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Abstract

A successful superconducting flux qubit has not yet been demon-
strated. We show theoretically that a flux qubit containing one or more
gradiometer loops has major advantages in terms of noise immunity, in-
dependent controllability in Sx and Sz, and analyzability, which should
facilitate progress towards a successful demonstration of the flux qubit.

In the drive to develop a scalable superconducting qubit for Quantum Com-
putation, nanoscopic Josephson junction-based superconducting circuits, which
can be produced in thousands on a chip by lithographic techniques, are highly
promising. Despite demonstration of superconducting qubits based on a single
electronic charge [1],[2], and on a mixed charge/magnetic flux state representa-
tion [3], operation of a pure flux-based qubit has not been successfully demon-
strated, even though this, the closest to a "classical" implementation, might
ultimately prove the most stable and satisfactory in engineering terms.
In a flux qubit the | ↑i and | ↓i basis states are represented by quantized flux

of sense ↑ or ↓ threading a micron-scale superconducting ring which contains,
in its canonical form, a single Josephson junction. In terms of the orthonormal
| ↑i and | ↓i states, we can define the operator Sx = | ↑ih↓ | + | ↓ih↑ | as a
unit tunneling matrix between the ↑ and ↓ states, while the operator Sz = | ↑
ih↑ |− | ↓ih↓ | is a unit shift in the relative energy of the ↑ and ↓ states. Single
qubit operation [4] involves acting on the initialized qubit with a sequence of
external controls fx(t)Sx and fz(t)Sz, where the f 0s are time-dependent fields,
followed by a measurement of the qubit state; during these processes a high
level of quantum coherence [5] must be maintained.
There is a physical realization of the z-field fz(t), which is just proportional

to the external magnetic flux φz through the superconducting ring. Implement-
ing the x-field fx(t) requires replacement of the single Josephson junction in
the main superconducting ring by an interferometric ring [6] containing two
Josephson junctions (see Fig. 1a). Now fx(t) is controlled (nonlinearly) by the
external magnetic flux 2φx(t) threading the interferometric ring. A DC fx-field
is also required to tune the time-averaged interwell tunneling matrix fxSx to
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Figure 1: (a) Superconducting loop with interferometric ring containing two
Josephson junctions. (b) Gradiometer qubit, showing main loop c and gra-
diometer interferometric loop a, containing two junctions with Josephson phases
x1 and x2. External flux threading the main loop is controlled by current Iz
in the upper z-drive coil, while external flux threading the gradiometer loop is
independently controlled by current Ix in the lower x-drive coil. The flux in the
main ring is weakly coupled inductively to the surrounding classical SQUID,
which measures the qubit state.

an appropriate operating value. Successful operation of the flux qubit will then
require (a) independent control of the flux in the interferometric and main rings,
and (b) minimization in both rings of external flux noise, which acts to detroy
quantum coherence (c) theoretical modelling to predict the correct operating pa-
rameters. Attention to these issues in the qubit design will be key to a cleanly
operable flux qubit.
In this letter we demonstrate a simple design philosophy for flux qubits,

which simultaneously ameliorates the foregoing requirements, by introducing a
"gradiometer twist" into one or both rings [7] (Fig. 1b). The qubit in Fig.
1b consists of a main ring c, (which for clarity, is shown as untwisted), an in-
terferometric ring a, containing two Josephson junctions and embodying the
gradiometer twist, and a surrounding classical SQUID [8] which is coupled only
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to the flux in the main ring and serves to measure the final state of the qubit.
In addition there are control coils carrying currents Ix and Iz, which, because
of the symmetric gradiometer design (analogous to the differential and common
mode electrical circuit concept) independently control the external interferom-
eter flux, φx, and the main coil external flux φz, respectively. Also, the twist
in the interferometer ring eliminates the effect on it of the spatially averaged
external noise flux, and introduction of a similar twist into the main ring would
also eliminate its sensitivity to spatially averaged noise flux. Thus both points
(a) and (b) above are addressed by the gradiometer twist concept. By induc-
tively decoupling loops a and c, the symmetry-based gradiometer design also
ameliorates theoretical analysis, point (c), to which aspect we now turn.
Starting from a continuous Hamiltonian, it is necessary to solve it and hence

to define the conditions required to obtain the type of spectrum useful for a
qubit, i.e. a doublet well-separated from all other levels. The Hamiltonian is
expressed in terms of the phase jumps x1 and x2 across the two junctions (Fig.
1b)

H = −(2e)
2

2C

µ
∂2

∂x21
+

∂2

∂x22

¶
− EJ (cosx1 + cosx2) (1)

+
(x1 − x2 − 2φx)2

2La
φ21 +

(x1 + x2 − 2φz)2
8Lc

φ21.

