
RC23092 (W0401-142) January 29, 2004
Computer Science

IBM Research Report

Web Services QoS: External SLAs and Internal Policies
Or: How Do We Deliver What We Promise?

Heiko Ludwig
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Web Services QoS: External SLAs and Internal Policies
Or: How do we deliver what we promise?

Heiko Ludwig

IBM T.J. Watson Research Center
hludwig@us.ibm.com

Abstract

With Web services starting to be deployed within
organizations and being offered as paid services across
organizational boundaries, quality of service (QoS) has
become one of the key issues to be addressed by providers
and clients. While methods to describe and advertise QoS
properties have been developed, the main outstanding
issue remains how to implement a service that lives up to
promised QoS properties. This keynote speech revisits the
current state of the art of QoS management applied today
to Web services and raises a set of research issues that
originate in the virtualization aspect of services and are
specific to QoS management in a services environment –
beyond what is addressed so far by work in the areas of
distributed systems and performance management.

1. Introduction

Whether offered within an organization or as a part of
a paid service across organizational boundaries, quality-
of-service (QoS) aspects of services are important in a
service-oriented computing environment. Dealing with
QoS is a sign of a technology going beyond its stage of
initial experimentation to a production deployment and
many recent activities related to QoS of Web services
indicate that this is becoming an increasingly relevant
topic.

Efforts in the past years mainly focused on describing,
advertising and signing up to Web and Grid services at
defined QoS levels. This includes HP’s Web Services
Management Framework (WSMF) [1], IBM’s Web
Service Level Agreement (WSLA) language [2,3], the
Web Services Offer Language (WSOL) [4] as well as
approaches based on WS-Policy [5]. These efforts enable
us to describe quality metrics of services, such as
response time, and the associated service level objectives
flexibly and in a way that is meaningful for the business
needs of a service client.

However, one of the challenging issues is to associate
or derive a system configuration that delivers the QoS of
a Web service described using the abovementioned
approaches. In many cases this is non-trivial. Sometimes
we can rely on experience with tested, dedicated system
configurations to decide, for example, the size of a cluster

for a particular workload guaranteeing a particular
response time for a given percentile of requests. In
addition, managing a service at different QoS levels on
the same infrastructure is not easy.

While managing QoS in distributed systems is not a
novel problem, a number of additional issues arise in the
context of a service-oriented computing environment.
Those issues arise from the specific properties of Web
services. For example, cross-organizational Web services
may be accessed through the public Internet and client
side QoS metrics have to include network properties in
addition to properties of the service-implementing
application itself. In addition, composite and recursively
aggregated services – and the ability to aggregate is seen
as a key benefit of Web services – gain new QoS
properties that are not always easily derived from its
parts.

The objective of this keynote is to revisit the state of
the art in managing QoS in distributed systems and to
raise the new issues that we face in an environment of
Service-oriented Architectures (SOAs). First, we revisit
and discuss further open issues related to QoS
management of Web services in general. Subsequently,
we investigate how existing approach from the area of
distributed systems and performance management help
address some of the QoS management issues. Finally, we
elaborate on the outstanding issues that are not solved so
far and potential directions to address them in further
research by the Web services community.

2. Issues of Web services QoS

The first step to manage Web services quality is to
define it. While this is important for Web services as well
as in traditional distributed systems, explicit definition is
particularly important in an environment transcending
organizational boundaries. Quality is expressed referring
to observable parameters relating to a non-functional
property, for example the response time of a request. A
level of quality is agreed upon as a constraint over those
parameters, potentially dependent on a precondition.
Hence, the party offering a Web service, in agreement
with its customers and users, will define the QoS
parameters and the particular instances of the service to
which these parameters relate. In the case of a Web

 1

service, a parameter such as response time can relate to an
individual invocation of an operation or a class of
operations all having the same (individual) quality
properties of having an aggregate property, e.g., the
average response time of this class of operations or
another stochastic metric.

A further step in managing Web services QoS is the
definition of the semantics of the QoS parameters. A
Web service and its subscribers and users must
understand what is meant. It is important what is
measured where. For performance-oriented metrics this
can be at different points, as figure 1 illustrates.

Figure 1: Points of measurements defining semantics of
metrics.

Response time measurements taken from the Web
service client are entirely different from those taken on
the network between client and service, the application
server inbound queue of a service provider or the service
application itself. Hence, even a seemingly simple metric
such as response time needs further qualification.
Furthermore, aggregate properties must be defined, e.g.,
average response time. In this case, it is important to
understand the averaging window, possibly a sampling
rate and other aspects of the aggregation.

