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Abstract

Large-scale systems like BlueGene/L are susceptible to
a number of software and hardware failures that can af-
fect system performance. In this paper evaluate the effec-
tiveness of a previously developed job scheduling algorithm
for BlueGene/L in the presence of faults. We have devel-
oped two new job-scheduling algorithms considering fail-
ures while scheduling the jobs. We have also evaluated the
impact of these algorithms on average bounded slowdown,
average response time and system utilization, considering
different levels of proactive failure prediction and preven-
tion techniques reported in the literature. Our simulation
studies show that the use of these new algorithms with even
trivial fault prediction confidence or accuracy levels (as low
as ���) can significantly improve the performance of the
BlueGene/L system.

1. Introduction

The demand for high computational power continues to
drive the design and development of large-scale parallel sys-
tems. In addition to the existing applications taking on
larger problems/datasets, there are entirely new application
domains (e.g., drug discovery) which need considerably
more computational resources than what is available today.
Large scale parallel machines, such as IBM’s BlueGene/L
(BG/L henceforth), which has 65536 compute nodes, are
expected to play a key role in taking on the demands of
such applications. Since the probability of occurrence of a

failure grows linearly with the number of nodes (and per-
haps even faster if failures are correlated), faults are likely
to be quite frequent on these machines. Even though BG/L
has been designed with a strong emphasis on reliability, we
expect it to have about one fatal error each day. We expect
transient faults to be much more frequent than permanent
faults. It is imperative to ensure that we do not incur severe
performance degradation when faults occur. Towards this
goal, this paper presents and evaluates two techniques for
scheduling jobs on a large scale parallel machine (IBM’s
BG/L in particular) that exploits prediction of faults to im-
prove system utilization.

Scheduling of parallel jobs on large scale parallel ma-
chines has a significant impact on job response times and
the overall system utilization. It is computationally inten-
sive to implement a perfect schedule even from the theoret-
ical perspective. On the practical side, there are considera-
tions about how to share the machine across multiple jobs
– should nodes allocated to a job be reserved until its com-
pletion (referred to as space sharing) or should they time
share across jobs. Space sharing reduces context switch
overheads, while time sharing can provide better response
times by avoiding fragmentation. In this study, our focus
is on space sharing systems, which is the design point cho-
sen for BG/L for simplicity of system software. Further-
more, previous studies [6, 11] have shown that space shar-
ing enhanced with techniques such as backfilling, can do as
well, if not better, than time sharing. The implementation
of space sharing is itself quite complex in BG/L, which has
a toroidal architecture that puts restrictions on how nodes
can be allocated. Nodes need to be allocated as contiguous



(tridimensional) rectangular partitions, which makes com-
munication between those nodes more efficient (helps avoid
contention with traffic from other jobs) and secure. Such a
restriction adds to the complexity of scheduling nodes to
jobs. Previous work [6, 11] has proposed heuristics for al-
locating jobs to rectangular partititions.

The occurrence of failures adds a new dimension of com-
plexity to the scheduling problem. A naive strategy could
be to ignore the possibility of occurrence of failures and
deal with them when the faults occur (restart the jobs af-
fected). However, such an algorithm can lead to waste of
resources due to jobs affected by faults. As our results will
show, even for a fault occurrence rate of about one failure in
four days, there is nearly a 70% increase in job slowdown
when one does not make any provision for the occurrence
of faults in the job scheduler. This serves as a motivating
reason for developing fault-aware scheduling mechanisms
for these large-scale machines.

There are several ways to address this loss in perfor-
mance under the presence of faults. One way is to peri-
odically checkpoint the jobs, or at least checkpoint it close
to the time when one of its nodes is likely to fail (if that can
be anticipated), to reduce the amount of work that needs
to be re-done upon occurrent of a fault. This requires sup-
port in the OS for checkpointing and recovery, which are
provisioned in BG/L. An alternative (or even complemen-
tary, since it can be used in conjunction with checkpointing)
strategy is to perform fault-aware scheduling, where predic-
tion of faults can be used to allocate jobs to partitions that
are likely to be healthy. This paper investigates the ben-
efits of this fault-aware scheduling strategy by presenting
and evaluating two techniques, extensions to Krevat’s orig-
inal BG/L scheduler [11], which exploit the prediction in-
formation about node failure for space sharing. The basic
idea is to allocate a partition picked by Krevat’s scheduler
only when it is not likely to fail over the duration of that job.
This paper makes the following contributions:

� We show that scheduling mechanisms that do not con-
sider the occurrence of faults can incur significant per-
formance penalties on a large scale machine such as
BG/L.

