to have three operations or more. We show that if each
job has at most two operations, the problem admits a PTAS if the number of
machines is a constant (i.e., not part of the input). If the number of machines
is not a constant, we show that the problem is hard to approximate within a
factor better than 5/4.

1 Introduction
Problem statement. A job shop is a multi-stage production process with the prop-
erty that all jobs have to pass through several machines. There are n jobs numbered
1 through n, where each job j is a chain of mj operations Oj,1, . . . , Oj,mj . Every
operation Oj,i is preassigned to one of the m machines M1, . . . , Mm of the pro-
duction process. The operation Oj,i has to be processed for pj,i time units at its
machine mj,i; the value pj,i is called its processing time or its length. In a feasi-
ble schedule for the n jobs, at any moment in time every job is processed by at
most one machine and every machine executes at most one job. Furthermore, for
each job j, the operation Oj,i−1 is always processed before the operation Oj,i, and
each operation is processed without interruption on the machine to which it was
assigned. A flow shop is a special case of the job shop where each job has exactly
one operation on each machine, and where all jobs pass through the machines in
the same order M1 → M2 → · · · → Mm. In an open shop the ordering of the
operations in a job is not fixed and may be chosen by the scheduler. In a mixed
shop there are jobs of the “open shop type” with any order between jobs and jobs
of the “job shop type” with chain precedence constraints between operations. For
further references and a survey of the area, see Lawler, Lenstra, Rinnooy Kan, and
Shmoys [8] and Chen, Potts, and Woeginger [1].

∗Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Email: nikhil@cs.cmu.edu.

†Lab. for Computer Science, MIT, Cambridge, MA 02139, USA. Email:
mahdian@theory.lcs.mit.edu.

‡IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
Email: sviri@us.ibm.com.

1



In this paper, we are interested in shop scheduling problems under the no-wait
constraint. In such problems, there is no waiting time allowed between the exe-
cution of consecutive operations of the same job. Once a job has been started, it
has to be processed without interruption, operation by operation, until it is com-
pleted. There are two main types of applications of shop scheduling problems with
the no-wait constraint. The first is when the no-wait constraint is embedded into
production technology. For example some characteristics of a material (such as
temperature) require that one operation must processed immediately after another.
It happens for instance in steel manufacturing when different operations like mold-
ing into ingots, unmolding, reheating, soaking, rolling must be done in a no-wait
fashion. Other examples occur in chemical industry (anodizing of aluminum prod-
ucts), food processing (canning must be done immediately after cooking). The
second type of applications of the no-wait scheduling problems is modelling the
situation when there are no intermediate storage between or on machines to store
the job between two consecutive operations. In this case the only way is to execute
a job in a no-wait fashion. Such situations are quit common in packet routing. The
job shop scheduling includes hot potato routing problems as special cases if routes
in the network are fixed for all packets.

Our goal is to find a feasible schedule that minimizes the makespan (or length)
Cmax of the schedule, i.e., the maximum completion time among all jobs. The
minimum makespan among all feasible schedules is denoted by C∗

max. We say that
an approximation algorithm has performance guarantee ρ for some real ρ > 1, if it
always delivers a solution with makespan at most ρC∗

max. Such an approximation
algorithm is then called a ρ-approximation algorithm. A family of polynomial
time (1 + ε)-approximation algorithms over all ε > 0 is called a polynomial time
approximation scheme (PTAS).

Approximability of “ordinary” shop problems. The approximability of clas-
sical shop problems (without the no-wait constraint) is fairly well understood: If
the number of machines and number of operations per job is a fixed value that is
not part of the input, then the flow shop (Hall [4]), the open shop (Sevastianov
and Woeginger [15]), and the job shop (Jansen, Solis-Oba and Sviridenko [7]) ad-
mit PTASes. On the other hand, if the number of machines is part of the input,
then none of the three shop scheduling problems have a PTAS unless P = NP
(Williamson et al. [22]).

Complexity of no-wait shop problems with the makespan objective. Sahni
and Cho [14] prove that the no-wait job shop and the no-wait open shop problems
are strongly NP-hard, even if there are only two machines and if each job consists
of only two operations. Röck [12] proves that the three-machine no-wait flow shop
is strongly NP-hard, refining the previous complexity result by Papadimitriou and
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Kanellakis [10] for four machines while the classic result by Gilmore and Gomory
[2] yields an O(n log n) time algorithm for the two-machine no-wait flow shop.
Sviridenko and Woeginger [18] prove that the three machine no-wait job shop with
at most three operations per job is MAXSNP-hard and therefore is unlikely to admit
a PTAS. Hall and Sriskandarajah [5] provide a thorough survey of complexity and
algorithms for no-wait scheduling.

