
RC23076 (W0401-109) January 22, 2004
Computer Science

IBM Research Report

A Toolkit for Policy Enablement in Autonomic Computing

Dinesh C. Verma, Seraphin B. Calo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Toolkit for Policy Enablement in Autonomic Computing

Dinesh C. Verma Seraphin B. Calo
IBM Research IBM Research

dverma@us.ibm.com scalo@us.ibm.com

Abstract

A Policy Toolkit is being developed at the IBM T.J.
Watson Research Center that is aimed at accelerating
the adoption of policy based technologies and
methodologies. The goal is to produce a set of common
software components that can be used across a wide
variety of applications, and that simplify the task of
integrating policy related methodologies into new or
existing software systems. As such, the Policy Toolkit
provides direct support for the efforts involved in
autonomic computing, e-business on demand, OGSA
grid computing, and web services. It contains libraries
of commonly used policy manipulation functions (e.g.,
for creating, validating, evaluating, and otherwise
managing a set of policies), as well as patterns for
building typical policy-based systems. Its components
can be bundled into user applications in a variety of
ways, allowing them to flexibly incorporate the ability
to make decisions based on policies.

1. Introduction

Developers of policy enabled systems need a
common set of basic functionality regardless of their
areas of application. This is most conveniently
provided in terms of a toolkit from which they can
choose those components that are needed for their
particular implementations.

The Policy Toolkit (PTK) is written in Java and
consists of a core module plus a set of modules that
perform specific functions as shown in Figure 1. The
toolkit is designed so that any application can select a
subset of the available modules in its design. The
Policy Core Classes represent policy rules, conditions,
actions, etc. They provide the basic capabilities of the
Policy Toolkit and are used by the other modules. The
Policy Editor Module contains the classes that can be
used to easily create a custom Policy Editor GUI; the
Validation Module provides a set of validation checks

that can be run on groups of policies; the
Decomposition Module can be used to transform a
high-level policy into lower-level resource specific
policies; the Policy Agent Module contains the Java
classes needed to easily create Policy Agent that
performs the functions of policy caching and
distribution; the Policy Enforcement Point Module
consists of the classes that can be used to easily create
a policy enforcement point for evaluating and
executing the policies; and, the Policy Conflict
Resolution Module has those classes that can be used
to identify and resolve conflicts that may arise between
groups of policies that represent different disciplines.

Policy Toolkit Core Classes
(ie. rules, conditions, actions)

Po
lic

y
E

di
to

r M
od

ul
e

V
al

id
at

io
n

M
od

ul
e

D
ec

om
po

si
tio

n
M

od
ul

e

Po
lic

y
A

ge
nt

Po
lic

y
E

nf
or

ce
m

en
t P

oi
nt

C
on

fli
ct

 R
es

ol
ut

io
n

M
od

ul
e

Policy Enabled Application

XML
Policy
Files

Policy Toolkit API

Y
ou

r P
riv

at
e

M
od

ul
e

Figure 1: Policy toolkit design

The API to the toolkit is a set of java classes, and it
is designed so as to support different types of policy
languages as long as they conform to the policy
information model described later in the paper. The
default policy language supported in the toolkit is an
XML representation of policies which are parsed into
the java representation of the information model.

In the following sections of the paper we will
present the key features of the Policy Toolkit in greater
detail. Section 2 will discuss the policy model and the
basic functionality provided for its support. Subsequent

1

sections will address more advanced capabilities that
have been identified as important in various
engagements with those developing policy enabled
applications. In Section 3, the validation of sets of
policies and the runtime resolution of conflicts is
considered. Section 4 deals with transformations of
policies from higher levels of specification to forms
that can be executed by the autonomic elements within
the system. In Section 5 we present some preliminary
work on policy-based design patterns; Section 6
describes an example of the use of the toolkit for policy
enablement of an autonomic application; and, finally
Section 7 deals with conclusions and future work.

