
RC23094 (W0401-145) January 30, 2004
Mathematics

IBM Research Report

Optimal Control of Web Hosting Systems under
Service Level Agreements

Alan J. King, Mark S. Squillante
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Optimal Control of Web Hosting Systems

under Service Level Agreements

Alan J. King and Mark S. Squillante

October 16, 2003

1 Introduction

The operation of a web-hosting facility involves control elements and decisions
spanning many time scales. The physical computing facility contains many
control points with parameters that can be tuned in real time to respond to
performance statistics. At one extreme, high-performance routers operate at
very fine time-scales and adjust their parameters accordingly. Operating sys-
tem, middleware and application software may also monitor performance and
set control parameters. At somewhat coarser time-scales, computer and disk
farm partitions may be reassigned in response to changing workloads. Daily,
weekly, monthly and longer-term forecasts may be used to schedule and plan
allocation policies. At weekly and monthly time-scales, the capacity of the re-
source elements may be reviewed and cause the utility’s supply chain model
to process additional orders or to obtain short-term capacity. Finally, monthly
and yearly performance reporting may require changes in the basic terms and
conditions of the Service Level Agreement (SLA) and impact strategic models
addressing the computing utility’s profitability. The key operational point is
that the overall solution must provide a unified framework that makes it pos-
sible to have various solution methods working together in a cohesive manner
across a wide range of time scales in order to meet a common overall goal.

The physical computing facility includes control points at the router and
server. Policies at these control points can be used to achieve QoS performance
objectives through the allocation of resource elements, once information about
the arrival and service processes are known or forecasted. The availability of
such workload information is often significantly impacted by the time-scale of
the control points. As a specific example, routers working at very fine time-
scales often do not have any additional information about the arrival process
beyond its current mean rate because the overhead of collecting more detailed
information is too expensive at these fine time-scales. More detailed workload
information is typically available as one moves to coarser time scales.

The varying assignment of resource elements over time is perhaps what most
comes to mind when operational models of the computing utility are discussed
and marketed: Additional resource elements can be brought to accommodate

1

situations where customer user populations create bursts of demand. Different
architectures can respond to such requirements with varying abilities, from hot
repartitioning of a single large mainframe class machine to a cold restart of a
rack mounted pizza-box. Reassigned resource elements are necessarily diverted
from actual or potential use by other customers, so the operational models for
these decisions typically must encompass a large number of potential actions
and rewards.

1.1 Allocation of shared resources

The generic scenario is as follows. A dispatcher receives incoming client requests
destined for different customer hosting sites and routes these requests to an
appropriate downstream server element. Each server element in turn receives the
client requests routed to it and schedules the execution of these requests among
its resources. Both dispatchers and servers operate according to their current
control policy parameters. The dispatcher observes incoming loads from the
different customer hosting sites and performance statistics for the downstream
server elements. Server elements are assigned to individual customer sites and
often are not shared, either physically or virtually. At a relatively fine time-
scale, the dispatcher’s role can include deciding how to adjust its control policy
parameters in an optimal, or near optimal, manner subject to the existing server
element assignments. Similar control policy decisions can also be made at the
server elements. At coarser time-scales, the role of resource allocation control
policies includes deciding when to change the assignment of server elements
among the different customer hosting sites. These decisions must encompass
the load forecast, the system state, alternative control policies, the charging
procedures, and the SLAs for the different customers.

One version of this generic scenario is the Bandwidth Broker in Section 2.
Classes of customers differ in the price charged per “megabyte” carried, in the
arrival rate of requests, and in the size of the request. The provisioning dis-
patcher, or bandwidth broker, can accept or reject the bandwidth request in
order to optimize revenue subject to a capacity bound on available bandwidth.
The feasibility bound on available bandwidth is a proxy for a QoS condition,
in that as long as the bandwidth bound is respected then all users experience
the desired QoS. This setting is similar to [35] and the dynamic programming
solution to this problem is similar to the classical revenue management models
[24, 31]. The main results from this analysis are: 1) different charging rates do
indeed differentiate service levels achieved by customers; and 2) greedy alloca-
tion policies can be near-optimal in states characterized by excess capacity and
states characterized by large numbers of requests in service.

Section 3 considers an operational model of the web hosting facility at fine
time-scales that performs optimal downstream routing and server scheduling
decisions for requests arriving from multiple classes of users for each of the
many customer sites. The workload model encompasses state transitions for
the user classes and allows general stochastic processes of the type found in
practice. Revenue is calculated by charging users a price per request as in Sec-

2

tion 2. The QoS conditions and profit estimates are modeled by the probability
that the per-class response times are within a specified per-class bound, which
is in turn bounded from above by an exact or approximate queueing-theoretic
expression. In addition, requests that violate the QoS performance guarantee
cause a penalty to be charged to the provider. Versions for various types of
server scheduling policies among the user classes are also considered. The re-
sulting class-constrained resource allocation problem is shown to be convex and
an efficient solution algorithm is developed. The main results from this analysis
demonstrate: 1) the viability and profitability of the general class of SLA and
revenue/penalty charging models considered; 2) the effective use of stochastic
bounds and approximations on per-class response time distributions given lim-
ited workload information; and 3) the efficiency of the solution methods making
it possible to exploit them on-line.