Approximability of no-wait shop problems. For all shop scheduling problems
on m machines, sequencing the jobs in arbitrary order yields a (trivial) polynomial
time m-approximation algorithm. Röck and Schmidt [13] improve on this for the
no-wait flow shop and give an �m/2�-approximation algorithm. For the flow shop
scheduling problem a permutation schedule is a schedule in which each machine
processes the jobs in the same order. In the no-wait permutation flow shop prob-
lem, only permutation schedules are feasible schedules. Sviridenko and Woeginger
[18] obtain a PTAS for the no-wait permutation flow shop problem with a fixed
number of machines. Sidney and Sriskandarajah [17] obtain a 3/2-approximation
algorithm for the 2-machine no-wait open shop problem. Glass, Gupta and Potts
[3] consider the no-wait scheduling of n jobs in a two-machine flow shop where
some jobs require processing on the first machine only. In contrast with the stan-
dard no-wait two-machine flow shop, this problem is NP-hard. Glass, Gupta and
Potts describe a 4/3-approximation algorithm for this problem. Papadimitriou and
Kanellakis [10], and Sidney, Potts, and Sriskandarajah [16] study various gener-
alizations and modifications of the no-wait flow shop problem on two machines.
For these generalizations the authors manage to design approximation algorithms
with performance guarantees strictly better than two. All of the above algorithms,
except for results of Röck and Schmidt [13], are based on the famous algorithm of
Gilmore and Gomory [2].

Our results. In this paper we concentrate on the no-wait job shop scheduling
with two operations per job, since the problem with three operations per job is
MAXSNP-hard even for the problem restricted to the instances having just three
machines [18]. We prove that there exists a PTAS for this problem if the number of
machines is a fixed number; i.e., it is not a part of the input. We also show that it is
NP-hard to find a schedule of length at most four for this problem if the number of
machines is a part of the input by a reduction from the NP-complete problem [6]
of edge coloring of cubic graphs using three colors. This result implies that there
is no approximation algorithm for the problem with performance guarantee better
then 5/4 unless P = NP . Our PTAS can be easily generalized to the mixed shop
scheduling problem with at most two operations per job, and therefore our result is
an improvement over results from [3] and [17].
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2 The Algorithm
In this section we present a polynomial time approximation scheme for the no-
wait job-shop scheduling with a constant number of machines and at most two
operations per job. Let J be a collection of jobs. We can assume, without loss of
generality, that each job has exactly two operations, since if there are jobs with only
one operation, we can add a second operation of length zero to such a job, which
has to be run on a new dummy machine (The same dummy machine is used for
all such jobs, so that the number of machines remains constant). We also assume
that precision parameter ε > 0 is chosen in such a way that 1/ε is an integer.
For a job j ∈ J , let Oj,1 and Oj,2 denote the two operations of this job, and pj,1

and pj,2 be the length of these two operations. The length of a job is the sum of
the lengths of its operations. The pair (pj,1, pj,2) indicates the type of job j. Let
Lmax = maxs=1,...,m{∑Oij |mij=Ms

pij} denote the maximum machine load. This
is a trivial lower bound on the optimal makespan.

Our algorithm consists of three steps. In the first step, we round the given
instance to obtain a well-behaved instance of the problem. The results of this step
are summarized in the following lemma.

Lemma 1 Let J be a given instance of the no-wait job shop scheduling problem
with two operations per job and m machines where m is a fixed number. Then
there exists another instance J ′, such that

i. A (1 + O(ε))-approximately optimal schedule for J ′ can be transformed in
polynomial time into a (1 + O(ε))-approximately optimal solution for J .

ii. The processing time of every operation of jobs in J ′ is a positive integer, and
the maximum load on a machine in J ′ (i.e., Lmax(J ′)) is at most n/ε.

iii. The jobs in J ′ are partitioned into k blocks B1, B2, . . . , Bk such that every
job in Bi has length at least li and at most ui, where li and ui satisfy ui+1 =
ε li = ε1/ε ui for every i.

iv. For every i, there are at most a constant number of job types in Bi.

This lemma will be proved in Section 2.1. In the second step of the proof
(presented in Section 2.2), for a rounded instance J and a target makespan C, we
will define an auxiliary graph G(C) with one root and a set of sinks, and prove the
following lemmas.

Lemma 2 For every rounded instance J and a target makespan C, if there is a
schedule with makespan C for J , then there is a path in G((1 + O(ε))C) from the
root to one of the sinks.
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Lemma 3 If there is a path in G(C) from the root to one of the sinks, then we can
construct in polynomial time a feasible schedule for J that has makespan at most
(1 + O(ε))C.

Note that constants hidden in O(.) notation depend on m which is a fixed inte-
ger. Finally, in Section 2.3 we will prove the following lemma.