The definition of QoS parameters corresponds to the
establishment of an ontology between a service provider
and its clients. An ontology can be established in two
approaches. (1) It can be a definition of terms and,
potentially, the semantics of the relationships between
them, as facilitated by DAML and OIL [6]. This approach
results in a fixed set of well understood terms – in our
case the QoS parameters. (2) Another approach uses
constructive ontologies. Based on a set of well-know
defined terms (as in 1) and a set of well-know
composition operators, new terms (QoS) parameters can
be defined by composing new parameters out of existing
ones using the operators. For example, an average
response time can be defined by applying the average
operator to the selection of response times of an operation
in the past minute. In this example, response time is a
well-defined parameter and average and selection are
composition operators. This is an approach that is
proposed by WSLA. While it is easier to implement
applications that can deal with a fixed set of terms that are
all known at the time of system implementation,
constructive ontologies provide more flexibility.

Having established common understanding of quality
of service parameters and the associated guarantees given

by the provider, it also has to be established to which
relationships between a client and a server a QoS
guarantee applies. A service may provide the same
quality to all requesting clients, to each client individually
or to a defined set of clients that a provider organization
and an organization requiring a QoS level for multiple
clients agree upon in a contract, which is also called an
SLA.

Usage Application Server
Client 1 Contract

Service
Application

Usage
Client 2

Application Server

Usage Service

Figure 2: Contracts defining the scope of quality
guarantees.

Client Application

Clients will refer to the contract when requesting
service according to a particular quality level.

point of measurement

The different scoping approaches of QoS guarantees
require different means of establishing a particular quality
level for a client: If a QoS level is associated with a
service a client searches for a suitable service in a
directory, e.g., UDDI and retrieves its quality definition,
e.g., stated as a WS-Policy expression. In the case of an
individual client or a contract, a negotiation mechanism,
which can be very simple - must be provided. Once the
contract is established, the provider organization must
provision a service-implementing system such that it
behaves as it has been agreed upon. This involves
deriving the amount of resources needed and the runtime
management of resources.

However, this is not simple. While we have developed
– improvable – approaches to the issues raised above, the
issue of provisioning and runtime managing a Web
service-implementing system is not equally well
understood yet. In the next section, we discuss what
distributed systems and performance management
approaches can provide.

3. Implementing service quality – current
approaches

Different QoS parameters require different types of
resources and different approaches to runtime
management. Performance – or response time – manage-
ment deals with shared or dedicated resources to be
allocated to a particular scope of quality. It is based on
the model that multiple workloads compete for resource,
each workload having particular characteristics.
Availability management is based on a model of failure of
resources and allocates shared or dedicated redundancies.
The management of those parameters has been subject of
research outside the scope of Web services. There are, of

 2

course, many more parameters such as time to recover,
etc.

A number of performance management technologies,
such as workload managers and network dispatchers,
have been developed to control response times of
individual systems and clusters and various availability
management approaches. However, it is not straight-
forward to configure, for example, workload managers to
satisfy response time goals for a set of different scopes of
quality – for Web services as well as for any distributed
system. In this section, we outline some typical
approaches how QoS parameters are managed in
distributed systems today. Since performance
management is typically the first QoS aspect that needs to
be addressed, we focus on this parameter in the
subsequent discussion.

3.1 Allocating dedicated resources

An approach to manage performance of workloads that

is frequently used is the allocation of dedicated resources
to the different workload. A number of servers running a
service application are the resources to be allocated.
Usage clients send messages to access services. A
dispatcher receives those messages from clients and
assigns the requests to servers to be processed. Multiple
algorithms can be used for the dispatching of requests for
the same service, from simple round robin to algorithms
that take into account the current workload on the servers
and the expected time to start processing a new call. The
dispatcher measures performance QoS parameters such as
response time and makes those values available to a
provisioning manager. According to the performance
goal of the service, the provisioning manager adds new
servers to the server pool of a particular service in case of
goal underachievement or withdraws servers in case of
overachievement. Adding a server to a pool typically
involves the installation and configuration of the service
application and the reconfiguration of the dispatcher,
which involves costs in terms of setup time. Provisioning
managers use information on provisioning cost, moving
averages of workloads and sometimes sophisticated
models of future behavior of clients to make their
decisions [7].