Section 4 expands the set of resource allocation problems in the web hosting
facility of Section 3 to span multiple time-scales. The SLA model is simplified
by eliminating penalties for QoS noncompliance and by calculating the per-class
revenues as functions of the per-class average server utilization rates per time
interval. To meet QoS requirements, the resource allocation policies can as-
sign more servers to the customer. (The charging scheme protects the customer
from paying for over-allocations.) However, when server elements are reassigned,
each such change takes the server out of service for an interval that reflects the
transition time. The resulting resource assignment problem is a stochastic dy-
namic program. The solution approach takes advantage of the fact that this
simplified revenue model causes the optimal routing and scheduling model of
Section 3 to reduce to a linear program that has a direct solution. An approx-
imation algorithm then provides resource assignment solutions demonstrating
that the dynamic programming policies are far better than standard heuristics.
Conclusions somewhat similar to Section 2 can be drawn, namely that greedy
algorithms work well in states characterized by low utilization and that the dy-
namic programming solution significantly differs from greedy policies when the
QoS constraints are at risk of violation — especially when the request processes
are characterized by a considerable probability of bursting. In particular, as
a result of employing the optimal routing and scheduling policies of Section 3,
we find that the resource reallocation problem simplifies somewhat in the sense
that small changes in the various workloads have a relatively small impact on
overall profit, whereas adjusting server assignments to address major workload
changes becomes a primary issue in satisfying QoS performance guarantees and
maximizing overall profit.

The discussion so far describes resource allocation control policies that make
operational decisions to meet QoS requirements. In Sections 3 and 4 the control
policies have constraints on the per class response time QoS. Each of these
settings assumes that a feasible solution exists and further assumes that the
dispatcher pays penalties for out-of-compliance service — in other words, there
must be a governing provision that user loads are within certain limits and that
the service provider is protected from paying penalties for load levels above
these limits. Moreover, when such limits are violated, the resource allocation

3

control policies favor requests according to their importance relative to their
QoS requirements and cost model.

1.2 Preface and Acknowledgements

This chapter is a survey of a few years of work and discussions among our col-
leagues in IBM Research. Many of these sections are based on material that
has been published in the academic literature. Section 2 is adapted from the
IBM Research report by Yuan-Chi Chang, Xin Guo, Tracy Kimbrel and Alan
King (IBM Thomas J. Watson Research Center) that was never published [7];
the authors acknowledge Dr. Shabbir Ahmed (Georgia Institute of Technology)
and Dr. David Gamarnik (IBM Thomas J. Watson Research Center) for valu-
able comments, and thank Menghui Cao (Columbia University) and Daniela de
Farias (Stanford University) for their help in building the simulator and analyz-
ing its runs during their summer internship at IBM. Section 3 is adapted from
the paper by Zhen Liu, Mark Squillante and Joel Wolf (IBM Thomas J. Wat-
son Research Center) that appeared in the proceedings of the IEEE Conference
on Decision and Control [28]. Section 4 is adapted from the paper by Daniela
de Farias (IBM Almaden Research Center), Alan King, Mark Squillante (IBM
Thomas J. Watson Research Center) and Benjamin Van Roy (Stanford Univer-
sity) that appeared in the proceedings of the INFORMS Revenue Management
Conference [8].

2 Dynamic Single-Resource Provisioning

We formulate a revenue-based single-resource allocation problem for multiple
service classes. To fix ideas, the resource under management is the bandwidth
on the link from the hosting facility network access router to the internet POP,
although our methods and results can be applied more generally. Classes i are
distinguished by the bandwidth request Ai and the rate Ri they are willing to
pay for the request. The system can decide to allocate all of the bandwidth or
to reject the service request. There is no best-effort service class.

The optimal policy is achieved by discrete-time dynamic programming. The-
oretical and simulation results based on actual HTTP trace logs concur with
conventional wisdom that as resource usage approaches 100%, headroom should
be reserved for premium users. A greedy policy works well at low resource
usage and in states when there are a large number of departures relative to
arrivals, which suggests that one may simplify the implementation of dynamic
programming policies by classifying states and applying class-based rules.

We also discuss the optimal off-line solution and report the revenue gap
between online and off-line algorithms. Performance numbers from the off-line
algorithm are not attainable in practice but they provide the ceiling on those
of the online algorithm. We found that the gap narrows as the service capacity
increases.

4

The rest of this section is organized as follows. §2.1 develops the discrete-
time dynamic programming framework for bandwidth allocation. §2.2 describes
approximation algorithms in the off-line setting. The simulation results are
presented in §2.3 and implementation issues are discussed in §2.4. Finally, §2.5
contains directions for further research.

2.1 Formal framework

We develop a discrete-time dynamic programming formulation for allocating
bandwidth to requests from multiple service classes. The problem is formulated
as a discrete-time Markov decision process on a finite horizon. The state variable
is the number of requests in progress in the system.

Consider the system with known capacity SLA, a set of m service classes,
and a finite time T when the system returns to a renewal state. Let t denote
the remaining time to T (time runs backwards in this section) and assume that
allocation decisions are made at discrete time intervals of length 1. Thus, there
are T + 1 unit length time intervals. Decision stages are numbered in reverse
order t = T, T − 1, . . . , 0 indicating the time remaining to renewal. Users arrive
at random times X1, X2, The i-th user stays connected for a random time
Di. The goal is to come up with the assignment policy which maximizes the
total revenue over the time period T .