Lemma 4 For any rounded instance J and any C, 1 ≤ C ≤ mn/ε, the graph
G(C) can be computed in polynomial time.

Using the above lemmas, we can prove the following theorem.

Theorem 1 There is a PTAS for no-wait job scheduling where each job has two
operations and the number of machines is a constant.

Proof. We start by rounding the instance using Lemma 1. Then, we do a binary
search to find the smallest value of C between 1 and mLmax = mn/ε such that
there is path from the root to a sink in G(C) (By Lemma 4 every step of this search
can be done in polynomial time). Call this value C∗. We know by Lemma 2 that
the optimum makespan is at least C∗/(1 + O(ε)). Furthermore, Lemma 3 gives us
a way to construct a schedule with makespan at most C∗(1+O(ε)) for the rounded
instance. Finally, we use Lemma 1 to convert this schedule into a schedule of the
original instance. �

2.1 Rounding
The following lemma is the main tool we are going to use in our rounding steps.
The main reason why it is hard (or impossible) to build a PTAS for the no-wait job
shop with more then two operations per job is that this lemma cannot be generalized
to handle more than two operations per job.

Lemma 5 Let J ′ be the instance obtained from J by increasing the size of an
operation Oj,i, i ∈ {1, 2} of a job j ∈ J by ∆. Then the optimal makespan for J ′

is at most the optimal makespan of J plus ∆.

Proof. We first prove the following claim.

Claim 1 Let S be a valid no-wait schedule for a set of jobs J , t be a given time
step, and tj,i (j ∈ J , i ∈ {1, 2}) denote the time when the operation Oj,i finishes
execution in S. Let A = {j : j ∈ J , tj,1 ≥ t}. Then the schedule S′ obtained by
scheduling the operation i of job j such that it finishes at time t′j,i = tj,i for j �∈ A
and t′j,i = tj,i + ∆ for j ∈ A is a valid no-wait schedule for J .
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Proof. Since both operations of a job are shifted by the same amount (0 or ∆), S′

is clearly a no-wait schedule. We only need to verify that no two jobs in S′ are
scheduled on the same machine at the same time. One of these two operations, say
Oji, finishes before the other one starts in S, because S is a valid schedule. Thus,
by the definition of A, if j ∈ A, we must also have j′ ∈ A. Therefore, either
t′ji − tji = t′j′i′ − tj′i′ , or t′ji − tji = 0 and t′j′i′ − tj′i′ = ∆. It is easy to see that
in both cases Oji and Oj′i′ do not conflict in schedule S′. �

Consider an optimal schedule S. Let t denote the time when the operation Oj,i

(whose length we would like to increase) finishes in S. We apply the above claim
on the schedule S with this t. If i = 1, by our choice of t, the operation Oj,i will
be scheduled ∆ time units later in S′ than in S. However, any operation that was
scheduled before Oj,i on the same machine, will be scheduled at the same time in
S′ as in S. Therefore, in the schedule S′, this machine is free for ∆ time steps
before it executes the operation Oj,i. Thus, in S′ we can increase the length of Oj,i

by ∆, without increasing the makespan. Similarly, if i = 2, then Oj,i is scheduled
at the same time in S′ as in S, but any operation after that on the same machine will
be scheduled ∆ units later. Thus, this machine is free for ∆ time steps after Oj,i.
This allows us to increase the length of this operation by ∆ without increasing the
makespan beyond that of S′. Finally, we note that the makespan of S′ is ∆ plus the
makespan of S. �

Proof of Lemma 1. Armed with the rounding tool, we describe a series of trans-
formations which affect the optimum only by a factor of 1 + O(ε). Without loss
of generality we assume that 1/ε is an integer. Notice that in the following, Lmax

refers to the maximum machine load with respect to the current instance (i.e., after
rounding in the previous steps).

1. Dealing with small operations: First, we round up the length of operations
such that the length of each operation is at least εLmax/n. This affects the total
processing time by at most 2εLmax. Then, for every job j, we round up the length
of the smaller operation of j, such that the length of this operation is at least ε times
the length of j. This increases the total processing time by at most εmLmax.

2. Rounding processing times: We round the sizes of the operations in two
steps. We first round up each size to a power of 1 + ε, and then round up the size
to an integral multiple of εLmax/n. This affects the makespan by at most a factor
of 1 + O(ε) since the change in the total processing time during the rounding is
at most (m + 2)εLmax. We now rescale the processing times by dividing all of
them by εLmax/n. After doing so, all processing times will be positive integers,
and the maximum machine load in the resulting instance is n/ε. Note that in any
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schedule for this instance without “unnecessary” idle times each operation starts at
an integral time moment.

