
RC23089 (W0401-136) January 29, 2004
Computer Science

IBM Research Report

ABA Prevention Using Single-Word Instructions

Maged M. Michael
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

ABA Prevention Using Single-Word Instructions

Maged M. Michael
IBM Thomas J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598, USA
magedm@us.ibm.com

Abstract

The ABA problem is a fundamental problem that af-
fects almost all lock-free algorithms. The atomic prim-
itives LL/SC/VL (Load-Linked, Store-Conditional, Val-
idate) offer a convenient way for algorithm designers to
reason about lock-free algorithms, without concern for
the ABA problem. However, for practical architectural
reasons, no processor architecture supports the ideal se-
mantics of LL/VL/SC.

It is relatively easy to implement LL/SC/VL—and pre-
vent the ABA problem—using double-word atomic in-
structions. However, most current mainstream 64-bit ar-
chitectures support only single-word atomic instructions.
The best known constructions of LL/SC/VL using single-
word instructions entail substantial space overhead when
applied to a large number of memory locations, and re-
quire knowing the maximum number of threads in ad-
vance.

This report presents simple lock-free constructions us-
ing only practical single-word instructions for implement-
ing ideal LL/SC/VL, and hence preventing the ABA
problem, with reasonable space overhead. These con-
structions can also be used to implement arbitrary width
atomic operations.

1 Introduction

A shared object is lock-free (also called nonblocking) if
it guarantees that whenever a thread executes some fi-
nite number of steps towards an operation on the object,
some thread (possibly a different one) must have made
progress towards completing an operation on the object,
during the execution of these steps. Thus, unlike conven-
tional lock-based objects, lock-free objects are immune
to deadlock when faced with thread failures, and offer ro-
bust performance even when faced with arbitrary thread
delays.

A subtle problem associated with most lock-free algo-
rithms is the ABA problem. It was first reported in asso-
ciation with the introduction of the CAS (Compare-and-
Swap) instruction on the IBM System 370 [3]. CAS takes
three arguments: the address of a memory location, an ex-

// Shared variables
Top:*NodeType; // Initially null

Push(node:*NodeType) {
do {

1: t←Top;
2: node .̂Next← t;
3: } until CAS(&Top,t,node);
}

Pop() : *NodeType {
do {

4: t←Top;
5: if t=null return null;
6: next← t .̂Next;
7: } until CAS(&Top,t,next); }
8: return t;
}

Figure 1: ABA-prone lock-free LIFO list algorithm.

pected value, and a new value. If and only if the memory
location holds the expected value, the new value is writ-
ten to it, atomically. A Boolean return value indicates
whether the write occurred.

The ABA problem occurs when a thread reads a value
A from a shared location, and then other threads change
the location to a different value, say B, and then back to
A again. Later, when the original thread checks the lo-
cation, e.g., using read or CAS, the comparison succeeds,
and the thread erroneously proceeds under the assump-
tion that the location has not changed since the thread
read it earlier. As a result, the thread may corrupt the
object or return a wrong result.

Figure 1 shows a variant of the IBM lock-free LIFO
free list algorithm [3] stripped of ABA prevention code.
Consider a list that contains three nodes A, B, and C.
Thread X reads the value A from the shared variable Top
in line 4 and then proceeds to line 6 and reads the value B
from A .̂Next, and then gets delayed. Then, a thread Y ,
pops the node A from the list, then pops the node B, and
finally pushes A again. Thus, leaving the variable Top
with the value A and the list containing two nodes A and

1

Top:〈*NodeType,integer〉; // Initially 〈null,0〉
Pop() : *NodeType {

do {
4: 〈t,tag〉←Top;
5: if t=null return null;
6: next← t .̂Next;
7: } until CASdbl(&Top,〈t,tag〉,〈next,tag+1〉);
8: return t;
}

Figure 2: Lock-free Pop using an ABA-prevention tag.

Pop() : *NodeType {
do {

4: t ←LL(&Top);
5: if t=null return null;
6: next← t .̂Next;
7: } until SC(&Top,next);
8: return t;
}

Figure 3: Lock-free Pop using LL/SC.

C. When X resumes execution, it proceeds to line 7 and
the CAS instruction succeeds, thus setting Top to B and
consequently corrupting the list since B is no longer part
of the list and possibly corrupting other structures that
may contain B. The intention of the algorithm designer
is for X’s CAS in line 7 to fail in such a case.

If it can be guaranteed that the CAS in line 7 cannot
succeed if the value of Top has changed since the cur-
rent thread’s execution of line 4, then the ABA problem
becomes impossible. The earliest and simplest solution
to this problem is the IBM tag methodology [3]. A tag
(update counter) is associated with the pointer Top (i.e.,
the target of the ABA-prone CAS in line 7), such that
when the pointer Top is changed the tag is also incre-
mented atomically. By using double-width CAS, both the
pointer and the tag can be checked and updated atomi-
cally. Treiber [6] pointed out that this need only be ap-
plied to the Pop routine. Figure 2 shows the Pop rou-
tine augmented with the IBM ABA-prevention tag mech-
anism. The tag is assumed to have enough bits to make
full wraparound practically impossible between a thread’s
execution of lines 4 and 7.

One problem with the IBM tag methodology is that—
unless the data occupies only a small part of a word—
it requires double-width versions of atomic instructions.
Most current mainstream 64-bit processor architectures
do not support double-width instructions. Our goal in
this report is to present ABA-safe constructions that use
only single-word (i.e., pointer-sized) instructions.

Tightly related to the ABA problem is the set of in-
structions LL/SC/VL (Load-Linked, Store-Conditional,
Validate). LL takes one argument: the address of a mem-

ory location, and returns its contents. SC takes two ar-
guments: the address of a memory location and a new
value. Only if no other thread has written the memory
location since the current thread last read it using LL,
the new value is written to the memory location, atomi-
cally. A Boolean return value indicates whether the write
occurred. VL takes one argument: the address of a mem-
ory location, and returns a Boolean value that indicates
whether any other thread has written the memory loca-
tion since the current thread last read it using LL.

If ABA-prone validation conditions and CAS instruc-
tions are replaced by VL and SC, and if the original read
of the target variable is replaced by LL, then the ABA
problem becomes impossible. Figure 3 shows an ABA-
safe version of the Pop routine using LL and SC. By def-
inition, the SC in line 7 must fail if Top has been written
since the current thread executed line 4.

However, for practical architectural reasons, none of the
architectures that support LL/SC (Alpha, MIPS, Pow-
erPC) support VL or the ideal semantics of LL/SC as de-
fined above. None allows nesting or interleaving of LL/SC
pairs, and most prohibit any memory access between LL
and SC. Accordingly, the restricted semantics of LL/SC
supported in practice offer no or little help with prevent-
ing the ABA problem.

The ideal semantics of LL/SC/VL offer a conve-
nient and simple framework for designing lock-free algo-
rithms. This report presents constructions using prac-
tical pointer-sized instructions for implementing ideal
LL/SC/VL.

Incidentally, the constructions presented in this report
can also implement atomic instructions of arbitrary width
using only single-word instructions.

In Section 2 we discuss ABA prevention and
LL/SC/VL constructions under automatic garbage col-
lection. In Section 3, we present the constructions
for LL/SC/VL in the absence of support for automatic
garbage collection.

2 Under Garbage Collection

A common misconception is that automatic garbage col-
lection (GC) inherently makes the ABA problem impos-
sible. While this is true for many lock-free algorithms,
it is not always the case. GC guarantees that as long as
a thread holds a reference to a dynamic node that node
will not be reclaimed.

Figure 4 shows a lock-free stack algorithm, where GC
indeed prevents the ABA problem. It is impossible for a
scenario similar to that mentioned in Section 1 to happen.
GC makes it impossible for thread Y to allocate node A
after it has been popped, since at that time thread X is
still holding a reference to A. GC guarantees that as long
as some thread (in this case X) holds a reference to a

2

Push(data:DataType) {
node←NewNode();
node .̂Data←data;
do {

1: t←Top;
2: node .̂Next← t;
3: } until CAS(&Top,t,node);
}

Pop() : DataType {
do {

4: t←Top;
5: if t=null return empty;
6: next← t .̂Next;
7: } until CAS(&Top,t,next);
8: return t .̂Data;
}

Figure 4: ABA-safe lock-free LIFO stack under GC.

node (in this case A), that node cannot be collected as
garbage and made available for new allocations..

On the other hand, consider a program that moves dy-
namic nodes back and forth between two lists using the
algorithms in Figurereffig-stack. The ABA problem is
possible in such a case even with perfect GC. Thus, con-
trary to common belief, the ABA problem can happen
under GC. However, we note that indeed GC can always
be used to prevent the ABA absolutely. That is, any
lock-free algorithm can be made ABA-safe under GC.

Figure 5 shows implementations of arbitrary-sized vari-
ables that support LL/SC/VL as well as read and write
using only single-word read, write and CAS. The main
idea is using a level of indirection similar in form to that
used in Herlihy’s universal methodology [1]. Implemented
shared variables are represented by a pointer to a block
of the implemented variable’s size. Whenever the imple-
mented variable is written, the address of a new block
with the new value replaces the prior pointer. GC guar-
antees that the old block will not be recycled while any
thread holds a reference to it, hence preventing the ABA
problem.

When a thread performs LL, it first reads the pointer
oldptr to the current data block and then—while guar-
anteed by GC that the data block will not be reclaimed
prematurely—it proceeds to read the data. The threads
keeps oldptr for future SC and VL operations.

In the SC operation, the thread allocates a new data
block and sets it to the new value. Then it performs a
CAS on the target variable. The CAS succeeds if and
only if the variable has not been written since it was last
read using LL by the current thread.

If the CAS fails then it must have found the variable
to hold a different pointer value from oldptr, then the
variable must have been written by one or more Write

LL(addr) : [DataType,*DataType] {
oldptr← *addr;
data← *ptr;
return [data,oldptr];

}

SC(addr,newval,oldptr) : Boolean {
newptr←NewBlock();
*newptr←newval;
return CAS(addr,oldptr,newptr);

}

VL(addr,oldptr) : Boolean {
return *addr= oldptr;

}

Read(addr) : DataType {
oldptr← *addr;
data← *oldptr;
return data;

}

Write(addr,data) {
newptr←NewBlock();
*newptr←data;
*addr←newptr;

}

Figure 5: Wait-free constructions of arbitrary sized vari-
ables supporting LL/SC/VL using single-word CAS un-
der GC.

and/or SC operations after the current thread read the
value oldptr from the variable using LL, and thus the SC
fails as it should.

If the CAS succeeds then it must have found the vari-
able to hold the value oldptr. GC guarantees that no
thread could have allocated the data block *oldptr after
the current thread last read the variable using LL, since
the current thread has been holding the value oldptr dur-
ing that period and hence preventing GC from reclaiming
*oldptr. Then it must be the case that the variable has
not been written since the current thread last read it us-
ing LL, and thus the SC succeeds as it should.

The constructions are wait-free. The time overhead is
constant, and the space overhead is constant.

3 Without Garbage Collection

This section presents lock-free constructions of arbitrary
sized variables that support LL, SC, VL, read, and write
using single-word read, write, and CAS for programming
environments without support for GC.

The implementations rely on the hazard pointer
methodology [5] for the safe reclamation of dynamic

3

blocks. Each thread owns a number of single-writer
multiple-reader pointers called hazard pointers. When-
ever a thread needs to announce to other threads that it
intends to use a reference to a dynamic block in a haz-
ardous manner without further validation, it sets a hazard
pointer to the address of that block. When a thread re-
moves a dynamic block from a lock-free object and before
it reclaims its memory (e.g., using free), it scans the haz-
ard pointers of the other threads. If it finds no match,
then it is safe to free the block. Otherwise, the block is
kept until a subsequent scan. For more details see [5]

Figure 6 shows the constructions. As in the construc-
tions under GC, implemented shared variables are repre-
sented by a pointer to a block of the implemented vari-
able’s size. Whenever the implemented variable is writ-
ten, a pointer to a new block with the new value replaces
the prior pointer. The hazard pointer methodology guar-
antees that the old block will not be recycled while any
thread holds a hazardous reference to it. In this case
holding a hazardous reference to a block means holding
a reference to a block with the intention of using it as
a target location or an expected value of an ABA-prone
operation.

When a thread performs LL, it first reads the pointer
oldptr to the current data block and then assigns a haz-
ard pointer to oldptr. However, the setting of the haz-
ard pointer may have been too late. By then the block
*oldptr might have been already removed and reclaimed
by another thread. Therefore, the current thread must
validate that this is not the case and proceeds only if it
finds that the reference oldptr was valid after setting the
hazard pointer. If the hazard pointer was set too late,
the thread starts over again. This can happen only if the
variable has been written in the meantime. Otherwise if
the hazard pointer was confirmed to be indeed protect-
ing *oldptr, the thread proceeds to read the contents of
*oldptr. The thread keeps the value oldptr for use by
subsequent SC and VL operations.

As in the SC operation in Figure 5, the thread allocates
a new data block and initializes it with the new value.
Then it performs a CAS on the target variable. The CAS
succeeds if and only if the variable has not been written
since it was last read using LL by the current thread.
Without support for GC, the thread also needs to explic-
itly free the new block if the CAS failed, or otherwise
pass oldptr to the hazard pointer algorithm for matching
against the hazard pointers of other threads before being
determined to be safe to free.

When a thread no longer needs a reference, it can sim-
ply reuse the corresponding hazard pointer. If an algo-
rithm involves up to K concurrent LL/SC/VL periods
per thread, then only K hazard pointers are needed per
thread.

If N is the maximum number of threads, M is the num-
ber of implemented LL/SC/VL variables, and K is the

// hp is a pointer to one of the thread’s hazard pointers.
LL(addr,hp) : [DataType,*DataType] {
retry:

oldptr← *addr;
*hp←oldptr;
if (*addr �= oldptr) goto retry;
data← *oldptr;
return [data,oldptr];

}

SC(addr,newval,oldptr) : Boolean {
newptr←NewBlock();
*newptr←newval;
if CAS(addr,oldptr,newptr) {

RetireBlock(oldptr); // defined in [5]
return true;

} else {
FreeBlock(newptr);
return false;

}
}

VL(addr,oldptr) : Boolean {
return *addr= oldptr;

}

Read(addr,hp) : DataType {
retry:

oldptr← *addr;
*hp←oldptr;
if (*addr �= oldptr) goto retry;
data← *oldptr;
return data;

}

Write(addr,data,hp) {
newptr←NewBlock();
*newptr←data;

retry:
oldptr← *addr;
*hp←oldptr;
if (*addr �= oldptr) goto retry;
if !CAS(addr,oldptr,newptr) goto retry;
RetireBlock(oldptr);

}

Figure 6: Lock-free constructions of arbitrary-sized vari-
ables supporting LL/SC/VL using single-word CAS with-
out relying on GC.

maximum number of LL/SC/VL period. The static space
overhead of the constructions is O(NK + M). The dy-
namic space overhead is the subject of a tradeoff with the
time overhead. The hazard pointer methodology can of-

4

fer either constant expected amortized time per block and
O(N2K) worst case dynamic space overhead, or O(NK)
time overhead and O(NK) space overhead. Using the for-
mer algorithm choice, the construction has a constant ex-
pected amortized time overhead and O(N2K + M) space
overhead. The hazard pointer algorithm does not require
knowing the maximum number of threads in advance.

The best known single-word LL/SC/VL constructions
using single-word CAS by Jayanti and Petrovic [4] is wait-
free, has a constant time overhead and O(NM) space
overhead. It also requires knowing the value of N in ad-
vance. In many cases of dynamic lock-free objects, M is
substantially larger than NK, and N may not be known
in advance. In such cases, the new constructions present
a practical option.

Note that the Pass-the-Buck algorithm [2] for memory
reclamation cannot be used for these constructions, as the
algorithm itself uses double-width CAS to avoid the ABA
problem in its own operations.

4 Discussion

This report presents efficient and practical lock-free of
arbitrary-sized LL/SC/VL variables using only practical
single-word instructions, without reliance on support for
automatic garbage collection.

The main purpose of this report is demonstrate that
GC and hazard pointers can always be used to prevent
the ABA problem completely. While practical and ef-
ficient, the constructions in this report are only meant
as worst case backup mechanisms. It is common for al-
gorithm designer—including this author—to think about
algorithms in terms of LL/SC/VL during algorithm de-
velopment as a matter of convenience. However, it is
preferred that lock-free algorithms be written in terms
of read, ABA-safe CAS, and ABA-safe validation condi-
tions. Writing algorithms in terms of LL/SC/VL in order
to prevent the ABA problem is almost always an overkill,
as the semantics of LL/SC/VL are often much more re-
strictive than needed for preventing the ABA problem.

References

[1] M. P. Herlihy. A methodology for implementing highly
concurrent objects. ACM Transactions on Program-
ming Languages and Systems, 15(5):745–770, Nov.
1993.

[2] M. P. Herlihy, V. Luchangco, and M. Moir. The re-
peat offender problem: A mechanism for supporting
dynamic-sized lock-free data structures. In Proceed-
ings of the Sixteenth International Symposium on Dis-
tributed Computing, LNCS volume 2508, pages 339–
353, Oct. 2002.

[3] IBM. IBM System/370 Extended Architecture, Prin-
ciples of Operation, 1983. Publication No. SA22-7085.

[4] P. Jayanti and S. Petrovic. Efficient and practical con-
structions of LL/SC variables. In Proceedings of the
Twenty-Second Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 285–294, July
2003.

[5] M. M. Michael. Safe memory reclamation for dynamic
lock-free objects using atomic reads and writes. In
Proceedings of the Twenty-First Annual ACM Sym-
posium on Principles of Distributed Computing, pages
21–30, July 2002. Also IBM T. J. Watson Research
Report RC 22317, Jan. 2002.

[6] R. K. Treiber. Systems programing: Coping with par-
allelism. Technical Report RJ 5118, IBM Almaden
Research Center, Apr. 1986.

5