Notation. For any fixed time t (the remaining time to renewal), define:

• �N = (n1, n2, · · · , nm) and �L = (l1, l2, · · · , lm) are vectors denoting the
numbers of requests in progress, each requiring bandwidth �A = (A1, A2, . . . , Am)
for the duration of the session. The SLA constraint mandates

∑m
i Aini ≤

SLA.

• �b = (b1, b2, · · · , bm) is the vector denoting the number of different classes
leaving the system; �b > 0 ⇐⇒ bi > 0 for some i = 1, ...m;

• �N ≥ �b(�N ≥ �L) ⇐⇒ ni ≥ bi (ni ≥ Li), for all i = 1, · · · , m;

• pit denotes the probability of a request from a service class i arriving
during the time interval [t, t − 1);

• q�bt denotes the probability that �b customers depart the system at time t;

• Ri denotes the revenue per unit time for the allocated bandwidth for class
i.

General assumptions.

1. In each interval, up to one new request will be considered for service (one
may easily relax this (apparently) restrictive assumption by aggregating
thousands of requests to be a single “mega-request”, and apply our for-
mulation to this “mega-request”).

5

2. Once a request arrives, a known bandwidth Ai (i = 1, ...m) needs to be
allocated.

3. The assignment of bandwidths occurs at the starting point of each time
unit.

4. Instead of a best-effort allocation policy, an “all-or-nothing” policy is as-
sumed that allocates to accepted requests the entire bandwidth Ai. Ri is
the resulting revenue per request. To accommodate a best effort default
service, one may view Ri as the value differential between an assigned
bandwidth and a best effort class of service.

5. Unserved requests are lost without further impact on the system.

Request durations. It is not necessary to model individual request dura-
tions. One can derive the probability (qit) of a service request from class i
leaving the system at t via the arrival and service time assumptions.

Optimality equation. Consider the following action space A = { accept,
reject }. When the system is at t with �N requests in progress, a reward R(�N, a)
is given for action a ∈ A. The corresponding optimality equation is:

Vt(�N) = max
a

R(�N, a) +
∑

�L

Vt−1(�L)P �N,�L(a)

 (1)

subject to the SLA constraint and the boundary condition

V0(0) = 0, V0(�N) = −∞ when �N · �A > SLA, (2)

where the summation in (1) is over any �L ≤ �N or �L ≤ �N + 1 depending on
whether the action a is to accept or to reject. P �N,�L(a) denotes the transition

probability from state �N to state �L under action a.
The above boundary conditions guarantee that SLAs are never violated.

Note that the model also allows for violations of the SLAs via penalty functions
V0(�N).

More concretely, at each time period there are four possibilities: a request
arrives and it is accepted; a request arrives and is rejected; no requests arrive;
or no change (in arrival and departure) occurs. A more detailed description of
the optimality conditions is as follows

Vt(�N) =
m∑

i=1

max

pit(Ri +
∑

�L≤ �N+�ei

Vt−1(�L)P �N+�ei,�L
), pit

∑
�L≤ �N

Vt−1(�L)P �N,�L

+

m∏
i=1

(1 − pit)
∑

0<�b≤ �N

q�btVt−1(�N −�b) +
m∏

i=1

(1 − pit)q0tVt(�N)

6

where q0t means no departure.
It is not hard to see that the optimal policy is completely state dependent.

Because of the curse of dimensionality, it could be quite hard to derive the
optimal policy in an explicit analytical form. But this computation can be done
off-line. Solving the dynamic program yields a look-up table which specifies for
each period t and �N whether bandwidth Ai should be allocated for the arriving
request.

Additional assumptions may reduce the computational complexity. For in-
stance, if we assume that one and only one of the the following events occurs:
(1) an arrival of a request from class i; (2) some departures of class i from the
system; (3) no event. Then, the dynamic programming recursion can be written
as:

Vt(�N) =
∑m

i=1 pit max{Ri + Vt−1(�N + �ei), Vt−1(�N)} +
∑

�N≥�b>0 q�bVt−1(�N −�b)
+(1 −∑m

i=1 pi −
∑

0<�b≤ �N q�b)Vt−1(�N).
(3)

This additional assumption is plausible and natural when one wants to ap-
proximate the corresponding continuous time problem with time discretization.
Interested readers can find such applications in [24] for the airline seat control
problem.

To further simplify the computations, one may wish to assume that

• interarrival time of customer requests is exponential with parameter λi for
class i;

• service time for class i is exponential with parameter µi.

Nevertheless, one needs to be careful in choosing an appropriate time unit
to make all assumptions consistent.

Control policy. The admission control policy is a simple threshold policy:
Admit Ai at time t if the system has �N requests in service when

Ri +
∑

�L≤ �N+�ei

Vt−1(�L)P �N+�ei,�L
≥
∑
�L≤ �N

Vt−1(�L)P �N,�L (4)

This development is similar to dynamic programming approaches to the reser-
vation of airline seat allocation problem with cancellations studied by Subra-
maniam et al. [39]. The principle differences are that in our model we permit
variable resource requests Ai, and the exit probabilities qit are class dependent.
Moreover, their formulation relies heavily on a rather restrictive assumption
that there is up to only one arrival or departure (not both) during one time
period. It is worth pointing out that the approach in this section can be de-
scribed in its most general form as an airline yield management problem with
multiple fare classes, over-booking and cancellations. (Interested readers are
referred to McGill and van Ryzin [31] for a survey of research in airline revenue
management).