3. Partitioning jobs into blocks: Let Ji be the subset of jobs whose length
is in the interval (εi+1Lmax, εiLmax]. This partitions the set of jobs into groups
J0,J1, . . .. Next we define the set of blocks. Block B1, consists of groups 0
through b−1 where b < 1/ε will be a constant specified later. Block Bi, for i ≥ 2,
consists of groups b + (i − 2)/ε + 1 through b + (i − 1)/ε − 1. By definition, the
length of a job in Bi is at least li and at most ui, where li = εb+(i−1)/εLmax and
ui = εb+(i−2)/ε+1Lmax. Notice that we have ui+1 = ε li = ε1/ε ui for every i,
as desired. The only problem with this “partition” is that it leaves out some of the
jobs: the jobs that are in groups Jb,Jb+1/ε,Jb+2/ε, . . . are not included in any of
the blocks. However, we will argue that by a suitable choice of b, the total length
of these jobs is small, and therefore we can delete them from the instance.

Let Xi be the total length of the jobs in Ji, and Yb =
∑

i≥0 Xb+i/ε be the total
length of the jobs that are left out from the blocks defined above. Since the total
length of all jobs in the instance is

∑1/ε
b=1 Yb, there must be a choice of b for which

Yb is at most ε times the total length of all jobs, i.e., Yb ≤ ε mLmax.
By deleting jobs belonging to the set ∪i≥0Jb+i/ε the optimal makespan changes

by at most O(ε)Lmax, since we can schedule these jobs separately at the end.
Moreover, the set of remaining jobs is exactly ∪i≥1Bi. Thus, we can assume that
the instance consists only of the blocks ∪i≥1Bi.

The second and the third steps in the above rounding procedure guarantee that
conditions (ii) and (iii) of Lemma 1 hold. In order to verify the condition (iv),
notice that by the first step in the above procedure, the length of the smaller oper-
ation of jobs in Bi is at least ε li, and the total length of any such job is between li
and ε1/ε−1 li. Furthermore, the second step of the above procedure guarantees that
there are at most O(log(amax/amin)) different possible values for the length of an
operation in the interval [amin, amax]. This ensures that the number of job types in
each block is O(1). �

Throughout the rest of this section, we denote the number of jobs in Bi by ni.
Also, let Vi denote the total processing time of the jobs in Bi. Clearly, ni · li ≤
Vi ≤ ni · ui.

2.2 The auxiliary graph
Let S be a partial schedule of jobs. Consider a time instant t. At this time instant,
some of the machines are free and some are not. We can denote this by a number g
between 0 and 2m−1, whose binary representation has a zero in the i’th position if
and only if the i’th machine is free at time t. A gap of type g is a continuous interval
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of time, during which the pattern of free machines is given by g. See Figure 1 for
an example.

The gap profile of a partial schedule S is a 2m tuple indexed by 2m different
gap types such that its g’th entry is the total length of all time intervals (from the
start of the schedule until its completion) that are of type g. In other words, the gap
profile of a schedule keeps track of the cumulative length of intervals of each gap
type. For example, the gap profile of the schedule in Figure 1 is a 32-tuple with
values 2, 2, and 1 in the positions 00110, 01010, and 01001, zero everywhere else.
Conversely, given a gap profile G, we can build a configuration called the canoni-
cal configuration for G as follows: The configuration consists of 2m time intervals,
where the g’th interval is of length Gg and the set of machines that are free during
this time interval is precisely the set of bits of g that are zero. The ordering of the
intervals does not matter. We denote the canonical configuration corresponding to
the gap profile G by Z(G). For example, the canonical configuration correspond-
ing to the gap profile in Figure 1 is shown in Figure 2.
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Figure 1: An example for gap types

Figure 2: Canonical configuration of the schedule in Figure 1

For a set J of jobs and gap profiles G and G′, we say G
J−→ G′ if there is a

way to schedule the jobs in J in the free spaces of the configuration Z(G) such
that the gap profile of the resulting configuration is G′. The idea of our algorithm
is to compute a sequence G(0), G(1), . . . , G(k+1) of gap profiles such that G(0) is
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the profile corresponding to the empty schedule with makespan C, and for every

i, G(i−1) Bi−→ G(i). Notice that this does not immediately give us a schedule
for ∪iBi, since, for example, after scheduling the jobs of B1 in Z(G(0)), we get
a schedule with gap profile G(1), which might not be the same as Z(G(1)) (i.e.,
intervals of the same gap type may not be consecutive in this schedule). However,
we will argue in the rest of this section that this problem only costs us an extra
factor of 1 + O(ε).