In a typical environment, however, a service provider
would offer multiple services or qualities. The illustration
in figure 3 outlines a typical multi-service configuration.
While the main components stay the same, the
provisioning manager has to decide to which server pool
for a particular service a given server is assigned. In
addition, if multiple services cannot meet their
performance goals, it must arbitrate which service is
given preference and receives additional resources and
from which service they are taken. To be able to arbitrate,
the provisioning manager must have a utility function

describing the value of reaching or missing each services
performance objectives to be able to compute the
marginal benefits of allocating a server to one service or
another.

Server 1 Utility
Function Reallocate Provisioning

 Service 1
Manager

….
Application

Server m Usage
Client 1 Monitor QoS Parameters

 Application
Service 1

Dispatcher

Server n

Figure 3: Allocating dedicated resources.

Using this approach of dedicated resources a service
provider can also offer the semantically same service at
different quality of service levels by making them
technically separate services. Hence, a service provider
can allocate separate servers for each customer requesting
a new performance level. The dispatcher is relatively
simple and a different dispatcher can be used for each
individual service.

3.2 Service differentiation on shared resources

In some cases, using dedicated resources and offering

different performance levels as separate services neither
uses resources well nor provides a flexible and general
interface to a service from a client’s point of view. Hence,
a more sophisticated dispatcher is used such as the one
proposed in Levy et al [8].

Figure 4: Managing shared resources.

Figure 4 illustrates a configuration of a more
sophisticated dispatcher for shared resources. A key
approach to reduce the number of server pools for
different performance levels is the establishment of a –
small – number of performance classes to which

Usage Application
Service 2

Client 2
….

Server z

 Application

Service 2

Utility Functions
 of Response Workload
Time Classes Manager

Server 1

 Monitor Goal Compliance Gold Service nt Gold Re-adjust Parameters Clie

Client Applicatio
Dispatcher

Silver nt Silver … R P S CClie
Client

Server n Silver
Client Bronze

Client Scheduling & Policing Flow Control Routing Classification & Service
Admission Control Applicatio

 3

individual performance guarantees can be mapped. For
example, one could establish a class of requests
responded to in less than one second, less than 5 seconds,
less than 10 seconds, and best effort. A performance
guarantee for a client of 6 seconds could then be mapped
to the less-than-5-second class. This results in a lower
number of server pools to deal with, even if individual
servers are not shared between different types of services.
Typically, however, each server would have multiple
service application installed to increase flexibility. Those
classes of service are often private to the service provider
and not disclosed to its customers. In addition, all clients
use the same dispatcher for all requests, labeling the
request with the particular scope of quality they require,
for example in the SOAP header of a Web service
request.

Given a mix of client requests as input and a set of
flexible and shared resources, the dispatcher processes
requests in multiple steps: First, it is verified that an
incoming message is allowed at a requested level of
performance (admission control) and it is classified to the
internal classes of service. Subsequently, the request is
put into a queue associated with its class of service. Each
queue has a given length to ensure that the performance
guarantee associated with its class of service can be met.
The policing function checks the queue status before
queuing the request. Then, a scheduler and flow
controller takes requests from the class of service queues.
There are multiple algorithms to take requests from
queue. A frequently used approach is weighted round
robin. Each queue is given a weight, e.g., 5 (best), 2
(medium) and 1 (worst). When server capacity becomes
available, the scheduler takes 5 requests from the best
queue, 2 from the medium and 1 from the worst, and then
starts over at the best. When no request is waiting in a
queue, it is skipped. Finally, the router puts the next
request on a server to be processed. This function is
equivalent to the dispatcher function in the case of
dedicated resources as discussed above.

The class-of-service weights of the dispatcher are
determined by a workload manager that supervises the
dispatcher. Driven by a utility function describing the
benefits of the classes of service, the workload manager
monitors the goal compliance of the classes of services
and readjusts the weights of the corresponding queues.
For example, if not many “best” requests are arriving at a
given moment and performance goals are exceeded but
“medium” goals are not met, the medium request queue
will be given more weight at the expense of the “best”
queue. An example of a more complex workload manager
for is WLM [9].

Using this approach of shared resources, resource
usage is significantly higher for services being offered at
different performance levels at the expense of a more
sophisticated dispatcher, which could become a bottle

neck, and a classification of performance levels that can
lead to over-serving many requests.

3.3 Combining approaches

To avoid a dispatcher bottle neck and to deal with
different services and large numbers of performance
classes on those different services, those above-
mentioned approaches are often combined, as outlined in
figure 5.

Contracting
Server 1 Client 1 Response

Contracting Time Goal
 Penalties

 Service 1

Figure 5: Combining approaches for comprehensive
response time management.