7

A similar problem was considered in [30]. However, their formulation is an
admission control for a discounted Markov decision problem with an infinite time
horizon, whereas the problem considered in this section has finite time horizon.
The advantage of this approach is that the admission control policy can be
adjusted to fit various traffic conditions by carefully choosing appropriate time
windows. For example, look-up tables can be different for off-peak and peak
hour traffic statistics. Also, Poisson arrival and service assumptions are crucial
in the formulation of [30], while the formulation in this section can be applied
to more general cases.

2.2 What if we know everything: off-line algorithms

In this subsection we consider the off-line problem of bandwidth allocation
strategies. This provides a benchmark against which to compare the dynamic
programming allocation strategy. Each request specifies an arbitrary bandwidth
and revenue. Assume that the requested bandwidth wi, value vi (revenue), start
time ti and duration Di of each request are known in advance. A subset of the
requests is to be retained (called intervals in this subsection) that maximizes the
sum of the retained values, subject to the constraint that at each time instant
the sum of bandwidths of retained intervals that span that time instant is at
most the total bandwidth capacity B.

This problem is NP -hard. There is a simple reduction from the knapsack
problem [15]: for each item in the knapsack instance construct a bandwidth
request with value equal to that of the item with bandwidth equal to the item’s
weight.

Thus one turns to approximation algorithms. An algorithm has an approx-
imation ratio r if the value of the solution returned is at least 1/r times the
optimal value for maximization problems, or at most r times the optimal value
for minimization problems.

The allocation problem is isomorphic to the “general caching problem”;
see [3], for instance. However, in the general caching problem, the optimiza-
tion criterion is complementary: the goal is to minimize the sum of the values
of the discarded intervals (requests) rather than to maximize the value of those
retained. Irani [18] gives an algorithm for this problem with an approxima-
tion ratio logarithmic in the ratio of the cache size (which corresponds to total
bandwidth) to the smallest page (smallest bandwidth of any request), for the
special cases in which the values are the same for all intervals and in which they
are proportional to the widths. Although this does not yield an approximation
bound for the bandwidth allocation problem, the algorithm is appealing due to
its simplicity, its natural adaptation to our problem, and its good performance
in practice.

The algorithm classifies intervals by their widths, in geometrically increasing-
width classes. Class j comprises requests of widths between 2j and 2j+1. The
algorithm makes a left-to-right (i.e., in order of increasing time) scan of the input
set of intervals, maintaining a set of “live” intervals that are candidates for the
solution. When the right endpoint of a live interval is passed, the candidate

8

is added to the solution. When the left endpoint of an interval is passed, the
interval is added to the live set, and then some number of intervals is discarded
from the live set if necessary because the width bound B is exceeded. Once a
class is chosen from which to discard an interval, the interval chosen within that
class is the one whose right endpoint is furthest away (i.e., greatest). Irani uses
the brute force approach of discarding from every class whenever B is exceeded,
but this is not necessary and is only used to show that the algorithm has a worst-
case approximation guarantee. We can instead discard only enough intervals to
satisfy the size bound B again, but we need to decide which class or classes to
discard from.

Irani’s algorithm can be adapted in a natural way to the bandwidth alloca-
tion problem. The idea is to balance the sums of the values of intervals discarded
from each class. For each class, a counter is maintained; these counters are set
to zero at the start of the algorithm. Each time an interval is discarded, the
counter for the interval’s class is incremented by the value of the interval. A
victim class is chosen to minimize the maximum counter value, after increment-
ing the victim class’ counter. As before, within a class that interval whose
right endpoint is greatest is chosen. This is repeated until the bound B is met
again. Recently, Bar-Noy et. al. [3] gave a simple and elegant algorithm for the
bandwidth allocation problem with a constant approximation ratio.

We implemented Irani’s algorithm and a simple off-line algorithm that dis-
cards the request with the smallest ratio of revenue to remaining time until the
end of the request. Results of these simulations are reported below as bench-
marks against which to compare online policies.

2.3 Simulation and comparison of control policies

In this subsection, two admission control policies: the dynamic programming
(DP) policy and the Greedy policy (that assigns resources based solely on avail-
ability) are simulated by arrival rates and average service times derived from
real HTTP log traces. The experiments show the DP policy, depending on the
revenue assumptions, beats the Greedy policy by a wide margin in all occasions.
In the rest of the subsection, the simulation setting and results are reported,
followed by discussion and interpretation of the results.

2.3.1 Simulation setting

The simulation environment tracks the admission control decisions made by
two policies, DP and Greedy. The arrival traffic processed by both policies is
identical. However, due to different admission policies, the number of active
requests is different and the number of completed tasks also differs. For easy
comparison, only two classes of requests are assumed: Gold and Silver. This two-
class assumption matches common distinctions of “browsing” and “shopping”
customers in e-commerce. It is noted that multi-class arrivals can be easily
handled by the DP formulation and solution developed in this section.