We are now ready to define the auxiliary graph. Fix a number C, 1 ≤ C ≤
mLmax. This number is the makespan that we are aiming for. Let G be the set
of all possible gap profiles G = (G0, . . . , G2m−1) such that

∑2m−1
i=0 Gi ≤ C, and

each Gi is an integer. Clearly, the number of such gap profiles (i.e. |G|) is at most
O(n2m

). Let k denote the number of blocks in the rounded scheduling instance.
The auxiliary graph G(C) consist of k+1 layers L0, . . . , Lk. The layer L0 consists
of a single node corresponding to the gap structure that has C in the 0’th entry (i.e.,
the entry corresponding to the intervals where all machines are free), and zero
everywhere else. We call this node the root. For i > 0, layer Li consists of |G|
nodes each corresponding to a gap profile and denoted by (i, G) where G ∈ G.
There is a directed edge from a node (i − 1, G) in level i − 1 to a node (i, G′) in

level i if G
Bi−→ G′.

We now prove Lemmas 2 and 3. These lemmas show how the optimal makespan
and the graph G(C) are related.

Proof of Lemma 2. Consider the optimal schedule S. Let i = 0. Consider the
time instants when an operation in Bi starts or finishes execution. There are at most
3ni such time instants. Consider all the jobs in ∪j>iBj that are running at one of
these time instants. There are at most 3nim such jobs. Delete these jobs from the
schedule and schedule them separately at the end such that their processing times
do not overlap with each other or with other jobs. Repeat for i = 1, . . . , k. Call the
resulting schedule S′.

Since the length of each job in ∪j>iBj is at most ui+1, the above procedure
adds at most

∑k
i=1 3nimui+1 to the makespan. Recall that the total process-

ing time of jobs in Bi is Vi ≥ nili = niui+1/ε. Therefore, the makespan C ′

of the schedule S′ is at most
∑k

i=1 3εmVi ≤ 3εm2Lmax more than the optimal
makespan.

We now show how to obtain a path in the graph G(C ′). Let S′
≤i denote the

partial schedule that consists only of jobs in ∪j≤iBj scheduled at the same time

as in S′. Let G(i) be the gap profile of S′
≤i. We show that G(i) Bi+1−→ G(i+1). This

would give us a path from the root to a vertex in Lk in G(C ′). Since in S′ no job
in Bi+1 is executed at a time when a job in ∪j≤iBj begins or finishes execution,
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we can do the following: Consider all intervals of gap type g in S′
≤i. Look at the

schedule of the jobs in Bi+1 in S′ in these intervals. Now if we concatenate these
schedules, this gives a way of placing the jobs in Bi+1 in the free spaces of the
interval of type g in the configuration Z(G(i)). Do this for each g. This gives
us a schedule of all jobs of Bi+1 in the free spaces of the configuration Z(G(i)).
Furthermore, by construction, the gap profile of this schedule is the same as the

gap profile of S′
≤i+1, which is G(i+1). Therefore, G(i) Bi+1−→ G(i+1). This gives us

a path in G(C ′). �

Proof of Lemma 3. Let (0, G(0)), (1, G(1)), . . . , (k, G(k)) be a path from the root
to a node in the last level of G(C). The edge ei from (i − 1, G(i−1)) to (i, G(i))
gives a way of scheduling Bi in the configuration Z(G(i−1)) to yield the gap profile
G(i).

We first construct a preemptive schedule. The construction is inductive: in
the i’th step, we construct a preemptive schedule Si of jobs in ∪j≤iBj whose gap
profile is G(i). The base of the induction (i = 0) follows from the definition of the
root of G(C). Suppose we have constructed a partial preemptive schedule Si with
gap profile G(i) for ∪j≤iBj . We now show how to schedule Bi+1 in the empty
spots of Si and obtain Si+1 such that the gap profile of Si+1 is G(i+1). The edge
ei shows us how to schedule Bi+1 in the empty spots of Z(G(i)) and obtain a
schedule of profile G(i+1). Call this schedule R. By definition, the empty spots of
Si have the same structure as those of Z(G(i)), except in Z(G(i)) all intervals of
the same type are concatenated. Therefore, we can cut each gap of Z(G(i)) into
several gaps and order them so that we obtain the same configuration as Si. Using
these cuts on the schedule R gives us a schedule of Bi+1 in the empty spots of
Si with gap profile G(i+1), as desired. The only catch is that by cutting a gap of
Z(G(i)) into several gaps and reordering them, we might preempt some of the jobs
of Bi+1. That is why we call this schedule preemptive.

After finding a preemptive schedule Sk of all jobs, the next step is to convert
this schedule into a non-preemptive feasible schedule. This is done in the straight-
forward way: if any job is preempted, we remove it and place it at the end of the
schedule.

We only need to show that this does not add too much to the makespan. We
show this by proving that the total length of the jobs that are preempted in the
schedule Sk is at most O(εLmax). In the i’th step of building Sk (i.e., when we
are constructing Si+1), the number of jobs in Bi+1 that we might preempt is up-
per bounded by the number of gaps in Si times m, which is at most 3m| ∪i

j=1

Bj | = 3m
∑i

j=1 nj . Since the length of each job in Bi+1 is at most ui+1, the

total length of jobs that are preempted in this step is at most 3m
∑i

j=1 njui+1 =
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3m
∑i

j=1 njljε
1+(i−j)/ε. Using the fact that the total processing time of jobs in Bj

is Vj ≥ njlj , we can bound above the total length of jobs that are preempted in Sk

by

k∑

i=1

3m
i∑

j=1

Vjε
1+(i−j)/ε = 3mε

k∑

j=1

(
k∑

i=j

ε(i−j)/ε)Vj ≤ 3mε
k∑

j=1

Vj

1 − ε1/ε
≤ 4m2εLmax,

where the last inequality holds for all ε ∈ [0, 1/2]. Therefore, the total length of
jobs that are preempted is at most O(ε)C. Hence, after scheduling these jobs at the
end the total makespan is at most (1 + O(ε))C. �

2.3 Computing the auxiliary graph
In this section we will use dynamic programming to prove that the graph G(C)
defined in the previous section can be computed in polynomial time.

Proof of Lemma 4. The number of vertices of the graph G(C) is a polynomial in
the number of jobs. Therefore, we only need to show that it is possible to decide
whether there is an edge between two vertices in polynomial time. In other words,
given two gap profiles G and G′ and a block of jobs Bi, we need to decide whether
jobs in Bi can be scheduled in Z(G) to yield the gap structure G′. By Lemma 1
we know that the number of different job types in Bi is a constant r independent of
the size of the input. Therefore, there are at most nr distinct sets of jobs in Bi. Call
the collection of all such sets S. Also, recall that G denotes the set of all possible
gap profiles (G0, G2, . . . , G2m−1) with

∑
Gi ≤ C, and that |G| is a polynomial in

n. In order to decide whether we can schedule Bi in the free spaces of Z(G) to get
the gap profile G′, we define a table A and fill it using dynamic programming.

For a set S ∈ S of jobs in Bi, a gap profile H ∈ G, and numbers t ∈
{1, . . . , C}, a1, a2, . . . , am ∈ {0, . . . , r} and C1, . . . , Cm ∈ {0, . . . , C}, we de-
fine the entry A(t, S, H, a1, . . . , am, C1, . . . , Cm) of the table. This entry keeps
an answer on the following question: Is there a feasible schedule such that jobs
from the set S are scheduled completely in the free spaces of Z(G) in time interval
(0, t] (recall that ordering of intervals corresponding to configurations in G is not
important but we must fix one for Z(G)), machine i is running a job of type ai in
time interval (t − 1, t] (this job does not belong to S) and completion time of this
job is Ci ≥ t (if machine i was not running anything at time t, we let ai = 0 and
Ci = t) and the gap profile of the schedule in time interval (0, t] is H (i.e., for
every g, there are exactly Hg time units before t that are of type g)?

Assume we computed all elements of the table A for t ≤ τ − 1 we now show
how to compute elements of the table for t = τ . In order to compute the entry
A(τ, S, H, a1, . . . , am, C1, . . . , Cm), we need to guess the jobs that machines run

11



at time step τ − 1. On some machines, this job is uniquely specified from the
information that we have about the jobs (their types and completion times) that
machines are running at time τ and the assumption that the schedule must be no-
wait and non-preemptive. On other machines, we need to decide about the type
of the job that we want to run at time τ − 1. But since both the number of job
types and the number of machines are constants, the number of possibilities is a
constant. Moreover, the only way the job can run at time τ − 1 and not run at
time τ is when this job completes at time τ − 1. For each such possibility, let
∆S be a set of jobs running at time τ − 1 and a′1, . . . , a′m, C ′

1, . . . , C
′
m be their

types and completion times. We update update H by subtracting one from the
entry corresponding to the gap type in the time interval (τ − 1, τ ], and look at
the table A to check whether it is possible to finish the schedule corresponding
to these updated parameters in the time interval (0, τ − 1], i.e. we look at the
entry A(τ, S \∆S, H, a′1, . . . , a′m, C ′

1, . . . , C
′
m). If this entry is one for at least one

choice of the set ∆S ⊆ S, i.e. jobs that are running at time τ − 1, then we record 1
in the entry A(τ, S, H, a1, . . . , am, C1, . . . , Cm) of the table; otherwise, we write
0 in this entry.