2. Toolkit core component and design

One of the challenges in building a policy toolkit is

that the policy enabled system needs to be integrated
with existing system and network management
consoles. As a result, it is difficult to define the notion
of a policy language which will be universally
acceptable. Users of existing storage management
products would like to implement policies as expressed
in the configuration languages of their products, as
opposed to adopting a universal policy language. On
the other hand, the absence of a universal language
makes it difficult to provide a generic toolkit for users.

To address this problem, the PTK has been designed
around policies which are implemented in accordance
with a policy information model, as opposed to a
specific policy language. A policy information model,
e.g. the PCIMe information model [1] specifies
constraints on the structure of the policy rule, without
specifying the syntax for expressing the policies. A
policy language, e.g. PONDER [2] is a rendering of an
information model in a specific language. The toolkit
has been designed to represent the constructs of an
information model as a Java class, and defines an
abstract interface for defining and developing parsers
from a specific syntax into the information model.
Different implementations of the parser interface
enable the same set of Java functions to work with
multiple syntactical renderings of the same policy
expression.

 Within the PTK, we have implemented the
information model developed within the IBM
Autonomic Computing Initiative. This information
model is based upon the PCIMe information model,
and consists of four main components – precondition,
decision, business-value and scope. The precondition is
a derivative of the PCIMe condition construct, the
decision is a derivative of the PCIMe action construct,
the business-value is a generalization of PCIMe

priority values, and scope is a generalization of the
PCIMe role construct. The semantics of a policy with
the four components is as follows:

If the scope of a policy is applicable, and the
preconditions of the policy evaluate to true, then the
result of the policy must be enforced with business
value used to arbitrate among multiple choices.

Core Policy Classes

Parsers

Validation Evaluation
Runtime Conflict

Resolution
Coverage/Consistency/Conflicts

Transformation Editor

Figure 2: Policy toolkit modules relationship

Policies specified within a specific language are

parsed into Java classes representing the information
model, and the Java representation of the objects are
used to perform the functions of the other modules
within the toolkit. The different modules included
within the toolkit include a policy evaluator, a policy
editor system, a policy validation module, a policy
transformation module, and a policy patterns module.
The relationship among the different modules is shown
in Figure 2. To ease the task of building policy parsers,
the toolkit also includes parsers for some common
types of policy languages, and some common patterns
for using the toolkit to build policy enabled systems.

To build a system based on the toolkit, the system
developer needs to decide on the syntax of the policy
language, selects the modules for his system, and the
pattern (if any) for the overall system. The developer
can then customize the operation of specific modules
by providing configuration information for each
module (via a set of XML files) and possibly extending
the interfaces provided by each of the modules.

The modules included within the policy toolkit are
the following:

The core module: provides a set of basic Java
classes representing policies.

The parser module: provides a way for converting
policies from a syntax format to the core model.
Different implementations of the module confirming to
a common parser interfaces provide support for
different policy languages.

2

Editor Module: provides a generic GUI for policy
manipulation. It can be customized to specific policy
syntax by using the common parser interface.

Policy agent module: provides a way to cache and
receive policies from a repository.

Policy federator: provides a repository and
distribution support for policies.

Validation module: The module provides for
checking of consistencies among different policies.

Transformation module: It provides the ability to
change policies from one format to another.

The enforcement point: provides an efficient
mechanism for finding policies matching an event and
finding the resulting actions.

The auto-update module: provides a way for
systems to periodically update local copies of policies
from a remote repository.

The patterns module: provides a set of ready-to-use
templates for building policy-enabled systems.

The design of many of these modules is relatively
straight-forward. Some of the modules that are more
complex are described in subsequent sections.

3. Validation and conflict resolution
module

For any system within the scope of more than one
policy; ambiguous, anomalous, or merely undesirable
situations may arise. A system may enter into a state
that causes conflicting decisions to be made by
different applicable policies. A policy may be
subsumed by other policies, in which case it may be
redundant due to dominance. Policies may not have
sufficient coverage, so that circumstances may arise in
which sensors take values for which no policy is
applicable, and the system does not know what to do.

3.1. Validation methods

The validation module is a library to the core policy
engine. It provides a set of APIs that can be used to call
the desired validation function. This is used when a
new policy is added to the repository or existing
policies are modified, and specifies whether the
existing set of policies and the added policy together
remain valid or not.

For any specific policy based system that is built
using the toolkit, the system builder specifies the
validation requirements in an XML file. The schema
for this XML file is provided by the toolkit. The
validation XML file provides for information such as
the actions which are potentially conflicting in the
system, the reasonable ranges of precondition

parameters, and the types of tests to be performed
within the system.

The following types of generic validation functions
are supported in the toolkit.

3.1.1 Range check: This validation is performed on an
individual policy rule to determine if the condition
ranges and action attributes specified within the policy
rule are allowed. For example, let a Policy be

����������	
���
�����������������
��	��	������;

a range check will ensure that the IP address of 9.2.7.0
and the action of prioritized are acceptable values. The
set of allowed values are specified within the validation
XML file. The check is performed by having the range
of permissible parameters specified as a precondition
within the validation file, and the ranges of the
conditions specified in the policy are checked to ensure
that they lie within the desired range.

3.1.2 Consistency check: This validation verifies that
the actions specified in a set of policies are conflict
free. It proceeds in two steps: 1. Identify all the policy
rules that could be simultaneously true; and, 2. For
those policies, determine if any conflicts exist between
their actions. The first step is achieved by verifying
whether the hypercube formed from the conditions that
are specified in the validation schema intersect. The
second step is achieved by maintaining a conflict
model to determine whether actions are conflicting or
not. The conflict model essentially provides a lookup
table to determine if two actions are conflicting. The
administrator defines the relationship among actions as
an input to the policy core module to build this conflict
model. The conflict model can be specified in several
ways in the validation files. The current version of the
toolkit allows the conflict model to be specified either
as an enumerated set of conflicting actions or as a set
of meta-policies that specify when conflicts may occur.

3.1.3 Dominance checks: This validation finds
redundant policy rules within the system. A policy is
dominated if it can never be invoked because a higher
priority policy rule will always be evaluated. This
check is performed by implementing a subtraction
method on the object class representing the
precondition. Precondition A subtracted from
Precondition B represents the precondition which is
equivalent to B and not A. To check for dominance, we
start with the assumption that the applicable
precondition for any policy is its entire precondition.
This is then subtracted iteratively from the higher-
priority policies which have an overlapping set of
preconditions. If the resulting application precondition

3

is null, the policy is completely dominated by some
combination of higher-priority policies, and can be
removed from the set of policies as being redundant.
The validation XML file specifies the ranges which
should be used as permissible sets for each of the
precondition terms.

3.2. Runtime conflict resolution

There are several different alternative approaches to
run-time conflict resolution. One can employ a simple
method based on priorities, if there is a natural global
ranking of policies and their effects. In more
complicated situations, meta-policies can be specified
for conflict resolution.

4. Transformation

In general, administrators would like to deal with
higher levels of abstraction in specifying policies for
their systems. There is thus often a need for high-level
business-oriented policies to be transformed into lower
level technology-oriented policies in order for them to
be used by the various components of the system.
While this may sometimes require human expertise,
there are situations in which a policy transformation
module can be used to take the policies entered by the
system administrator and convert them from one form
to another before they are deployed and interpreted by
the enforcement points.

An example of transformation is encountered in the
support of performance or availability targets of a web-
site. A policy stating the goal or objective of obtaining
an uptime of 0.999 for a customer’s service needs to be
mapped into the number of replicated copies of a server
needed for the customer. During the transformation
process, the precondition or the decision part of the
policy may be modified.

Transformation may be done in one of two places:
either before the policies are sent to the repository, or
at the decision point before the policies are sent to the
enforcement point. The former type of policy
transformation would typically be static based only on
the policy statements themselves, while the latter could
be static or dynamic, taking into account the real time
state of the system.

4.1. Transformation using static rules

Static rules may be used to simplify the policy
language as seen by the system administrator. In this
case, an expert user, who knows the details of the
system and the definitions of its various objectives,

would specify how the higher level policies would be
interpreted. The static-rules would specify how the
precondition and cope of a higher-level policy should
be modified to obtain a lower-level policy. A common
form of static transformation is that in which Classes of
Service (CoSs) are defined for different categories of
users. A given policy would state when and for whom
gold service would be provided. The administrators
would only have to know in general terms (e.g., cost,
responsiveness, throughput) the distinctions between
the various classes of service. The policy
transformation mechanism would then have to
determine the settings of system parameters needed to
obtain the particular CoS desired (bandwidth, cpu,
storage, encryption, etc.).

A special case of static-rule based transformation is
transformation via a table look-up. In this case, a
higher-level policy of format “if precondition p then
higher-layer decision b” is mapped into one or more
lower-level policies of format “If precondition p’ then
lower-level decision b’ ”, while preserving the scope
and priority of the same.

A

B

D

C

Config 1

Config 2

Hypercube for
Incoming policy

Hypercube
Representation of
Input policy

Hypercube
Representation of
Output policies

Figure 3: Hypercube representation of policies

In order to obtain this transformation, the
precondition term is mapped into a hyperspace whose
axes are defined by the independent terms making up
the precondition. A table mapping a set of regions in
this hyperspace to a lower level decision forms the set
of static rules for transformation. Each higher-layer
policy can be mapped into one or more such connected
regions into this hyper-space.

In order to ensure that a complete translation can be
made, the incoming policy needs to be completely
dominated (as described in Section 3.1.3) by the set of
translation meta-policies. The dominance may be by a
combination or two or more meta-policies. For each

4

meta-policy which overlaps with the incoming policy,
an output policy is produced where the precondition
part is the overlap between the preconditions of the
meta-policy and the incoming policy, and the decision
part is specified by the meta-policy. When more than
one meta-policy may be applicable, the meta-policy
with the highest priority is used.

Figure 3 shows a simple 2-dimensional hyperspace
with 4 meta-policies policies shown as A, B, C, and D.
The incoming business policy being transformed is
shown with a dashed pattern and is seen to overlap with
meta-policies B, C and D. Three policies will be
produced as the result of transformation, one each as a
result of each overlapping meta-policy.

4.2. Transformation using case-based
reasoning

An alternate form of transformation is to change a
policy of format “if precondition p then higher-level
decision d” into exactly one policy of format “if
precondition p then lower-level decision b”, where d is
a set of measurable state of the system, and b is one or
more set of configuration settings in the system. Such a
transformation can be used by building a case-database
which allows the mapping between configuration
settings and the measurable states (or goal) within the
system. The transformation module may build the case
database on the basis of knowledge learned from the
system behavior, or rely on a static case-database. Case
based reasoning is widely used in many applications
such as diagnostics, planning, prediction, and object
classification [3].

When the configuration parameters needed for a
new objective are required, the case database is
consulted to find the closest matching case, or an
interpolation is performed between the configuration
parameters of a set of closest matching cases. The
toolkit provides a transformation module using case-
based reasoning which only requires the system
developer to identify the configuration parameters and
goal components of the policies being used.

The case database maintained in the toolkit contains
measurements of various parameters of a system over a
long period of time. Each case contains an N-
dimensional set of configuration parameters and an M-
dimensional set of corresponding goal values. Each
case corresponds to measurements taken at one
particular point in time. The cases may or may not be
ordered chronologically and may or may not have
associated timestamps, as selected by the system
developer.

Clustering techniques are used to improve the
effectiveness of case-based reasoning, and to reduce
the size of the case-database. The various entries in the
case-databases are aggregated into clusters, where each
cluster has the same goal. The toolkit supports a couple
of clustering algorithms which can be selected by the
system developer. Figure 4 shows the effectiveness of
simple clustering for cases consisting of two
configuration parameters and one goal. The clustering
process reduced the number of active cases from 21 to
3 in the example shown in the Figure.

Cluster 1

Cluster 3

Cluster 2
Config 2

Config1

Goal 3

Goal 2

Goal 1

Figure 4: Clustering in a 2-dimensional space

Another way to improve the effectiveness of case-
based reasoning is by reducing the number of different
types of configuration parameters that need to be kept
within each case. While a managed system may have a
large number of configuration parameters, only a few
may influence the business goal during the operation of
the system. The toolkit iteratively refines the set of
configuration parameters to be maintained in the case-
database by assigning them a score on their correlation
with the business goal, and eliminating parameters with
a lower score. In a system which requires that case-
history be built dynamically, the technique reduces the
need for manual identification of relevant configuration
parameters.

5. Design patterns

In order to ease the task of builders of policy based
systems, the toolkit provides patterns for building a
variety of policy enabled systems. Each pattern consists
of a set of interfaces which are linked together and
provide the skeletal framework for developing a policy
enabled system. The toolkit provides some standard
implementations of these interfaces, a subset of which
need to be implemented in order to develop a
customized policy based system.

Each pattern includes the definition of a set of
interfaces and a main routine that ties the interfaces
into a logical operation. The main routine provides the
logical flow among the different interfaces. Some of

5

the set of interfaces in the patterns are decision points,
i.e. interfaces where a set of policies are consulted to
make a decision. The simplest pattern included in the
toolkit is the use of a policy enforcement point. Events
requiring policy enforcements are sent to the policy
enforcement point and the decisions of the resulting
policies are returned. A couple of more complex
patterns included within the toolkit are described
below.

5.1. The configuration pattern

The configuration pattern can be used to build a

system that lets an administrator define a set of high-
level business policies, and have them transformed into
a set of lower-level policies that are distributed to
different devices within the network, and enforced
there. The configuration pattern has been used
extensively within policy based networking research
for creating Quality of Service and IP-security
management systems.

The configuration pattern is shown in Figure 5. A
configuration pattern based on the IETF framework [4]
consists of four main components: a policy
management tool, a policy repository, a policy decision
point, and a policy enforcement point. The system
administrator enters the policies into the policy
management tool. They can then be validated for
correctness, and checked for potential conflicts. These
policies are sent to and are stored in the policy
repository as XML files. A persistent policy database is
provided in the PTK Policy Core Module, but other
repositories may be used (e.g., the OGSA Policy
Service [5] or a network directory server accessed
using the LDAP protocol [6]).

 XML
Policies

Policy
Repository

Policy
Decision Point

Policy
Enforcement

Point

Policy

Management
Tool

Policies

Figure 5: Configuration Pattern

The decision points (PDPs) retrieve their policies
from the repository, and are responsible for interpreting
the policies and communicating them to the policy

enforcement points (PEPs). Depending upon the
overall policy schema being employed, the PTK
Decomposition Module may be needed to transform
higher level policies into sets of lower level policies
that can be directly used by the system. The basic
decision point functionality is provided by the policy
agent module within the toolkit.

The PEP is the system component that actually
applies and executes the policies, and can be based on
the PTK Policy Enforcement Point Module. It will
evaluate its policies either periodically or on the
occurrence of a specific event. The PEP and the PDP
may both be located on a single device or they can be
on different physical devices. Different protocols can
be used for various parts of the pattern; e.g., the COPS
protocol [7] or the SNMP protocol [8] can be used for
communication between the PDP and the PEP.

5.2. The auditor pattern

The auditor pattern can be used to build a system

that checks compliance with a specific set of criteria.
Examples of this pattern would be: a policy based
system that checks the configuration of a storage area
network; or, one that sets data access permissions to
ensure compliance with organizational privacy policies.

The auditor pattern is shown in Figure 6. It consists
of four interfaces connected together. The data-scanner
reads the data to be audited from the system. The data-
analyzer is used to determine the set of sensors that can
be passed to the decision-point. The decision-point is
invoked to check policies, and the resulting decisions
are used to generate events for the system.

Data
Scanner

Data
Analyzer

Decision
Point

Alert
Generator

Data Error
Log

Figure 6: Auditor pattern

The auditor pattern would consist of the main class
implementing the overall flow, and specific
implementations of each of the interfaces. Standard
implementations of the scanner include the ability to
read in data from a database. The data analyzer
component has an implementation that converts
database entries into a set of precondition variables to
be passed to the decision point. The decision point is
based upon the toolkit evaluation engine, but can be
replaced by any other policy evaluation system as well.

6

The implementation of the alert generator would
consist of standard libraries that can generate an email
alert, create a log-entry in a canonical format, or
generate an event.

5.3. The planner pattern

The planner pattern can be used to build an

application that uses policies to design or configure a
new system. For example, it can be used by an on-
demand or Grid environment to decide how many
system resources to provide to an incoming request.

The planner pattern is shown in Figure 7. It consists
of a series of interfaces, two of which are the decision
points where policies are evaluated. The planner
pattern has a requirements analyzer interface which
takes a set of requirements and converts them into a
series of preconditions. The preconditions are then
used to invoke a decision point that looks at template
selection policies to return a template. The template is
then converted into a set of preconditions by means of
a template analyzer which extracts preconditions from
the template and the requirements together. A template
filler decision point is used to determine any decisions
regarding how templates ought to be filled in. The
design creator puts the results into the template to
create a design. The design writer then converts the
designs into an external format, e.g. an XML format.

Requirements
Analyzer

Template
Selector DP

Template
Filler DP

Template
Analyzer

Design
Creator

Design
Writer

Requirements

Design

Figure 7: Planner pattern

Patterns provide a way to present toolkit users with

solutions that are already pre-built to a large extent.
The patterns can then be reused to build policy enabled
systems rapidly. As experience with the exploitation of
the toolkit is built further, we hope to define and build
more generic patterns of policy exploitation.

6. Example of toolkit use

In order to better understand what functionality is
needed for policy enablement, we have worked with a

number of other groups on incorporating policies into
their systems. One such activity involved an autonomic
system to adaptively and efficiently manage resource
deployment to handle unexpected workload variability
[9]. This dynamic surge protection system was
designed to proactively satisfy Service Level
Objectives (SLO) in the face of workload surges by
automatically adding the appropriate number of
resources to handle a surge and then removing them
when they are no longer needed.

Briefly, the dynamic surge protection system
employs three technologies: adaptive short-term
forecasting, on-line capacity planning, and
configuration management. The forecasting approach is
designed to be responsive to rapid changes, yet robust
towards occasional spurious predictions (an
undesirable side-effect of highly responsive predictors).
On-line capacity planning determines the appropriate
number of resources needed to satisfy service levels for
any given workload intensity. Lastly, configuration
management allows for resource adjustments, e.g.,
application provisioning.

The optimal setting of the parameters of operation
of the dynamic surge protection system requires a
detailed understanding of the controller, and hence is
best suited to administrators with expert knowledge. In
addition, several of the important control settings were
hard-coded as static values which were a compromise
over a range of operating conditions and performance
expectations.

Figure 8 shows an architecture designed for
integration of policy-based management into the
dynamic surge protection system. The architecture
consists of a policy editing tool, a policy repository, a
policy agent, a policy translator, a policy decision
point, and a policy enforcement point, and can be seen
as an instance of the configuration pattern. The high
level service objective is specified through the system
administrator GUI editor and represented in a Java
object that is the input to the decision logic unit of the
dynamic surge protection system controller.

The components of the Policy Toolkit were used to
implement the policy-based management architecture.
Four rules for the controller were specified with the
policy editing tool from the PTK. These rules employ
high level considerations like Cost Sensitivity,
Responsiveness, and Workload Variability to
determine quality of service. The quality of service is
expressed in terms of four classes of service: Platinum,
Gold, Silver and Bronze. Each of these classes of
service determines a certain level of operational
performance.

7

Figure 8: Policy-enabled surge protection

The detailed internal configuration parameters for

the controller are fine tuned for each of the classes of
service based on experience and historical data. The
administrator only inputs the high level considerations
affecting system behavior, such as: CostSensitivity and
Responsiveness. In our implementation these take
simple values of “high” or “low”. The corresponding
service class is determined by the policy evaluation
engine and is further transformed into the low level
configuration settings for the controller by the policy
enforcement point. It is important to realize that
additional policies to determine class of service can be
entered without bringing down the system. The
specifics are “hidden” from the administrator that sets
the controller objectives, and the task of the system
administrator is therefore dramatically simplified.

7. Conclusions

We have presented a set of components for
supporting the policy enablement of computer
applications. These common functions have been
developed as a Policy Toolkit that can be used across a
wide variety of applications, and that simplify the task
of integrating policy related methodologies into new or
existing software systems.

As well as providing the necessary editing,
deployment, evaluation, and management capabilities,
the toolkit also includes advanced functionality like
policy validation, transformation, and conflict
resolution. In order to ease the task of builders of
policy based systems using the toolkit, it also provides
patterns for building a variety of policy enabled

systems. A number of engagements have been
undertaken in order to assess the usefulness of the
components of the toolkit, and determining what
additional capabilities might be needed.

We have found that the Policy Toolkit has made it
easier and more convenient for software developers to
incorporate policy-based technologies into their
applications. This in turn has simplified the
management and administration of these systems.

8. Acknowledgements

We would like to acknowledge the contributions of
all the individuals who were involved with the Policy
Toolkit and helped develop its many components.
These include: James Giles, Dakshi Agrawal, Kang-
Won Lee, Mandis Beigi, and David Olshefski.

9. References

[1] DMTF PCIM/e (extended Policy Core Information
Model),
http://www.dmtf.org/standards/documents/CIM/CIM_Schem
a28/CIM_Policy28-Prelim.pdf.
[2] N. Damianou, N. Dulay, E. Lupu, and M Sloman,
“Ponder: A Language for Specifying Security and
Management Policies for Distributed Systems”,
Imperial College, UK, IEEE Policy Workshop 2002,
Monterey, CA, June 2002.
[3] http://www.cbr-web.org/
[4] The IETF Policy Framework Working Group: Charter
available at the URL:
http://www.ietf.org/html.charters/policy-charter.html.
[5] Core Services – These are the lowest level architected
OGSA service components. URL: http://www-
unix.gridforum.org/mail_archive/ogsa-wg/doc00026.doc
[6] T. Howes, M. Smith, and G. Good, “Understanding and
Deploying LDAP Directory Services”, MTP, ISBN
1578700701, 1999.
[7] D. Durham et. al, The COPS (Common Open Policy
Service) Protocol, IETF RFC 2748, Jan 2000.
[8] W. Stallings, “SNMP, SNMPv2, SNMPv3, and RMON 1
and 2”, Addison Wesley, ISBN 0201485346, 1999.
[9] E. Lassettre, et. al, “Dynamic Surge Protection: An
Approach to Handling Unexpected Workload Surges with
Resource Actions That Have Dead Times,” 14th IFIP/IEEE
International Workshop on Distributed Systems: Operations
and Management, DSOM 2003, Heidelberg, Germany,
October 20-22, 2003.

Policy
Repository

policies

Request policy, subscribe

Policy Agent

Translator

Policies in XML New/Updated
policies

policy
object

Condition
object

Config.
object

Administrator
GUI

�������
���	
����
�

�

�
����	�
�

���������������

�������	���

������
�

SLO
Policy Editor

Policy Schema

Policy
Enforcement

Point

Policy
Decision Point

Service Level Objective

8