9

Arrival rates and average service time are derived from an actual one-day
HTTP log trace from a major commercial Web site that recorded arrival times
and requested file sizes. The time granulation of the log was on the order of
several seconds. There were typically multiple arrivals in one second all sharing
the same time stamp. The requested file sizes are generally different as the
requests look for different files. Because of the insufficient temporal resolution
and the single arrival per time slot assumption in the DP policy, the real traffic
rates were estimated using an artificially generated arrival pattern.

The simulator estimates the arrival rates and service times in the following
way:

• The logged requests are divided randomly into Gold group and Silver
group according to a given fixed probability ratio. The Gold arrival rate
is obtained by dividing the total number of Gold requests by the time
duration of the log trace, e.g., 24 hours. The Silver arrival rate is the
division of the number of Silver requests and the time duration.

• Average service times are computed from the requested file sizes. In the
beginning of the simulation, the total available bandwidth (in SLA), the
assigned bandwidth per Gold request, and the assigned bandwidth per Sil-
ver request, are specified by user. Average service times are computed by
dividing the average requested file size with the assigned class bandwidth.

• The current simulation only applies the HTTP log traces to estimate rates.
The interarrival times of every class is assumed to be i.i.d. Poisson and
the service time of each class exponential.

The simulator also allows the assignment of revenues generated for each
class. The revenue brought by each request is fixed regardless how long the
request stays in the system. This assumption reflects how most HTTP 1.0
requests are processed, which rarely involve long connections. In HTTP 1.1
and later, connections may be much longer since all elements (text and images)
in a document are aggregated and sent through a single HTTP connection.
Nevertheless, the DP formulation can be easily modified to account for revenue
rate if needed.

2.3.2 Greedy policy

The Greedy policy is used in conjunction with the DP policy as a reference
benchmark. The Greedy policy operates by the First-Come, First-Serve (FCFS)
rule and does not reject any request unless the SLA will be violated. It treats
requests from different classes in the same way and ignores differential revenue
brought by these requests. This simple policy reflects how most Web sites today
handle HTTP requests.

2.3.3 Simulation results

Example. Many rounds of simulations with different bandwidth and revenue
assignments were conducted. Since their results do not differ qualitatively, a

10

representative case is reported here. We assume that ratio of service time be-
tween gold and silver is 2 and that

• Estimated arrival rate of Gold class (per time slot): 4.5

• Estimated arrival rate of Silver class: 8.6

Table 1: Comparison: DP vs. Greedy, online vs. off-line

Total Bandwidth (kbps) 1000 1000 1000 1000 1000
Gold Bandwidth (kbps) 56 56 56 56 56
Silver Bandwidth (kbps) 28 28 28 28 28

Gold Revenue ($) 3 3 3 3 4
Silver Revenue ($) 2 2 2 2 2

Gold Arrival Rate (/s) 10 15 10 10 10
Silver Arrival Rate (/s) 10 15 20 20 20

Average Gold Service Time (s) 1.7 1.7 1.7 1.7 1.7
Average Silver Service Time (s) 3.3 3.3 3.3 1.7 3.3

DP Total Revenue ($) 2597 2854 2590 3752 3388
Gold Acceptance Percent 72.94% 60.99% 74.67% 20.55% 82.34%
Silver Acceptance Percent 21.73% 4.14% 13.16% 77.72% 5.80%

Greedy Total Revenue ($) 2398 2436 2253 3605 2560
Gold Acceptance Percent 39.67% 23.99% 19.10% 38.76% 20.48%
Silver Acceptance Percent 59.84% 45.49% 42.27% 60.82% 43.64%

RatioOffline Total Revenue ($) 3639 4746 4438 5234 5182
CounterOffline Total Revenue ($) 3613 4644 4221 5155 4954

2.3.4 Discussion

From the reported simulation results in table 2.3.3, we observed:

1. The DP policy constantly beats the Greedy policy.

2. The DP policy does not fully utilize bandwidth all the time.

3. The DP policy favors requests with higher revenue.

Separately, we noted that both greedy and DP policies deliver similar per-
formance at the beginning the simulation when the system is largely empty and
is nowhere near overloading.

Intuitively, a good admission control policy should accept any request when
the system is empty and should be very selective about what is accepted when
the system is near its capacity. This is exactly what the DP policy is performing.

11

At the beginning, the DP policy is as aggressive as the Greedy policy in accept-
ing requests, regardless of how much revenue they bring. Therefore, they deliver
similar performance. As time progresses, the system gradually approaches its
capacity and the DP policy selectively reserves bandwidth for the more valuable
Gold requests and rejects most Silver requests. Bandwidth reservation makes
the overall utilization lower in order that it be available when high-revenue cus-
tomers arrive. As the simulation shows, this aggressive-on-revenue approach
enables the DP policy to generate more revenue than the aggressive-on-usage
Greedy policy.

It is well known that DP approach can be very costly to implement, since
the computational complexity grows exponentially with the increase of customer
classes. It is worth pointing out that in some cases when greedy is near optimal
to DP, we may choose to replace greedy algorithm for DP. As noted, when the
system is lightly loaded, greedy policy is optimal. Also, it is not hard to see
that when a fairly large amount of requests are being served in the system — so
that in the next time unit the ratio between a possible new arrival and possible
departures is low — the greedy policy can be as near optimal as DP. This was
confirmed by our experimental results.

2.4 Implementation issues

Most request dispatcher implementations emphasize low latency to prevent itself
from being the bottleneck. A request admission policy must also make decisions
quickly. Fortunately, to implement the DP policy one only needs to keep the
look-up table in memory. Admitting or dropping a request only involves table
look-up and a comparison.

The only drawback of this approach is the potential large size of the look-up
table. One option is to approximate the look-up table with some simple rules.
For example, a rule may state when the overall bandwidth usage is below 60%,
all requests should be accepted. Another rule may state when there are less
than 20 Gold class customers and more than 80 Silver class customers, all new
arrivals from Silver class customers should be rejected. These approximation
rules are much less than precise than the look-up table, but they are easy to
implement and require much less memory to store. Another simplification is
to develop rules that characterize states where greedy policy is optimal or near
optimal.

2.5 Concluding remarks

This section reports a successful implementation of revenue management control
policies to the operational problem of service allocation to multiple user classes
at a commercial Web hosting facility. Several conclusions and directions for
further research are worth highlighting.

Revenue management appears to be an effective model for this purpose.
Assigning revenue numbers to user requests does result in differentiated service.
The service differentiation depends on the total free capacity available, so when

12

there is capacity available then all classes receive the highest grade of service.
This strikes us as fair: since the marginal cost of service is nearly zero so why
not give good service when there is room to do so? On the other hand, the
method preserves capacity to allocate to future arrivals so the site will never be
“jammed”. A static allocation model (like the “Paris subway” [34]) cannot do
this.

The implementation includes several parameters that can be used for the
tuning of differentiated services. These are: revenue by class, bandwidth allo-
cation (as a proxy for all other Web-site resources) by class, and total capacity.
Evidently, the setting of these parameters results in important service differ-
entials. While one could outline an empirical procedure to assess the relative
effects of tuning these parameters, one would like to have an analytical under-
standing of their impact on service level measurements. This is a topic for future
research.

Solving the revenue management problem using dynamic programming tech-
niques has obvious limitations. When the number of classes is more than two,
there will be serious difficulties with the explosion of states. On the other hand,
two classes may be enough for many applications. Certainly, the two class prob-
lem is well within the capabilities of the dynamic program even for very busy
Web sites. It may be possible to handle larger numbers of classes by clever
approximation and/or learning techniques [30]. Refer also to Section 4.

Perhaps a more serious consideration arises when the stochastic assump-
tions on the arrival and service processes are not met. Service times may ex-
hibit a subexponential or heavy-tailed distribution, and arrivals may exhibit a
short-range or long-range dependence structure. Generalizing the assumption
of exponential service time distribution will considerably complicate the cal-
culation of the departure probabilities in the dynamic programming recursion.
A possible way through this may be to analyze a broader class of online algo-
rithms and rank them by their efficiency relative to the optimal off-line solution
under the subexponential/heavy-tailed and short-range/long-range dependent
assumptions. Other approaches are considered in Sections 3 and 4.

To summarize: it appears that revenue management can be applied to the
problem of resource allocation at Web sites and other IT service applications.
A realistic implementation of such an idea appears in this section. Much inter-
esting and important work remains to be done.

Appendix: Transition probability for the MDP. We will compute the
probability of the transition 〈N〉 → 〈N ′〉 when the decision 1 ≤ i ≤ m (allocate
bandwidth Ai to the arrived request) is taken.

If we are in state 〈N〉 = (n1, . . . , nm) and the customer arrives, the avail-
able decisions (bandwidths) are subject to the capacity constraint. Suppose,
the decision A1 is taken. At the next arrival we can be at any state 〈N ′〉 =
(n′

1, n
′
2, . . . , n

′
m) with n′

1 ≤ n1 + 1, n′
2 ≤ n2, . . . , n

′
m ≤ nm.

For each individual bandwidth level i the transition ni → n′
i means that n′

i

requests are not over by the next arrival and ni − n′
i requests are over by the

13

next arrival. For each individual request, the probability that it is over by the
next arrival is µi/(λi + µi) and correspondingly, the probability of not being
over is 1 − µi/(λi + µi) = λi/(λi + µi). This holds because the interarrival and
service times are exponentially distributed with parameters λi and µi. Using
a Bernoulli formula, the probability of transition 〈N〉 → 〈N ′〉 under action A1

can be derived.

3 Dynamic Multi-Resource Scheduling

We formulate a revenue/penalty-based multi-resource allocation problem for
multiple QoS classes. In the present context, the control policies concern the
load dispatching router and the per-server resources, although our methods and
results can be applied more generally. Most previous optimal resource alloca-
tion studies of this type have focused on QoS performance guarantees based
on throughput or mean response time measures. However, a critical issue for
Web hosting applications and services concerns the per-request efficiency with
which the differentiated services are handled, since delays experienced by clients
of each service provider customer can result in lost revenue and clients for the
customer. Further, such QoS performance guarantees may not be fully cap-
tured by the more standard performance metrics. To address these issues, we
consider a general class of SLA models that include the tail distributions of
the per-class response times in addition to standard metrics. The decision vari-
ables of the corresponding optimization problem are concerned with allocating
resources to maximize the profit of hosting the customer Web sites under these
SLA constraints and a general cost model.