� We present two simple techniques for extending spatial
(space sharing) scheduling to make them fault-aware,
and demonstrate their performance benefits with sev-
eral real workload logs from supercomputing environ-
ments.

� We demonstrate that fault-aware scheduling can be ef-
fective even with modest prediction accuracy.

The rest of this paper is organized as follows. Section 2 de-
scribes related work on job scheduling for large-scale clus-
ter systems. Section 3 presents a brief description of the

job-scheduling problem, including BG/L-specific require-
ments. Section 4 describes various event prediction mecha-
nisms followed for the present study and the motivation to
develop new job-scheduling algorithms. Section 5 presents
our fault-aware job-scheduling algorithms. Section 6 de-
scribes the simulation environment, job logs, the methodol-
ogy to link job logs with the failure logs, and various param-
eters considered for the study. Section 7 reports experimen-
tal results. Finally, we conclude the paper with a summary
of the results and our future work plans in Section 8.

2. Related Work

With an increased popularity of large-scale clusters in
high performance computing community, there has been
much interest in attaining better system utilization for these
environments, including management of system failures
[3, 4, 12]. To deal with faults, most research efforts fo-
cus on providing failover mechanisms either within the op-
erating/programming environment or through application
checkpointing. All these efforts add additional overhead
and complexity not only to programming environment, but
also to the application running environments including ad-
ditional hardware costs.

There are a number of research efforts analyzing job
scheduling and impact of job scheduling on system per-
formance for large-scale parallel systems [5, 6, 8, 9, 10,
11, 22]. Most of these studies address either temporal or
spatial job scheduling [19, 20, 21] considering checkpoint-
ing [13], data locality [15], type of workload, and operating
environment for fault tolerant scheduling [2, 14] to name a
few. For large-scale systems like BG/L [1] and Earth Simu-
lator [22] there are very few research efforts considering
job scheduling in presence of system failures. Recently,
a number of statistical and machine learning based failure
prediction techniques [17, 18, 23] have been proposed for
proactive system management. Since job scheduling and
job scheduling algorithms play an important role in evalu-
ating the system performance [6, 22], within this paper we
extend some of our prior prediction efforts [16, 17, 23] to
address the job scheduling mechanism for BG/L. We eval-
uate some of our new job-scheduling algorithms developed
to handle system failures including a strategy for failure pre-
diction.

3. Fault-aware Job scheduling for BlueGene/L

Our fault-aware job scheduling study targets improving
the system performance, efficiency and throughput in the
presence of failures. We first present background informa-
tion on BG/L.
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3.1. BlueGene/L Architecture

The BG/L computer system [1] is a �� � �� � ��
three-dimensional torus of compute nodes (cells). The
compute nodes are also interconnected in a tree topology,
which is used for reduction operations and for I/O. Com-
munications with the external environment is accomplished
through 1024 Gigabit Ethernet links attached to the I/O
nodes, placed at specific points in the tree interconnect.

Most systems with toroidal interconnects, including
BG/L, are limited by certain constraints when scheduling
jobs [11, 5, 6]. Jobs are required to be placed in dis-
tinct, contiguous, rectangular partitions. Each job on BG/L
is scheduled on an electrically isolated partition. This en-
sures that communication traffic for one job cannot inter-
fere with the traffic for another job, and enables the sys-
tem software to be kept simple, as protection across jobs
is ensured by hardware isolation. In order to satisfy these
requirements, a job partition on BG/L must be composed
as a three-dimensional rectangle of � � �� � node blocks.
Hence, a job scheduler sees BG/L as a � � � � � torus of
these supernodes, with each supernode having 512 compute
nodes.

3.2. Input to Scheduler

The scheduler is given the following input: node topol-
ogy, the current status of each node, a queue of waiting jobs,
checkpointing information, and fault predictions. For every
job �, the scheduler knows the job size in nodes (� �) and the
estimated execution time of the job (���). After a job � has
been scheduled to start at time ��� , the scheduler can com-

pute the estimated completion time of the job (��� � ���	�
�
�).

Once a job completes execution, the estimated value for ���
is replaced by its actual value. The fault prediction algo-
rithm accepts a node and a time window, and outputs an es-
timated probability that the node will fail within that time
window [17, 23]. The scheduler is able to migrate jobs
around the torus. In order to migrate a job in BG/L, the
job must first be checkpointed, then moved to and restarted
on a new partition. The scheduler is also able to force jobs
to checkpoint. However, the present study does not consider
checkpointing.

3.3. Scheduling Constraints

The scheduler operates under the following constraints,
which are based on earlier job scheduling work for
BG/L [11] and new constraints related to failures.

� Only one job may run on a given node at a time. (No
co-scheduling, or multitasking at each node.)

� Job partitions must be contiguous and rectangular in
three dimension.

� Nodes are imperfect and may fail at any time; if a job
is running on a node when it fails, all unsaved work on
that job is lost.

3.4. Goal

The goal of the job scheduler is to minimize the job wait
time and system idle time, and maximize the system uti-
lization. Our scheduler attempts to minimize metrics sim-
ilar to metrics considered in Krevat’s scheduler [11]. The
actual job execution time are calculated based on start time
���and (actual) finish time ��� of each job. Similarly, ��� and

�
�
� . along with job arrival time (��� ) can be used to calculate

wait time ��� � ��� � ��� , response time ��� � �
�
� � ��� , and

bounded slowdown ��� �
��	�
�� ���

��
�
�
�
��� , where 
 � �� seconds.

Our objectives of optimizing the job-scheduling algoritthm
falls into two categories: timing metrics and utilization met-
rics. Our timing goals are to minimize: (1) ������������ ��,
(2) ������������ �� and (3) ������������ ��. Our utilization
goals are to maximize system utilization and minimize lost
capacity, as defined in Section 6.

4. Prediction Mechanism

A prediction mechanism analyzes and predicts the prob-
ability of occurrence of an event or survival of a node within
a specified time window in the future [17]. There may be
false-positives or false-negatives associated with the predic-
tion. In this study, rather than using an actual prediction al-
gorithm (predictor), we use “job log” traces and associated
“failure log” traces to provide information on failures. We
simulate different levels of accuracy of a prediction algo-
rithm using a parameter “�” that represents the confidence
(for balancing scheduler – Section 5.2.1), or accuracy (for
tie-break scheduler – Section 5.2.2). More details of job
log traces and failure log traces used for simulation are ex-
plained in Section 6.

4.1. Balancing Predictor

The balancing predictor is used in the context of balanc-
ing scheduler algorithm (Section 5.2.1). The prediction of
	�

��, the probability of failure of a node 
 during the exe-
cution of a job for � seconds (based on job logs and associ-
ated failure logs) is obtained as:

� �, if the failure log contains a failure event for node 

in the next � seconds, or

� zero, if the failure log does not contain a failure event
for node 
 in the next � seconds.

The probability that the partition � will fail within � sec-
onds is computed as: �� 
�� � ���
�� 
	

�


���. More de-

tails on the probability parameter (�� ) estimation are cov-
ered in Section 5.2.1.
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4.2. Tie-Breaking Predictor

The tie-breaking predictor used in the context of tie-
breaking algorithm (Section 5.2.2) is much simpler than the
balancing predictor. It takes a boolean value, and is used to
break the tie between two partitions of the same size. When
asked about the possibility of failure of node(s) or parti-
tion(s) within the next � seconds, the tie-breaking predictor
responds with the following:

� If the failure log contains a failure event for node 
 in
the next � seconds, the predictor responds ‘yes’ with
probability �, and ‘no’ with probability �� �. That is,
the probability of a false negative 	�

�

is �� �.

� If the failure log does not contain a failure event for
node 
 in the next � seconds, the predictor returns ‘no’,
that is, there are no false positives.

A tie-breaking algorithm only needs to predict if a parti-
tion is going to fail, and does not care, for the purposes
of scheduling, about the probability with which a failure
would happen. Given a partition and a time window, the
new predictor must assert whether or not it expects any node
in that partition to fail within that window. When every can-
didate partition is predicted to fail, the scheduler makes an
arbitrary choice. Instead of choosing a new confidence pa-
rameter for tie-breaking predictor, we choose an accuracy
parameter based on the false-negatives associated with the
probability of prediction used for balancing predictor. By
accuracy (�), we define � � 	�

�

, where 	�
�

is the prob-
ability of a false negative associated with the prediction.
We chose to leave false positives out of our analysis, since
previous studies of actual cluster failure data [17, 23] have
shown that even a very simple predictor can keep the prob-
ability of a false positive 	�� well below 	�

�

. In fact, 	��
has been shown to be typically less than half of 	�

�

values.

5. Algorithms

Most of previous job scheduling algorithms are based on
system performance optimization. The optimizations are
targeted either to minimize average bounded slow-down,
average response time and/or to maximize system utiliza-
tion. This section covers the new algorithms proposed in-
cluding a brief mention of the previous job scheduling algo-
rithm developed for BG/L. We propose two new scheduling
algorithms: the balancing algorithm and the tie-breaking
algorithm. Each of these algorithms use fault prediction to
improve system performance for job scheduling. Addition-
ally, we developed a new algorithm for obtaining candidate
partitions when scheduling a job, which has a better asymp-
totic running time than previous attempts [11].

Figure 1. Placing a job according to the MFP
heuristics. Placing the job as in � results in a
smaller MFP than placement �, so the sched-
uler would prefer the partition in �.

5.1. Previous Algorithm

There are a number of studies [5, 6, 11] to evaluate job
scheduling algorithms for toroidaly connected system like
BG/L. Krevat et al. [11] have developed a job scheduling
specifically targetting job scheduling for BG/L. The algo-
rithm takes into account the rectangular constraint require-
ment to avoid job fragmentation for better system perfor-
mance. Krevat’s algorithm [11] is based on first come first
serve (FCFS) with or without considering backfilling and/or
job migration [11, 19, 20, 21]. This algorithm for BG/L
puts all the arriving jobs in a queue of wait jobs, priori-
tized according to the order of job arrival. For every job
arrival and termination the scheduler is invoked for schedul-
ing of new jobs. The scheduler uses a maximal free parti-
tion (MFP) heuristic, illustrated in Figure 1, to schedule the
jobs. An MFP is defined as the maximum contiguous rect-
angular partition available for a job. In the next step the
scheduler calculates the MFP using a Projection of Parti-
tions (POP) algorithm. The POP algorithm uses a dynamic
programming approach with a time complexity of 

� ��
[11].

5.2. Job Scheduling Algorithm with Faults

We develop two new job scheduling algorithms to deal
with the faults in a proactive manner.

5.2.1 Balancing Algorithm

The balancing algorithm is based on the FCFS scheduler
for BG/L [11], including backfilling and migration, using a
new set of heuristics for job placement. The heuristics for
selecting a partition for scheduling a job on the torus are
modified to include the integrity of the partitions according
to a fault-prediction algorithm. Given a torus (mostly with
existing running jobs), and a job of particular size (� �) and
expected running time (���), the algorithm selects a contigu-
ous rectangular partition � of �� nodes for job placement.
The new heuristic considers two factors: (1) the difference
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Figure 2. Two possible choices for job place-
ment. Each X marked box represents the
chances that these nodes will fail in future.
Placement � has a larger MFP, but the parti-
tion is predicted to fail. The job placement
depends on the confidence parameter of the
prediction. With two placements that result in
an equal optimal MFP (� and �) the placement
� is better than �.

between the size of the maximal free partition (MFP) before
and after placing the job in the candidate partition (�MFP),
and (2) the expected loss due to node failure as a result of
placing the job in the candidate partition (�PF).

The first factor, �MFP, defines the amount of free space
we would “lose” as a result of placing the job in a particular
partition versus not placing it at all. This is a loss from
the point of view of any job immediately following the one
being placed, which may require a partition as large as an
MFP. The�MFP factor is calculated by computing the MFP
difference before and after placing the job within a torus and
candidate partition, respectively. We calculate MFP using a
new partition algorithm (Appendix 9) in place of Krevat’s
POP algorithm. Our Partition finder algorithm provides a


��� solution for finding maximum free partition.

The loss due to possible failure (�PF) is calculated by
finding the probability that a partition � will fail before the
job completes execution. In other words, if each node 
 in a
partition has a probability of failure 	�
 between now and the
estimated completion time of the job, then the probability
that the partition will fail is �� � � �

�

�� 
� � 	�
� and

the expected loss is �PF � �� � �� � Hence, the balancing

algorithm tries to compute the total expected loss (� loss)
defined as: �loss � �MFP 	 �PF. This is the worst-
case expected loss associated with any job size �� , as it is
assumed that the job fails just before completion, and there
are no checkpointing performed in case there are failures.

Results from our initial runs using the balancing algo-
rithm demonstrate that trading MFP size for a more stable
partition is not always beneficial for overall system perfor-
mance or utilization. When the confidence parameter is
high, the algorithm starts selecting a stable partition, even
if it is required for the waiting jobs to wait much longer.
In other words, the algorithm pushes FCFS to an extreme,
seeking to minimize the finishing time of the next job at the
expense of all those jobs after it. A low confidence param-
eter, such as ���, would usually cause the scheduler to pick
the partition with the largest MFP, since the �loss would
be � 1/10 the job size. Only when two partitions, with
equal or similar MFP, have different �� values, the algo-
rithm would select the more stable one. Such an occurrence
can be well explained through Figures 2 (a) and (b). In Fig-
ure 2(a) there is a �MFP of � and �PF=��� , wheras for
Figure 2(b), we have �MFP=� and �PF=�. Hence, when
choosing between (a) and (b), the �� would be the decid-
ing factor. From simple calculations, it is obvious that the
choice between (a) and (b) are decided based on whether� �

is greater than ���. This problem becomes more prominent
for larger MFPs and needs another algorithm to break the
tie between two free partitions of same size. This led us to
develop the tie-breaking algorithm.
5.2.2 Tie-Breaking Algorithm

The tie-breaking algorithm has been formulated to break
a tie when the scheduler arrives at a situation with two or
more partitions available for a job. As shown in Figure 2(c)
and (d), if there are two situations with same MFP, then the
scheduler is allowed to break the tie by calculating the ac-
curacy parameter for both the partitions. If X represents the
chance of failing nodes, certainly choice (d) is a better so-
lution than choice (c). It uses the tie-breaking predictor in
place of confidence parameter as described in Section 4.

6 Experiments

We perform quantitative comparisons among the sched-
ulers using a simulation-based approach. An event-driven
simulator is used to process actual supercomputer job logs
and failure data from a large-scale cluster. The simulations
produce information regarding the efficiency of the sched-
ulers, according to various metrics covered in Section 3.

6.1 Simulation Environment

The event-driven simulator models a 128 (super)node
torus in a three-dimensional � � � � � configuration. The
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simulator is provided with a job log, a failure log, and other
parameters (for example : prediction confidence level, load
scale coefficient). The events include three parameters :(1)
arrival events, (2) start events, and (3) finish events, similar
to other similar job scheduling simulators [11]. Addition-
ally, the simulator supports (4) failure events, which occur
when a node fails, and has a provision to add (5) checkpoint
events. For the present set of experiments the checkpoint-
ing parameter has not been considered. Compared to earlier
work [11], the following changes are considered while car-
rying out simulation runs.

� Jobs are always scheduled for immediate execution
(i.e., there is no delay between being scheduled and
starting execution).

� The failures we consider are transient. If a job is run-
ning on a node that fails, unsaved work on that job is
lost and the node is immediately available for schedul-
ing the same or other job(s).

� If a failure happens on one of the nodes assigned to
a job while executing, then the entire job is assumed
to have failed and the job has to be restarted from the
begining.

The simulation produces values for the last start time (���)

and finish time (��� ) of each job, which are used to calculate
wait time (��� ), response time (��� ), and bounded slowdown
(���). Other parameters like system capacity utilized, unused
and lost are calculated based on the following formulations.
If � � 
�����
�

�
� �������
�

�
� �� denotes the time span of

the simulation, then the capacity utilized (�util) is the ratio
of work accomplished to computational power available.

�util �
�
��

���
�
�

��
�

If �
�� denotes the number of free nodes in the torus at time
� and �
�� represents the total number of nodes requested by
jobs in the waiting queue at time �, then amount of unused
capacity, resulting from a lack of jobs requesting nodes can
be calculated using the following equation.

�unused �

� ����
�
�
�

��	�
�
�
�

���
�� 
�
��� �
����

��
���

Hence, the total lost capacity in the system, due to work lost
from failures, an inability to schedule jobs, and the delay
before a scheduled job can execute, is

�lost � �� �util � �unused�

Clearly, given torus of fixed size � and a set of jobs (so that
�� and ��� are fixed ��), maximizing ��
�� is equivalent to
the goal of minimizing � .

6.2 Workload and Failure Models

We considered job logs from parallel workload archive
[7] to induce the workload on the system. The parallel job
logs include logs from NASA Ames’s 128-node iPSC/860
machine collected in 1993 (referred as NASA log hence-
forth), San Diego Supercomputer Center’s 128-node IBM
RS/6000 SP (1998-2000) job logs (referred as SDSC logs),
and Lawrence Livermore National Laboratory’s 256 node
Cray T3D (1996) job logs (referred as LLNL job logs). In
order to consider the effect of different loads on the system,
in addition to injecting the job parameters directly from the
trace, we also use a scaling factor “�” multiplied to each
job’s execution time. The higher the “�”, the higher is the
induced load on the system. Though we consider � val-
ues ranging from ��� to ��� in increments of ���, only re-
sults comparing for � � � and ��� are presented in this
paper. This is due to the significant changes in system per-
formance, when we increased the standard load by ���.

For failure logs we used traces (after filtering and nor-
malizing) collected for a year from a set of ��� nodes for a
previous study on event prediction [17]. We varied predic-
tion confidence and prediction accuracy respectively for the
two algorithms from ��� to ��� in increments of ���.

Assuming similar workload and failure distribution for
parallel workload archives, we scaled up/down the number
of hardware failures for the study to have the same aver-
age number of failures per node and per day. Moreover,
the failure timing considered for the workloads are based
on actual collected hardware failure trace timings. Based
on these calculations, we considered ���� failures for each
of NASA and SDSC job log based simulation studies, and
���� failures for LLNL job log based studies. In addition,
using the SDSC job logs as the basis, we studied the im-
pact of different rates of failures by artificially varying the
number of failures from 0 to 3500 or 4000 in intervals of
500.

7. Simulation Results

We present our results for the NASA, SDSC and LLNL
job logs. Initially we cover the effect of failure rate fol-
lowed by comparisons of the system performance with job
scheduling (average bounded slowdown and average re-
sponse time) for two different load scales (represented by
� � ���, � � ���). We also analyze the effectiveness of the
balancing and the tie-breaking algorithms in terms of sys-
tem utilization and conversion of unused work to used work
when the load parameter increases for these three different
job logs.

7.1. Failure Distribution

The results of our experiments with failure densities
demonstrate that failures can have a significant impact on
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Figure 4. Average bounded slowdown vs. fail-
ure rate for SDSC job logs using balancing
algorithm for different loads.

the performance of the system (Figures 3 and 4). As
failures are introduced, system performance drops quickly,
eventually reaching a point beyond which further increase
in failure rate would have little additional effect. This fail-
ure traces contain many instances of multiple failure events,
simultaneously reported from different nodes. As more and
more of these failures appear for nodes from a single parti-
tion, an early possible partition failure declaration would
put the partition out of the loop for a possible job sub-
mission till other stable partitions are available. Hence in-
troduction of new failures to the same partition would not
make the bounded slowdown or response time much worse.
This is also due to our assumption that the nodes would
reappear as normal nodes instantly once the job failure in-
stance has been recorded through the job logs. Hence the
job scheduler would not get affected by any of the new fail-
ures within an already failed partition. However, in reality
the node failures would be associated with certain amount
of down time. Hence appearance of multiple node failures
would introduce the occurrence of the failure of any job
which is assigned to the same partition. This would result a
sharp rise in average bounded slowdown parameter.

The results in Figures 3 and 4 further show that, if there
are on an average � failure per four days (corresponding to
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Figure 5. Utilization vs. failure rate for SDSC
job logs using balancing algorithm (a) � � ���,
(b) � � ���.
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Figure 6. Average bounded slowdown vs.
confidence for (a) SDSC, (b) NASA, (c) LLNL
job logs using balancing algorithm.

���� failure rate) even with a ��� prediction confidence,
in the bounded slowdown parameter, our balancing algo-
rithm leads to improvements up to ���. However with the
increase in prediction confidence level (from ��� to ���)
the rate of returns are comparatively low (another maximum
improvement of ���). A comparison of the utilization in
Figure 5 also shows a ��� increase in load do not have
any equivalent impact to bounded slowdown or average re-
sponse time, apart from converting marginal amount of un-
used work to used work.

7.2. Balancing Algorithm

The following results reflect experiments performed us-
ing the balancing algorithm for SDSC, NASA and LLNL
job logs. A comparison of the performance through con-
fidence versus average bounded slowdown Figure 6, re-
veals, that maximum improvement for standard load would
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Figure 7. Utilization vs. confidence for NASA
job logs using balancing algorithm (a) � � ���,
(b) � � ���.

happen within the first ��� of prediction confidence. For
higher loads (� � ���) the improvements are far more sig-
nificant (��� increase in load would result in �� � ���
improvement) for similar confidence levels. There are two
trends of interest in the results using the balancing sched-
uler, both of which motivate the development a tie-breaking
scheduler. First, the performance of the job scheduler does
not necessarily show a continuous improvement as the pre-
dictor confidence increases. This can be linked to the char-
acteristics of the balancing algorithm. It is quite clear that,
when there is a choice for the algorithm to choose between
an optimal partition and a stable partition, it would opt for
the stable one. For example, when the confidence level is
��� the scheduler would pay attention to the predictor at the
cost of a large MFP. It is also clear from the results that
when the prediction confidence level is very high, the al-
gorithm would make the jobs wait longer in order to select
stable partitions. This is due to the scheduling metrics (Sec-
tion 3) giving more importance to minimizing the finishing
time for the next job, at the expense of waiting time for sub-
sequent jobs in the queue. However, the algorithm picks
up larger MFPs with increasing confidence levels, hence
its performance would not show a linear improvements for
similar confidence levels. Within bounded slowdown met-
rics versus coefficient Figure (Figure 6) note that there is
little correlation between the value of the confidence and
the overall performance of the scheduler. It shows, irre-
spective of intermediate fluctuations, that even a small con-
fidence prediction level can significantly improve the job
scheduler performance. Most of the intermittent fluctua-
tions are due to the presence of two different parameters
(�MFP and �PF) within the optimized metrics, whereas
the figures show the variation of system performance pa-
rameters when different levels of prediction confidence pa-
rameters are considered.

The balancing algorithm system utilization data pre-
sented in Figures 7 and 8 can be divided into two groups:
low load and high load. Figures 7(b) and 8(b) illustrate
high load systems corresponding to comparable low load
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Figure 8. Utilization vs. confidence for LLNL
job logs using balancing algorithm (a) � � ���,
(b) � � ���.
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Figure 9. Average bounded slowdown vs. ac-
curacy for (a)SDSC, (b)NASA, (c)LLNL job
logs using tie-breaking algorithm.

systems through Figures 7(a) and 8(a). For systems with
high load, as the confidence of the balancing scheduler in-
creases, more and more wasted work is converted to useful
work. As we introduce high load (� � ���), the benefit of
prediction to scheduling gets reduced. This is because of
the availability of fewer number of free partitions to choose
from with increased load.

7.3. Tie-Breaking Algorithm

As discussed earlier, the tie-breaking algorithm tries to
break the tie between two or more partitions of same size
through a comparison of level of accuracy. The results in
Figure 9 for tie-breaking algorithm are based on the same
set of experiments corresponding to balancing algorithm
discussed earlier. Figure 10 shows the effect of the tie-
breaking algorithm on system utilization.
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Figure 10. Utilization vs. accuracy for LLNL
job logs using tie-breaking algorithm. (a) � �
���, (b) � � ���

The use of false-negatives for partition accuracy param-
eter calculations result the tie-breaking algorithms to rep-
resent overall worst-possible scenario in terms of perfor-
mance improvement. A comparison of the results corre-
sponding to SDSC, NASA and LLNL job logs for average
bounded slowdown show moderate gain for standard load
(� � ���). For example, SDSC job logs show �� to ��� im-
provement of average bounded slowdown compared to ���
and ��� for NASA and LLNL job logs respectively. How-
ever, when the load parameter is increased by ��� (from
� � ��� to � � ���) the NASA and LLNL job logs show
initial degradation (within accuracy levels of �� to ���) of
the bounded slowdown performance.

A comparison of the system utilization for the tie-
breaking algorithm with the balancing algorithm results de-
pict a shifting of the system utilization for higher useful
work when the load is increased (from � � ��� to � � ���)
similar to the balancing algorithm results. However, due
to the aggressiveness of the tie-breaking algorithm, the im-
provements in useful work through the use of tie-breaking
algorithm are not as significant as compared to the balanc-
ing algorithm improvements reported in Figures 7, and 8.

8. Conclusions and Future Work

Large sale systems like BlueGene/L are susceptible to a
number of software and hardware failures, thus significanlty
affecting the system performance. We have proposed two
new job-scheduling algorithms taking advantage of predic-
tion of system failures leading to job failures. We have also
evaluated the usefulness and the impact of these algorithms
on average bounded slowdown, average response time and
system utilization, considering different levels of proactive
failure prediction and prevention techniques reported in lit-
erature [17, 18]. Our simulation studies show that the use
of these new algorithms, with even modest fault prediction
confidence or accuracy levels (as low as ���) can signif-
icantly improve the system performance in terms of job
scheduling for BlueGene/L cluster.

We are in the process of extending the fault-aware simu-
lator to include the following:

� Consider and adapt checkpointing intervals and over-
heads to be based on the prediction confidence and ac-
curacy levels.

� Consider the fault-aware job scheduling to cover other
system software and programming environment pa-
rameters, including operating system and memory
management parameters while making scheduling de-
cisions.
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9. Appendix: Partition-Finder Algorithm

While placing a job in the torus, it is necessary to deter-
mine candidate partitions in which the job might be sched-
uled. With a job of size �, all free, contiguous, rectangular
partitions containing � nodes must be determined before the
scheduling algorithm can compare them to determine the
optimal partition. Previous algorithms [11] have performed
an exhaustive search, finding all free partitions of any size,
and then selecting the subset of partitions of size �. On an
empty � � � � � torus, this naive algorithm requires


�
� time. Based on a Projection of Partition algorithm
(POP) algorithm, Krevat et al [11] improved the algorithm
to 

���.

For our simulations, we used an algorithm for finding
free partitions of size � that runs with better asymptotic

running time. In particular, the running time on an empty
torus is 

�� � �� � 
�
�����, where �
�� is the size of
the set � � ���� ��� � � �� � � ��� The algorithm
requires 

� � �
��� time to initialize, where the ini-
tialization can be performed as the algorithm is running on
an as-needed basis, and �
�� is the time needed to deter-
mine the �
�� divisors � 	 D of �. The algorithm is given
as input an � � � � � torus, where some nodes may
have been allocated for jobs, and a size � � � �. It re-
turns the set of all free partitions of size �. Let SHAPES �
�
�� �� �� � �� �� � 	 � � ��� � ��� be the set of possible
partition shapes. Therefore, the set of all possible partitions
of size � is PARTS � �
�� �� where � is a base location

!� �� "� and � 	 SHAPES�. The algorithm returns the
set FREEPARTS � �� 	 PARTS � the partition is free��
Since we check each element in PARTS to see if it be-
longs to FREEPARTS, this allows us to find SHAPES in


�
���� time. Moreover, finding PARTS, if they belong
to FREEPARTS, can take 

� � � �
���� time.

We can further improve the running time of the algorithm
by traversing PARTS in a particular order. Specifically,
if we consider the base location of the torus dimensions

�� �� �� in increasing orders of �, � and �, then there is no
need to search in any of the dimensions further, once we hit
the value for that dimension of required length. With this
algorithm, we get a significant performance improvement
over the naive algorithm and POP-based partition finder al-
gorithm considered in earlier job scheduling studies.
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