It is easy to verify that the above procedure fills the table in polynomial time.
Now it is enough to check the entries A(C, Bi, G

′, a1, . . . , am, C, . . . , C) of the
table for all possible choices of a1, . . . , am, i.e. types of jobs which have com-
pletion time equal to the makespan of the schedule. If there is one in at least one
such entry then there is an edge from (i − 1, G) to (i, G′) in the graph G(C) and
conversely if all those entries are 0 then there is no edge from (i − 1, G) to (i, G′)
in the graph G(C). If we would like actually to compute the schedule correspond-
ing to some entry A(C, Bi, G

′, a1, . . . , am, C, . . . , C), we should use the standard
backtracking procedure which works in C steps and on step i = 0, . . . , C − 1 it
finds jobs finishing at time C − i. �

Remark 1 As we already noticed our algorithm can be simply generalized to han-
dle jobs with one operation only by introducing a dummy machine, therefore our
result provides a PTAS for the problem studied in [3]. Another generalization of
our algorithm can easily handle the so-called mixed shop scheduling problem with
two operations per job, i.e. the problem where in addition to the jobs with prece-
dence constraint between operations we have jobs with two operations which can
be processed in any order. This problem is a mix between job shop and open shop
scheduling problems. The only extension we need is to generalize notion of job
type for this problem. Now job type includes operations lengths and an order in
which those operations must be processed. All other steps of our algorithm are
implemented without any changes. Therefore our algorithm provides a PTAS for
the two machine open shop problem studied in [17].

12



3 Hardness result
In this section we will prove the following theorem.

Theorem 2 The problem of deciding whether an instance of the no-wait job shop
scheduling with 2 operations per job has a schedule of makespan at most 4 is NP-
hard, even when restricted to instances that have operations of length one and two
only.

Proof. We give a reduction from the NP-complete problem [6] of edge-coloring
3-regular graphs with 3 colors. Let G be a given 3-regular graph. We construct an
instance of the scheduling problem that has a schedule of makespan 4 if and only if
G is 3-edge-colorable. This instance consists of two jobs Juv and Jvu for each edge
e = (u, v) of G, and gadgets Ae that guarantee that the two jobs Juv and Jvu are
scheduled at the same time. The job Juv has two operations, each of unit length.
The first operation of this job runs on a machine Mu corresponding to the vertex u.
Clearly, in any valid schedule with makespan 4, this operation must be schedule in
one of the time steps 1, 2, or 3. We would like the time step at which this operation
is scheduled to correspond to the color of the edge uv in the 3-edge-coloring of G.
Since the first operation of the three jobs corresponding to the three edges incident
on u must all be scheduled on the same machine Mu, they must be scheduled at
different time steps. This corresponds to the condition that in an edge-coloring of G
the edges incident on u must get different colors. Therefore, the only thing that we
need in order to establish a correspondence between schedules in our instance and
3-edge-colorings in G is to somehow guarantee that the first operations of the two
jobs Juv and Jvu corresponding to the same edge e are scheduled at the same time
step. This will be done by having the second operation of these jobs on machines
in the gadget Ae that is described below. This gadget will guarantee that the second
operations of Juv and Jvu (and therefore their first operations) are scheduled at the
same time step.

We now describe how to build the gadget Ae. We start by constructing a sim-
ple gadget T1 such that by adding T1 to a machine M , we can guarantee that a
job of T1 will be scheduled at time step 1 on M , and no other job of T1 will be
scheduled on M (in other words, T1 keeps the machine M busy at time step 1).
This gadget consists of two jobs J1 and J2, and two machines M1 and M2. J1

has two operations, each of length two, that must be scheduled on machines M1

and M2, respectively. J2 has two operations of length one, the first one of which
is on machine M and the second one is on machine M2. It is easy to verify that
this gadget has the required property. Similarly, we can construct a gadget T4 that
keeps a machine M busy at time step 4. These gadgets are shown in Figure 3.
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Figure 3: The gadgets T1 and T4

The second step in the construction of Ae is to construct gadgets Hij (for i, j ∈
{2, 3, 4}) such that by adding Hij to two machines M and M ′, we can guarantee
that both M and M ′ are kept busy by two jobs J and J ′ of Hij at the same time
step, and this time step can be either i or j. More precisely, there are two jobs
J and J ′ in Hij which have one unit-length operation on machines M and M ′,
respectively. These are the only operations in Hij on M or M ′. For s ∈ {i, j},
there is a valid schedule of Hij of makespan 4 that schedules the operations of J
and J ′ on machines M and M ′ both at time step s. These two combinations are
the only possible time steps at which the operations of J and J ′ on M and M ′ can
be scheduled in a valid schedule with makespan 4. Here we construct the gadgets
H24 and H34, which will be used in Ae.

The gadget H24 consists of two machines M3 and M ′
3, jobs J , J ′, J3, and J ′

3,
and two copies of the gadget T4. The two copies of T4 keep the machines M3 and
M ′

3 busy at time step 4. Job J3 has two unit-length operations, the first one on M3

and the second one on M ′
3. Similarly, J ′

3 has two unit-length operations on M ′
3 and

M3, respectively. Job J (J ′, respectively) has two unit-length operations, the first
one on M3 (M ′

3, respectively), and the second one on M (M ′, respectively). This
gadget is shown in Figure 4. It is easy to verify that in any valid schedule of H24

of makespan 4, the first operations of the jobs J3 and J ′
3 both start at the same time

step, 1 or 2. Therefore, the only time steps that remains free on M3 and M ′
3 for

J and J ′ are the same time steps, and they are either both 1, or both 3. Thus, the
second operations of J and J ′ are both scheduled either at time 2, or at time 4 on
M and M ′.

We can easily generalize the gadget H24 to a gadget H
(4)
24 that guarantees that

either the four machines M (1), M (2), M (3), and M (4) are all kept busy at time step
2, or are all busy at time step 4. This gadget is shown in Figure 5.

We now describe the gadget H34. This gadget consists of four machines M (1),
M (2), M (3), and M (4), four jobs J , J ′, J4, and J5, four copies of the gadget T1, and
one copy of the gadget H

(4)
24 . The four copies of T1 keep the machines M (1), M (2),
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Figure 5: The gadget H
(4)
24

M (3), and M (4) busy at time step 1. The gadget H
(4)
24 keeps these machines busy

either all at time step 2, or all at time step 4. The job J4 (J5, respectively) has two
unit-length operations, the first one on M (3) (M (4), respectively), and the second
one on M (1) (M (2), respectively). The operations of the job J (J ′, respectively)
are of unit length, and are on machines M (1) (M (2), respectively), and M (M ′,
respectively). See Figure 6. It is easy to verify that by this construction, either both
machines M (1) and M (2) are kept busy by H

(4)
24 at time 2, and they are running

the second operations of J4 and J5 at time 4, or they are both kept busy by H
(4)
24

at time 4, and are running J4 and J5 at time 3. Therefore, the first operations of
J and J ′ are either both scheduled at time 2, or they are both scheduled at time 3.
This proves that H34 has the required property.

We are now ready to describe the gadget Ae. This gadget consists of two
machines Muv and Mvu that will be assigned the second operations of Juv and
Jvu, a copy of H24 that keeps Muv and Mvu busy either both at time 2, or both at
time 4, and a copy of H34 that keeps Muv and Mvu busy either both at time 3, or
both at time 4. It is not difficult to see that this gadget has the required property
that Juv and Jvu must be processed in the same time unit on Muv and Mvu which
is either 2 or 3 or 4 in any valid schedule of makespan 4.

By combining the jobs Juv and Jvu and the gadgets Ae for all edges e of the
graph G, we obtain an instance of the scheduling problem that has a schedule of
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Figure 6: The gadget H34

makespan 4 if and only if G is 3-edge-colorable. Furthermore, we know that every
3-regular graph is 4-edge-colorable. From a 4-edge-coloring of G, we can easily
obtain a schedule of our instance by scheduling the jobs Juv and Jvu at the time
steps corresponding to the color of the corresponding edge in G, and scheduling the
gadgets in the way that is described in the construction of the gadgets. Therefore,
our instance always has a schedule of makespan at most 5. �

Corollary 3 It is NP-hard to approximate the no-wait job shop scheduling prob-
lem within a factor less than 5/4, even when the input is restricted to have 2 oper-
ations per job, and all operations of length 1 or 2.

Remark 2 The only place we needed to use operations of length 2 in the above
proof is in the construction of the gadgets T1 and T4. Unfortunately, we are unable
to construct such gadgets only using unit-length operations. The no-wait job shop
scheduling problem when the input is restricted to have 2 operations per job, and
all operations are of length 1 can be studied as a special case of a graph coloring
problem where every directed edge is colored with two colors a and b such that
k ≤ b − a ≤ l. This problem is called (k, l)-coloring. It was first introduced
in [20] and studied in the series of papers [9, 11, 19, 20, 21]. The no-wait job
shop scheduling problem with unit length operations and two operations per job
is exactly (1, 1)-coloring problem. By modifying our construction we can prove
that recognizing if a directed multigraph can be (1, 1)-colored using 7 colors is
an NP -complete problem. The question of finding the smallest number of colors
for which this problem is NP-complete remains open (for three colors it can be
reduced to the 2-SAT problem, see [22] for details).
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