Our problem falls within the general class of optimal resource allocation
problems, but based on the foregoing non-conventional performance metrics.
Recently, Menascé et al. [33] considered the related problem of resource schedul-
ing in Web sites with the aim of maximizing revenue. A priority scheme is pro-
posed for scheduling requests based on the states (navigation and purchase) of
the client, who will lose patience if the response time is too long. Simulations
were performed to evaluate the gains of such a policy in terms of revenue gen-
erated by the e-shopping carts. The study in [33] is the most closely related
to our research in the literature, but it differs substantially from our study in
several important respects; e.g., by considering a suboptimal allocation policy,
and by taking a simulation-based approach.

The general optimal resource allocation problem of interest involves decisions
at different time scales. In this section we present the general problem and con-
sider the specific problem of optimal routing and scheduling of server resources
at a relatively fine time scale, whereas Section 4 considers the related problem of
optimal server assignments at a relatively coarse time scale. Specifically, we pro-
pose and investigate an analytic approach to obtain a provably optimal server
capacity routing and scheduling policy with the use of methods from probabil-
ity theory, queueing theory and combinatorial optimization. The optimization
of SLA profits is formulated as a network flow model with a separable set of

14

concave objective functions at the servers that are based on queueing-theoretic
formulas we derive to capture the system dynamics. Our solution is computed
using the most efficient algorithms for this class of optimization problems, and
we show this solution to be globally optimal within assumptions of our formula-
tion. A large number of experiments are performed to evaluate the effectiveness
of our approach for optimizing SLA profits, quantifying the significant benefits
of the optimal solution over existing methods across a wide range of system
loads.

The remainder of the section is organized as follows. §3.1 describes the set of
mathematical models used in our study, and then in §3.2 we present our analysis
of the resource allocation optimization problem. Our experimental results are
provided in §3.3, and concluding remarks are presented in §3.4.

3.1 Formal framework

We consider a Web hosting environment in which a common service provider
hosts the Web sites for a set of N customers by providing Web applications
and services to the clients of each customer. This includes the allocation of a
set of M resources used to host the Web sites for these customers in order to
satisfy the QoS performance requirements for every class of service. An SLA is
created for every QoS class that a customer wants to provide to its clients, with
an overall total of K SLA classes. The service provider gains revenue for all
requests satisfying its per-class SLA, and incurs a penalty otherwise. The only
exceptions to this are best-effort requests, for which a flat-rate pricing policy
can be defined. Our objective then is to find the optimal resource allocation
control parameters that maximize the profit of hosting the customer Web sites.
We assume that the revenues and penalties for the service provider are coupled
with the corresponding revenues and penalties of each of the customers being
hosted, and thus optimizing SLA profits benefits every customer as well as the
service provider.

3.1.1 Web hosting environment

A Web server farm is a distributed computer system consisting of M hetero-
geneous servers that independently execute K SLA classes of request streams,
where each request is destined for one of N different Web sites. To accommodate
any and all restrictions that may exist in the possible assignments of class-site
pairs to servers, we assume that these possible assignments are specified via a
general mechanism. In particular, let I(i, j, k) be the indicator function matrix
for these assignments: I(i, j, k) takes on the value 1 when class k requests des-
tined for site j can be served by server i, and 0 otherwise. This assignment
function simply defines the set of class-site requests that can be served by a
given server, with no implication that the requests will be served there. The
problem of setting the values of the indicator matrix I(i, j, k), which occurs at a
coarser time scale due to the overheads involved in changing server assignments,
are considered in Section 4.

15

We assume a system architecture in which there is a request dispatcher
in front of the Web server farm that immediately routes all incoming class-
site requests to one of the eligible servers. One of the optimization problems
considered in this section is the control of the routing decisions between each
pair of class-site requests and each server eligible to serve such requests. More
precisely, we determine the optimal rate (or proportion) of traffic of different
classes from different sites to be routed to each of the servers. Thus, our solution
of the corresponding optimization problem will determine which requests are
actually served by which servers.

3.1.2 Server scheduling policies

The primary policy for scheduling different classes of requests on each server
is assumed to be Preemptive Priority Scheduling (PPS), which is a natural
candidate when the SLA classes have a strict ordering among the per-class
performance guarantees, revenues and penalties. It is quite reasonable to expect
this to be the case for the class of Web hosting environments of interest, either
in a strict sense or in a grouping sense (as discussed below). Moreover, class-
based priority scheduling disciplines have been shown to be optimal for the
scheduling of classes of differentiated service in single-server systems (e.g., refer
to [37, 22, 23, 2]). We shall therefore assume throughout this section a strict
ordering among the SLA classes across all servers and all sites.

Of course, there will be instances of our general problem where such a strict
ordering does not exist among all of the SLA classes. A common scenario for
such cases consists of the hosting of multiple Web sites each of which has levels
of QoS performance guarantees that are very similar but not identical. Our pro-
posed approach for this case consists of partitioning the individual SLA classes
into groups each containing those which have very similar yet not identical QoS
performance guarantees, revenues and penalties. The optimal solution among
these equivalence groups of classes under the PPS discipline is obtained via the
analysis of §3.2. The final step of our approach consists of taking this optimal
resource assignment for each equivalence group and determining the optimal
partition of this assignment among the SLA classes comprising the group under
the Generalized Processor Sharing (GPS) discipline. GPS is considered as a
natural candidate for the deployment of QoS response time guarantees within
each equivalence group because of its properties of isolation and proportional
sharing among classes. In the interest of space, we do not consider here the
details of our combined PPS-GPS approach, but instead refer the interested
reader to [27].

Finally, we note that it is certainly possible to consider the resource allo-
cation problem using GPS instead of PPS for scheduling different classes of
requests on each server. This approach is considered in [26] and it yields a sub-
optimal solution to the resource allocation problem. Section 4 also considers a
variant of the resource allocation problem of this section under the GPS server
scheduling policy.

16

3.1.3 Queueing network model

The Web server farm is modeled by a queueing network composed of a set of M
multiclass single-server queues and a set of N×K×K single-class infinite-server
queues. The former represents the collection of heterogeneous Web servers and
the latter represents the client-based delays, or think times, between the service
completion of one request and the arrival of the subsequent request within a
client session. We shall henceforth index the Web servers by i, the delay servers
by (j, k, k′), the Web sites by j, and the SLA classes by k, which are assumed
to satisfy the natural conditions i = 1, . . . , M , j = 1, . . . , N , and k = 1, . . . , K,
unless noted otherwise. Fig. 1 illustrates the queueing network model under
consideration.

λ
(j)
k

Web servers

Think times

p
(j)
k,k′

Dispatcher

Arrivals

Figure 1: Queueing Network Model for Web Server Farm

Without loss of generality, we assume that each of the M single-server mul-
ticlass queues representing the Web servers can accommodate all classes of re-
quests subject to I(i, j, k). PPS is used to control the allocation of resources
among the different service classes on each server. Thus, class 1 has absolute
priority over class 2, which in turn has absolute priority over class 3, and so on.
We assume that the service times of class k requests on server i follow a general
distribution with mean bi,k = C−1

i µ−1
i,k , where Ci is the capacity of server i.

Requests within each class on every server are assumed to be executed in an
FCFS manner. This is a reasonable assumption within each class of a multiclass
single-server queue under PPS, from both a practical and theoretical perspec-
tive. Furthermore, this use of FCFS minimizes the waiting time variance within
each class [19].

Client sessions for site j that begin with a class k request arrive to the
system from an exogenous source with rate λ

(j)
k . Upon completion of a class k

request, the corresponding site j client session either returns as a class k′ request
with probability p

(j)
k,k′ following a delay at an infinite-server queue having mean

(δ(j)
k,k′)−1, or completes with probability 1 − ∑K

�=1 p
(j)
k,�. Let L

(j)
k denote the

17

aggregate arrival rate of site-j class-k requests to the set of servers, which is
determined by the exogenous arrival rates and the transition probabilities:

L
(j)
k =

K∑
k′=1

L
(j)
k′ p

(j)
k′,k + λ

(j)
k . (5)

Define P̂
(j) ≡ [p(j)

k,k′] to be the corresponding request feedback matrix for site j,
which is substochastic and has dimension K ×K. This matrix defines how each
type of site j client session flows through the queueing network as a sequence
of server requests and client think times, and thus it is used in our model to
explicitly capture the correlations between the arrivals of class k and class k′

requests of the same client session. The client think times can have arbitrary
distributions, depending solely on the site j and the classes k and k′. It is
important to mention that this model of client navigational behavior and its
variants for capturing Web site traffic patterns are very general and are validated
by various Web characterization studies; e.g., see [32, 27] and the references cited
therein.

There are two important aspects of our resource allocation problem in prac-
tice that have direct restrictions and implications on our formulation and so-
lution approach. On the one hand, the navigational behavior of client sessions
explicitly captured in our queueing network model create per-class arrival pro-
cesses that have strong dependence structures which in turn have a significant
impact on the corresponding response time distributions. In particular, these
types of complex arrival processes tend to result in response time distributions
that have heavier, or longer, tails than the corresponding queue under sim-
pler arrival processes (e.g., see [38]). On the other hand, the speed at which
the dispatcher operates prevents it from collecting detailed statistics about the
per-class arrival processes and typically the only available information is the
corresponding mean arrival rates. Thus, the more detailed statistics required
to properly characterize these arrival processes in order to obtain accurate tail
distributions for the corresponding response times are simply not available to
us. We therefore need an approach based solely on the mean arrival rate as
the only characterization of the per-class arrival process that captures in a suf-
ficient manner the tail of the corresponding response time distribution found in
the Web hosting environments of interest.

Our approach is based on bounding from above the long-tail response time
distributions of single-server queues under arrival processes with strong depen-
dence structures by the response time tails of corresponding M/G/1 queues
for relatively small response time values. More precisely, letting TLT be the
generic random variable for the response time process of a general single-server
queue that has a long-tail response time distribution and letting TM/G/1 be
the generic random variable for the response time process of a correspond-
ing M/G/1 queue with E[TLT] = E[TM/G/1], it then can be easily shown that
P[TLT > x] ