
RC23091 (W0401-141) January 29, 2004
Computer Science

IBM Research Report

Profiling and Tracing OpenMP Applications with POMP
Based Monitoring Libraries

Luiz Derose
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Bernd Mohr
Forschungszentrum Jülich

ZAM
Jülich, Germany

Seetharami Seelam
University of Texas at El Paso

El Paso, TX

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Profiling and Tracing OpenMP Applications With
POMP Based Monitoring Libraries

Luiz DeRose
�
, Bernd Mohr

�
, and Seetharami Seelam

�
�

IBM Research, ACTC,
Yorktown Heights, NY, USA
laderose@us.ibm.com�

Forschungszentrum Jülich, ZAM,
Jülich, Germany

b.mohr@fz-juelich.de�
University of Texas at El Paso

El Paso, TX, USA
seelam@cs.utep.edu

Abstract. OpenMP is today’s de facto standard for shared memory parallel pro-
gramming of scientific applications. However, application developers still face
application performance problems when using OpenMP, which make it harder to
achieve high performance on SMP systems. Moreover, these problems are diffi-
cult to detect without the help of performance tools. To this end, we implemented
DPOMP, an instrumentation infrastructure based on binary modification for the
performance monitoring interface for OpenMP (POMP). In this paper we present
two POMP compliant libraries: POMPROF and the KOJAK POMP library, which
provide respectively the functionality for profiling and tracing OpenMP appli-
cations. In addition, we exemplify the use of these libraries with performance
measurement and visualization of the ASCI sPPM benchmark code.

1 Introduction

OpenMP is today’s de facto standard for shared memory parallel programming of sci-
entific applications. It provides a higher level specification for users to write threaded
programs that are portable across most shared memory multiprocessors. However, ap-
plication developers still face application performance problems such as load imbalance
and excessive barriers overhead, when using OpenMP, which make it harder to achieve
high performance on SMP systems. Moreover, these problems are difficult to detect
without the help of performance tools.

The MPI specification defines a standard monitoring interface (PMPI), which facil-
itates the development of performance monitoring tools. Similarly, a Java Virtual Ma-
chine Profiler Interface (JVMPI) is an experimental feature in the Java 2 SDK, which
is intended for users and tools vendors to develop profilers that work in conjunction
with the Java virtual machine implementation. Unfortunately, OpenMP does not pro-
vide yet a standardized performance monitoring interface, which would simplify the
design and implementation of portable OpenMP performance tools. Mohr et. al. [9] pro-
posed POMP, a performance monitoring interface for OpenMP. This proposal extends

1

experiences of previous implementations of monitoring interfaces for OpenMP [1, 7,
10]. POMP describes an API to be called by “probes” inserted into the application by a
compiler, a pre-processor, or via a binary or dynamic instrumentation mechanism. With
such performance monitoring interface, users and tools builders can then define their
own POMP compliant libraries for performance measurement of OpenMP applications.

In [6], we presented DPOMP, a POMP instrumentation tool based on binary modifica-
tion, which takes as input a performance monitoring library that conforms to the POMP

API and an OpenMP application binary. DPOMP instruments the binary of the applica-
tion with dynamic probes containing POMP calls defined in the library. In this paper we
present two POMP compliant libraries: POMPROF and the KOJAK POMP library, which
provide respectively the functionality for profiling and tracing of OpenMP applications.
In addition, we exemplify the use of these libraries with performance measurement and
visualization of the ASCI sPPM benchmark code.

The remainder of this paper is organized as follows: In Section 2 we briefly describe
the main features of DPOMP. In Section 3 we describe our POMP compliant library for
profiling of OpenMP applications. In Section 4 we describe the KOJAK POMP library for
tracing of OpenMP programs. In Section 5 we present examples of utilization of these
two libraries. Finally, we present our conclusions in Section 6.

2 A POMP Instrumentation Tool Based on Binary Modification

DPOMP was implemented using DPCL [5], an object-based C++ class library and run-
time infrastructure, developed by IBM, which is based on the Dyninst Application Pro-
gramming Interface (API) [3]. Using DPCL, a performance tool can insert code patches
at function entry and exit points, as well as before and after call sites. Since the IBM
compiler translates OpenMP constructs into functions that call “outlined” functions con-
taining the body of the construct, DPOMP can insert calls to functions of a POMP com-
pliant monitoring library for each OpenMP construct in the target application. The main
advantage of this approach lies in its ability to modify the binary with performance
instrumentation with no special preparations, like re-compiling or re-linking. In addi-
tion, since it relies only on the binary, DPOMP works independently of the programming
language used for the OpenMP program.

DPOMP takes as input an OpenMP application binary and a POMP compliant perfor-
mance monitoring library. It reads the application binary, as well as the binary of the
POMP library and instruments the application binary, so that, at locations which repre-
sents events in the POMP execution model the corresponding POMP monitoring routines
are called. From the user’s point of view, the amount of instrumentation can be con-
trolled through environment variables which describe the level of instrumentation for
each group of OpenMP events as proposed by the POMP specification. From the tools
builder point of view, instrumentation can also be controlled by the set of POMP routines
provided by the library, i.e., instrumentation is only applied to those events that have
a corresponding POMP routine in the library. This means that tool builders only need
to implement the routines which are necessary for their tool and that instrumentation
is minimal (i.e., no calls to unnecessary dummy routines which don’t do anything). By
default, DPOMP instruments all OpenMP constructs for which there is a corresponding

2

POMP function in the library. It also instruments all user functions called from the main
program provided that there is a definition in the library for performance monitoring
of user functions. In addition, for MPI applications, by default DPOMP instruments all
MPI calls in the program. Once instrumentation is finished, the modified program is
executed.

3 The POMP Profiler Library

We implemented a POMP compliant monitoring library (POMPROF) that generates a de-
tailed profile describing various overheads and the amount of time spent by each thread
in three key regions of the parallel application: parallel regions, OpenMP loops inside a
parallel region, and user defined functions. In addition, POMPROF provides information
for analysis of the slowdown caused by sequential regions, as well as measurements
of execution time from user functions and OpenMP API calls such as set lock. The
profile data is presented in the form of an XML file that can be visualized by a graphical
interface as shown in Figure 3.

POMPROF performs overhead analysis, which is a key incremental method for per-
formance tuning of parallel applications.A hierarchical classification scheme for tem-
poral and special overheads is presented in [4], with the property of completeness, or-
thogonality and meaningfulness. Historically, both temporal and spatial overheads have
been defined as a function of two execution times of an application: namely, the execu-
tion time of the sequential code, and the execution time of the parallel code [4, 11]. One
of the problems of this approach is that it requires an application programmer to have
two versions of a program, a serial and a parallel. Moreover, often overhead definitions
for OpenMP do not include the property of measurability of basic blocks of code, rea-
son being that it is not always possible to measure all overhead sources at the OpenMP

construct level.
Since we can use our binary instrumentation infrastructure to monitor blocks of

OpenMP code, which are packaged into outlined functions, we compute temporal over-
heads with measurable times. Measurable temporal overhead often results from an im-
balanced loop, a barrier for synchronization, or from the runtime code. So, POMPROF

focuses on temporal overhead that is due to scheduling (load-imbalance), synchroniza-
tion (barrier time), and the overhead due to the runtime system.

The main goal of our profiler library is to help application programmers tune their
parallel codes, by presenting a “thread-centered” temporal overhead information. Hence,
we define temporal overhead in terms of the total amount of time in the OpenMP con-
structs by each of the “N” threads in a parallel region. We assume that each of the “N”
threads runs on a different processor. To illustrate our definition and measurement of
the three components of overhead, we use a simple triangular loop inside an OpenMP

parallel region with an implicit barrier at the end, shown in Figure 1(a).
The code in Figure 1(a) leads to an execution pattern similar to the one depicted in

Figure 1(b). Let us assume that
�

threads are created by the parallel region. We define
for each thread � , where �
	����� ��� , ���� as the runtime system overhead before the
thread begins executing the work; ���� as the runtime system overhead after the thread
ends the execution of the work; � � as the time spent on barrier synchronization; � �

3

as the time spent executing the allocated work; and finally ��� as the exit overhead,
which is the sum of the barrier overhead and the exit overhead of the runtime system,
i.e., ����� �!�#"%$'&� . The total execution time (()�) of each thread * is the sum of these
components, i.e., (� �+$',� "-$ &� ".� � "0/ �21

C$OMP PARALLEL
...

C$OMP DO
DO I = 1,M

DO J = I, M
CALL WORK()

END DO
END DO

C$OMP END DO
...

C$OMP END PARALLEL

Ν

Φ3
ΦΝ3β

βΝ

γ

...

...

δb
1

δb
2

δb
3 δb

N

LOOP

PARALLEL

γ 1 γ 2

...

γ3

δe
1 δe

2

δ3
e

β2
β1Φ Φ21

END LOOP

δe
N

END PARALLEL

(a) (b)

Fig. 1. (a) Pseudo code for a triangular loop inside an OpenMP parallel region, and (b) possible
execution pattern

Load imbalance basically occurs because of un-equal amount of work is being dis-
tributed to the threads. In [2] load imbalance is defined as the difference between the
time taken by the slowest thread and the mean thread time, which essentially is a con-
stant for all threads. As we can see from Figure 1, each thread * may have a different
amount of execution time /3�54�76 leading to different amounts of load imbalance. Hence
we need a thread-centered definition of load imbalance.

For performance enhancement reasons (e.g., selecting an appropriate scheduling
technique), in our approach to define load imbalance we focus on how much worse
each thread * is performing with respect to the thread 8 that takes the minimum amount
of time. Hence our definition of load imbalance is the percentage of extra time spent
by each thread in computation normalized with respect to the time of the fastest thread.
Thus, the load imbalance of each thread * , expressed in percentage, is computed as

9 �#�
: /;��<>=@?BA : /C�EDFD
=@?BA : / � D G

H 6�6 1

Barrier overhead is the amount of time spent by each thread * while waiting for syn-
chronization with other threads, after its work share is completed. In OpenMP there are
two types barriers: explicit and implicit. Explicit barriers are often visible at the binary
level; hence, they can be instrumented and measured for each thread. On the other hand,

4

implicit barriers, which are normally used by OpenMP loop constructs, such as the one
shown in our example, are executed inside of the runtime library, and are not visible in
the application binary. Hence, they cannot be instrumented with DPOMP [6]. In order
to estimate the implicit barrier overhead (IKJ) for implicit barriers, we use the measured
total exit-overhead LKJ , as follows:

We consider that the last thread to join the barrier (say thread M) incurs the least
amount of exit overhead and has no zero barrier time. Hence, since L�NPOQI3NSRUT'VN ,
with I3N�OXW , we can assume that the runtime exit overhead T VN OXL3N . The runtime exit
system overhead T�VJ of each thread Y is a constant Z for all practical purposes, because
all threads executes the same runtime system code. Hence, we can compute the barrier
time of each thread Y as IKJ#O%L�J#[�ZC\ where ZSO7]^Y`_bacT�VJed for a2fSghYighj dlk

In case of a “NO WAIT” clause at the end of the loop, the threads incur only an exit
runtime overhead, and the barrier overhead is considered zero.

Runtime overhead is the amount of time taken by each thread Y to execute the run-
time system code. For each thread Y , the runtime overhead TeJ is computed as the sum
of the overheads at the beginning of the loop (TnmJ) and at the end of the loop (T�VJ), i.e.,
ToJpO+T'mJ R-T'VJ k In case of an explicit barrier at the end of the loop, both TnmJ and T'VJ can be
instrumented and measured. However, for implicit barriers, only TnmJ is measured, while
T'VJ is estimated as described in the barrier overhead.

4 The KOJAK POMP Library

We implemented a POMP monitoring library which generates EPILOG event traces. EPI-
LOG is an open-source event trace format used by the KOJAK performance analysis
tool framework [12]. Besides defining OpenMP related events, it provides a thread-safe
implementation of the event reading, writing, and processing routines. In addition, it
supports storing hardware counter and source code information and uses a (machine,
node, process, thread) tuple to describe locations. This makes it especially well suited
for monitoring OpenMP or mixed MPI/OpenMP applications on today’s clustered SMP

architectures. EPILOG event traces can either be processed by KOJAK’s automatic event
trace analyzer EXPERT or be converted to the VTF3 format used by the commercial
Vampir event trace visualization tool (not shown here due to space limitation).

Figure 2 shows a screen-dump of the resulting display of the EXPERT automatic
event trace analyzer. Using the color scale shown on the bottom, the severity of per-
formance problems found (left pane) and their distribution over the program’s call tree
(middle pane) and machine locations (right pane) is displayed. The severity is expressed
in percentage of execution time lost due to this problem. By expanding or collapsing
nodes in each of the three trees, the analysis can be performed on different levels of
granularity. We refer to [12] for a detailed description of KOJAK and EXPERT.

If a more detailed (manual) analysis is needed, EPILOG traces can be convert to
VTF3 format suitable for Vampir. The conversion maps OpenMP constructs into Vampir
symbols and activities, as well as OpenMP barriers into a Vampir collective operation.
This allows users to investigate the dynamic behavior of an OpenMP application using
a Vampir time-line diagram as well as to use Vampir’s powerful filter and selection

5

Fig. 2. Result display of EXPERT automatic trace analyzer.

capabilities to generate all kind of execution statistics for any phase of the OpenMP

application. In addition, all source code information contained in a trace is preserved
during conversion; allowing the display of the corresponding source code simply by
clicking on the desired activity.

5 Examples of Use

In this section we exemplify the use of both libraries with performance measurements
and visualization of the ASCI SPPM benchmark code [8], which solves a 3D gas dynam-
ics problem on a uniform cartesian mesh using a simplified version of the Piecewise
parabolic method, with nearest neighbor-communication. The SPPM benchmark is a
hybrid code (OpenMP and MPI), written in Fortran 77 with some C routines. Figure 3
shows the summary view for the program and the detailed view for one of the loops
(loop 1125) from the profile data obtained with POMPROF, when using “static” schedul-
ing for the OpenMP loops, running 8 threads on an IBM p690+. In the summary view,
which displays the highest value for each metric, we observe very high values for “%
Imbalance” on all the loops. The detailed view for the loop in line 1125 confirms this
imbalance. When replacing the static scheduling by dynamic scheduling, we observe a
much better behavior of the code with respect to “% Imbalance”, as shown in Figure 4.

These findings are also confirmed by the automatic trace analysis of EXPERT. As
shown in Figure 2, the imbalance caused by the static scheduling of OpenMP loop it-
erations results in a total of 8.5% of waiting time at explicit barriers. For the selected

6

Fig. 3. Visualization of the POMPROF data from SPPM and detailed view of Loop 1125 imple-
mented with static scheduling

barrier, the uneven distribution of this waiting time can be seen in the right pane. For
dynamic scheduling (not shown here), waiting time only amounts to 0.5%. By selecting
the property ”Execution” in the left pane and one of the ”!$omp do/for” loops in the
middle pane, the right pane of EXPERT would show the (im)balance in execution time.

Fig. 4. Detailed view of Loop 1125, modified to use dynamic scheduling

6 Conclusion

We presented a collection of tools for the analysis of OpenMP applications based on
the DPOMP instrumentation infrastructure. The use of a standard monitoring interface
like POMP allows the utilization of a variety of measurement methods and provides the
flexibility for development of tools ranging from profilers to tracers for performance
analysis, debugging, and tuning. We presented the POMPROF profiling library and the
KOJAK performance analysis framework which not only includes the EXPERT automatic

7

trace analyzer but is also integrated with the Vampir trace visualization system. Other
tools can be easily integrated or developed from scratch by implementing a POMP com-
pliant monitoring library. In addition, we exemplified the use of these libraries with
performance measurement and visualization of the ASCI sPPM benchmark code. We
are currently working on extending the DPOMP infrastructure and our POMP compliant
libraries to better support hybrid OpenMP / MPI applications.

References

1. E. Ayguad, M. Brorsson, H. Brunst, H.-C. Hoppe, S. Karlsson, X. Martorell, W. E. Nagel,
F. Schlimbach, G. Utrera, and M. Winkler. OpenMP Performance Analysis Approach in
the INTONE Project. In Proceedings of the Third European Workshop on OpenMP -
EWOMP’01, September 2001.

2. M. K. Bane and G. D. Riley. Automatic overheads profilers for openmp codes. In Second
European Workshop on OpenMP (EWOMP 2000), Edinburgh, Scotland, September 2000.

3. B. R. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. Journal of High
Performance Computing Applications, 14(4):317–329, Winter 2000.

4. J. M. Bull. A hierarchical classification of overheads in parallel programs. In First IFIP
TC10 International Workshop on Software Engineering for Parallel and Distributed Systems,
Chapman Hall, pages 208–219, 1996.

5. Luiz DeRose, Ted Hoover Jr., and Jeffrey K. Hollingsworth. The Dynamic Probe Class
Library - An Infrastructure for Developing Instrumentation for Performance Tools. In Pro-
ceedings of the International Parallel and Distributed Processing Symposium, April 2001.

6. Luiz DeRose, Bernd Mohr, and Seetharami Seelam. An Implementation of the POMP Per-
formance Monitoring Interface for OpenMP Based on Dynamic Probes. In Proceedings of
the fifth European Workshop on OpenMP - EWOMP’03, September 2003.

7. Seon Wook Kim, Bob Kuhn, Michael Voss, Hans-Christian Hoppe, and Wolfgang Nagel.
VGV: Supporting Performance Analysis of Object-Oriented Mixed MPI/OpenMP Parallel
Applications. In Proceedings of the International Parallel and Distributed Processing Sym-
posium, April 2002.

8. Lawrence Livermode National Laboratory. the sPPM Benchmark Code, 2002.
http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/.

9. B. Mohr, A. Mallony, H-C. Hoppe, F. Schlimbach, G. Haab, and S. Shah. A Performance
Monitoring Interface for OpenMP. In Proceedings of the fourth European Workshop on
OpenMP - EWOMP’02, September 2002.

10. Bernd Mohr, Allen Malony, Sameer Shende, and Felix Wolf. Towards a Performance Tool
Interface for OpenMP: An Approach Based on Directive Rewriting. In Proceedings of the
Third European Workshop on OpenMP - EWOMP’01, September 2001.

11. G. D. Riley, J. M. Bull, and J. R. Gurd. Performance improvement through overhead analysis:
A case study in molecular dynamics. In International Conference on Supercomputing, pages
36–43, 1997.

12. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid mpi/openmp appli-
cations. Journal of Systems Architecture, Special Issue ’Evolutions in parallel distributed
and network-based processing’, 49(10–11):421–439, November 2003.

8