The server pool is divided by the provisioning
manager into servers associated with a particular service,
to a set of operations of a service, or further into servers
dedicated to one or more classes of service. As discussed
above, the provisioning manager uses a utility function
for the arbitration between its segments. The requests to
each of the segments of servers are driven by a separate
dispatcher. A dispatcher is associated to a workload
manager that periodically reevaluates the parameters of its
scheduling algorithm, e.g., the queue weights.

This raises the issue where the utility functions come
from. If the service provider offers differentiated services,
a contracting function allows prospective customers to
subscribe to a service and negotiate the QoS terms as well
as the pricing and penalty conditions. Based on priding
and penalty, the contracting function derives the
corresponding utility functions for provisioning and
workload manager. Depending on the flexibility offered
to customers in the subscription process, the derivation of
the utility functions is often not an automated process but
may involve considerations of a system administrator of
the service provider that is familiar with the cost
functions of the server cluster [10].

3.4 Implementing other QoS aspects

In addition to performance management, another main

QoS parameter that is important to service providers and

Dispatcher
Bronze
Usage

Client 2
Server z

 Application

Service 2

Dispatcher

Workload
Manager

….
ApplicationUtility Functions

Provisioning of Services

Manager
Server m

 Service 1
 ApplicationUtility Functions Goal

 of Response Usage
Time Classes Client 1

Server n

 Application

Service 2

….

 4

clients is availability. All major vendors of systems
management software such as IBM/Tivoli, Hewlett-
Packard and Hitachi address this issue. In the context of
Web services, a service is not available if it does not yield
response in a defined amount of time, which is usually
much higher than a response time guarantee. It is being
addressed by making redundant resources available,
which includes servers as well as, potentially, network
connections. Again, redundant resources can be dedicated
to a particular scope of QoS or can be shared between
multiple services. A utility function drives the arbitration
in case of need of redundant resources.

Other QoS such as time to recover have been equally
addressed in theory and as available systems.

4. Web services-specific issues

As discussed in section 3, systems management
approaches provide many solutions that can be adapted to
a service-oriented architecture. For example, the
dispatcher approach to manage shared resources can be
used by using an entry in the SOAP header of a message
as a label for a requested QoS level. However, in the field
of service-oriented computing and Web services, we face
a number of additional issues. Those additional issues
regarding the implementation of quality of service mostly
originate in the abstract concept of a service and its –
intentionally – weak association with actual computing
and networking resources.

4.1 Taking networking into account

Clients want to define QoS parameters from their

perspective. While this is not so much an issue in
traditional distributed systems, where the network and
other system environment components are under control
of the same organization, it has to be taken into account
by providers and users of Web services.

Figure 6: Client access over public networks.

Many non-corporate network users and small and
medium-sized businesses don’t have QoS guarantees
regarding their access to the Internet. However, it is
important for them to obtain quality of service guarantees
as they perceive a service. Innovative solution are
requested to be able to bundle QoS properties of a service

application with the properties of the provider’s network,
the client’s network and the network connecting both.

4.2 Composite web services

Services are often to be included in composite Web

services defined using, for example, BPEL4WS [11] or
other description languages. Using those languages and
corresponding workflow management systems, services
of different providers can be integrated. Figure 7 outlines
a simple example of a stock trade workflow.

Entry

n Small Orders
Get

>1000 Trade Client
shares Send to y Data Account.

y Specialist
Match

House
n Trade

Figure 7: Contingent control flow of services.
In this case of a process composed of services, we

have to understand how the individual QoS properties of
one element of a composite service contribute to the
overall QoS of the process. This is particularly interesting
in the case of stochastic QoS: In 90% of the cases, the
average response time will be less than 2 seconds. In
addition to the likelihood of different alternatives on the
process graph, we have to take into account the QoS
properties of individual services. In the case of processing
time, for example, the variance of service processing
times of individual steps is increased by the variance of
the overall process such that a it is difficult to give good
aggregate QoS parameters for the whole process.

Approaches to address this problem may start with
defining QoS properties of services when modeling a
process and binding to particular services [12]. In
addition, composite services may specify QoS properties
dependent on the input data and the expected path of the
execution. In addition, alternative services may be
invoked at the same time for a particular step, the best –
fastest – one used and the others aborted. However, this
area requires more research and novel ideas.

 Application Server

4.3 Recursively composed services
Usage Service
Client Application

Finally, composite services as outlined above can be
offered as web services, thereby creating recursive
service relationships. The figure below shows a multi-
level service aggregation of our previous example.

Unknown Intermediary Provider NetworkClient Network
Network

 5

References References Share Trade Service

[1] N. Catania, P. Kumar, B. Murray, H. Pourhedari, W.
Vambenepe, K. Wurster, Web Services Management
Framework, Version 2.0, Hewlett-Packard,
http://devresource.hp.com/drc/specifications/wsmf/WSM
F-WSM.jsp, July 16, 2003.

[1] N. Catania, P. Kumar, B. Murray, H. Pourhedari, W.
Vambenepe, K. Wurster, Web Services Management
Framework, Version 2.0, Hewlett-Packard,
http://devresource.hp.com/drc/specifications/wsmf/WSM
F-WSM.jsp, July 16, 2003.

Stock Quote Service Match-making Clearing

NYSE Frankfurt London
Stock Quote Stock Quote Stock Quote

Figure 8: Recursive service composition. [2] H. Ludwig, A. Keller, A. Dan, R. King, R. Franck, “A

service level agreement language for dynamic electronic
services”, Electronic Commerce Research, Kluwer
Academic Publisher, 3:2003, pp. 43-59.

[2] H. Ludwig, A. Keller, A. Dan, R. King, R. Franck, “A
service level agreement language for dynamic electronic
services”, Electronic Commerce Research, Kluwer
Academic Publisher, 3:2003, pp. 43-59.

With an increasing number of aggregation steps,

stochastic QoS properties get very broad and meaningless
very quickly. How can we find meaningful QoS
properties for those aggregates and what are the limits of
aggregation from a QoS point of view? In addition, how
can a service provider of an aggregate service ensure a
reasonable level of quality to its clients, particularly with
respect to response time and availability?

With an increasing number of aggregation steps,
stochastic QoS properties get very broad and meaningless
very quickly. How can we find meaningful QoS
properties for those aggregates and what are the limits of
aggregation from a QoS point of view? In addition, how
can a service provider of an aggregate service ensure a
reasonable level of quality to its clients, particularly with
respect to response time and availability?

[3] H. Ludwig, A. Keller, A. Dan, R. King, R. Franck,
Web Service Level Agreement (WSLA) Language
Specification, Version 1.0, IBM Corporation,
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf, January 28, 2003.

[3] H. Ludwig, A. Keller, A. Dan, R. King, R. Franck,
Web Service Level Agreement (WSLA) Language
Specification, Version 1.0, IBM Corporation,
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf, January 28, 2003.
[4] V. Tosic, B. Pagurek, K. Patel, “WSOL – A Language
for the Formal Specification of Classes of Service for
Web Services”. Proc. of ICWS'03 (The 2003
International Conference on Web Services), Las Vegas,
USA, June 23-26, 2003, CSREA Press, pp. 375-381.

[4] V. Tosic, B. Pagurek, K. Patel, “WSOL – A Language
for the Formal Specification of Classes of Service for
Web Services”. Proc. of ICWS'03 (The 2003
International Conference on Web Services), Las Vegas,
USA, June 23-26, 2003, CSREA Press, pp. 375-381.

A promising approach lies in using the dynamic
properties of public Web services in that can be
purchased on the spot from – potentially – multiple
providers. Services can be bought from different
providers and only those will be used in a given
invocation that respond fast. For this approach, we need
mechanisms that invoke multiple services in parallel and
use the results of the fastest. In addition, we need the
corresponding business models for Web services that only
pay (in full) for a service if it was faster than others.

A promising approach lies in using the dynamic
properties of public Web services in that can be
purchased on the spot from – potentially – multiple
providers. Services can be bought from different
providers and only those will be used in a given
invocation that respond fast. For this approach, we need
mechanisms that invoke multiple services in parallel and
use the results of the fastest. In addition, we need the
corresponding business models for Web services that only
pay (in full) for a service if it was faster than others.

[5] D. Box, F. Curbera, M. Hondo, C. Kale, D.
Langworthy, A. Nadalin, N. Nagaratnam, M. Nottingham,
C. von Riegen, J. Shewchuk, Web Services Policy
Framework (WSPolicy), http://www.ibm.com/developer-
works/library/ws-policy, May 28, 2003.

[5] D. Box, F. Curbera, M. Hondo, C. Kale, D.
Langworthy, A. Nadalin, N. Nagaratnam, M. Nottingham,
C. von Riegen, J. Shewchuk, Web Services Policy
Framework (WSPolicy), http://www.ibm.com/developer-
works/library/ws-policy, May 28, 2003.
[6] D. Connolly, F. van Harmelen, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, L. A. Stein,
DAML+OIL (March 2001) Reference Description, W3C,
http://www.w3.org/TR/daml+oil-reference, December 18,
2001.

[6] D. Connolly, F. van Harmelen, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, L. A. Stein,
DAML+OIL (March 2001) Reference Description, W3C,
http://www.w3.org/TR/daml+oil-reference, December 18,
2001.

With respect to availability management, service
providers can buy redundant services. However, they
must make sure that they, in turn, do not depend on the
same underlying service, which would annul their
redundancy, at least partially. We need methods to
describe dependencies on other services and match-
making approaches that take those dependencies into
account.

With respect to availability management, service
providers can buy redundant services. However, they
must make sure that they, in turn, do not depend on the
same underlying service, which would annul their
redundancy, at least partially. We need methods to
describe dependencies on other services and match-
making approaches that take those dependencies into
account.

[7] C. Crawford, A. Dan, “eModel: Addressing the Need
for a Flexible Modeling Framework in Autonomic
Computing”, IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS 2002).

[7] C. Crawford, A. Dan, “eModel: Addressing the Need
for a Flexible Modeling Framework in Autonomic
Computing”, IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS 2002).

 [8] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A.
N. Tantawi, A. Youssef: “Performance Management for
Cluster Based Web Services”, Integrated Network
Management VII, Managing It All, IFIP/IEEE Eighth
International Symposium on Integrated Network
Management (IM 2003), IFIP Conference Proceedings
246, Kluwer Academic Publisher, 2003, pp. 247-261.

[8] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A.
N. Tantawi, A. Youssef: “Performance Management for
Cluster Based Web Services”, Integrated Network
Management VII, Managing It All, IFIP/IEEE Eighth
International Symposium on Integrated Network
Management (IM 2003), IFIP Conference Proceedings
246, Kluwer Academic Publisher, 2003, pp. 247-261.

5. Conclusions and call for future work 5. Conclusions and call for future work

In this keynote we discuss open research issues related
to the QoS management of Web services. While the
representation of Web services QoS properties has been
addressed in current work, the implementation of QoS
relies mainly on existing work related to allocating
dedicated resources and managing the workload of shared
resources. However, due to the virtualization of services
and the trend to compose services to complex aggregates
and to re-offer them, new approaches are needed to be
able to implement the QoS of those complex services on a
level required by business customers. More research is
needed to apply the flexibility offered be Web services to
solve the problems raised by this flexibility.

In this keynote we discuss open research issues related
to the QoS management of Web services. While the
representation of Web services QoS properties has been
addressed in current work, the implementation of QoS
relies mainly on existing work related to allocating
dedicated resources and managing the workload of shared
resources. However, due to the virtualization of services
and the trend to compose services to complex aggregates
and to re-offer them, new approaches are needed to be
able to implement the QoS of those complex services on a
level required by business customers. More research is
needed to apply the flexibility offered be Web services to
solve the problems raised by this flexibility.

[9] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D.
Dillenberger, “Adaptive algorithms for managing a
distributed data processing workload”, IBM Systems
Journal, Volume 36, 2, 1997, pp. 242-283.

[9] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D.
Dillenberger, “Adaptive algorithms for managing a
distributed data processing workload”, IBM Systems
Journal, Volume 36, 2, 1997, pp. 242-283.
[10] H. Ludwig, “Electronic Contracts”, Technology
Supporting Business Solutions: Advances in
Computation: Theory and Practice, Nova Science
Publishers, 2003, pp. 3-28.

[10] H. Ludwig, “Electronic Contracts”, Technology
Supporting Business Solutions: Advances in
Computation: Theory and Practice, Nova Science
Publishers, 2003, pp. 3-28.
[11] T. Andrews, F. Curbera, H. Dholakia, Y Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.
Thatte, I. Trickovic, S. Weerawarana, Business Process
Execution Language for Web Services Version 1.1,

[11] T. Andrews, F. Curbera, H. Dholakia, Y Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.
Thatte, I. Trickovic, S. Weerawarana, Business Process
Execution Language for Web Services Version 1.1,

 6

http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-reference

http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/, 05 May 2003.
 [12] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, P.
Devanbu, “GlueQoS: Middleware to Sweeten Quality-of-

Service Policy Interactions”, Proceedings 26th
International Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, UK, 2004.

 7