In this representation [9], [10], the conjugate variable to phase is charge, en-
abling the capacitative charging energy to be expressed as the first term in Eq.
(1), where C is junction capacitance. The second term in Eq. (1) is the coupling
energy of the two junctions, each of Josephson energy EJ . Use of gauge invari-
ance around a closed current loop enables expression of the inductive energies
in terms of the Josephson phase jumps (third and fourth terms in Eq. (1)),
where φ1 = h̄/2e is a quantum of flux, and La and Lc are the respective loop
self-inductances, threaded by external fluxes 2φx and φz respectively; there is
no cross term by symmetry.
Usually La is much smaller than Lc (e.g. by a factor of 20), making 1/La

large, effectively forcing x1 − x2 → 2φx. Then, in this approximation, we can
rewriteH (in units ELc = φ21/Lc) in terms of a single variable v = (x1 + x2) /2−
φz as

H/ELc = −
1

2M

∂2

∂v2
+ βx cos (v + φz) +

v2

2
, (2)

where the dimensionless effective massM = 2r2QC/Lc, rQ = h̄/ (2e)2 = 1.03 kΩ,
and βx = −2 (EJ/ELc) cosφxis the dimensionless, tunable, Josephson coupling.
With βx > 1, the potential energy V (v) (V (v) = sum of last 2 terms in

Eq.(2)) describes a quantum mechanical twin-well system whose potential en-
ergy is plotted in Fig. 2. In this model, Eq. (2), interwell tunneling is inhibited
by the large mass M , which in practical realizations is hard to make smaller
than M ∼ 100; the cause is the impedance mismatch between the resistance
quantum rQ ∼ 1 kΩ and the low impedance Z0 '

p
Lc/C ∼ 100Ω of the sim-

ple LC qubit circuits, M depending on (rQ/Z0)
2. The solution is to use a DC
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Figure 2: Potential energy V (v) (sum of second 2 terms in Eq.(2)) plotted vs.
common mode phase jump v, with parameters: black curve, φx = 2.3, φz = 0;
red curve, φx = 2.25, φz = 0; green curve, φx = 2.3, φz = 0.04.

control flux φx to tune the interwell barrier in Fig. 2 to an acceptable value.
Assuming that φz is small, this will require that φx lie just above π− θc, where
θc, defined by cos θc = ELc/2EJ , is the critical value of φx at which the interwell
barrier vanishes.
Further analytic understanding in the barrier-tuning region is obtained by

expanding the cosine in Eq. (2) and changing variables, when H is expressed in
terms of a reduced, dimensionless hamiltonian h(m∗), H/ELc = 3h(m

∗)/2M2/3,
defined for φz = 0 as

h(m∗) =
µ
m∗

9

¶2/3 ·
− 1

2m∗
∂2

∂s2
− 2s2 + s4

¸
, (3)

containing a reduced mass m∗ = 9(βx − 1)3M. Now in Eq. (3) the potential is
always a quartic one with a unit barrier height, while the reduced mass absorbs
both the effect of the original mass M and of the barrier tuning. It is seen
explicitly that a large mass M can be counteracted by tuning βx close to unity,
e.g. if M = 100, then taking βx = 1.1 will bring the reduced mass to m

∗ = 0.9,
a relatively low value.
We found that a fit to the splitting E01 of the lowest doublet is obtained

from the empirical tunneling formula

E01/ELc ' 9(βx − 1)2e−2
√
m∗ , (4)
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Figure 3: Eigenvalue separations E0n, in units ELc , between ground state and
nth eigenvalue, for 2-variable Hamiltonian of Eq. (1), plotted vs. φx. Parame-
ters as Table I.

with m∗ in the exponential, explicitly demonstrating that, in flux qubit de-
sign, the reduced mass m∗ is the key dimensionless parameter controlling the
tunneling rate.
In addition to the stationary current Ix required for tuning the barrier, time-

dependent control currents Ix(t) and Iz(t) will be required to operate the qubit.
The gradiometer design ensures that these currents independently control the
Sx and Sz operations on the qubit.

Table I: Parameters used in Eigenvalue Calculation
Par. Lc Lc/La C M Ic = EJ/φ1 EJ/ELc θc ϕz
Value 750 pH 10 23 fF 64 0.44µA 1 2.094 0

A quantitative feeling for gradiometric flux qubit design can be obtained from
the example in Table I, and the corresponding eigenvalue spectrum, calculated
from the full Eq.(1), plotted in Fig. 3. It is seen that if the value of φx is
too close to the critical value θc, then the barrier is low and the spectrum is
essentially harmonic, and unsuitable for qubit implementation. On the other
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hand, if φx is too large, then the barrier is too high and the tunneling splitting
is negligible. An intermediate value of the flux φx, say φx = 2.25, the tunneling
splitting has a reasonable value E01 ' 1.4GHz, but the doublet is still well
separated from the higher energy levels, indeed forming a qubit.
In summary, we have demonstrated that flux qubit design may be much

improved by building in the concept of a gradiometer twist into one or more
of the superconducting loops. The gradiometer design reduces external flux
noise, decouples the x- and z- control fields, and inductively decouples the two
rings, facilitating analysis, thus delivering significant performance improvement
and designability at the cost of little design complexity. The illustrated design
(Fig. 1b) would be further improved from the point of view of noise immunity
by adding a gradiometer twist around the y-axis to the c-ring (appropriately
reforming the SQUID ring in order to maintain its coupling to the c-ring), al-
though some stability against φz-noise is already obtained from the symmetry of
the energy surfaces at the operating point φz = 0 [2], [3]. In addition to benefit-
ting the most basic flux qubit design described here, more advanced designs with
additional junctions [11] can also benefit by incorporation of the gradiometer
design concept.
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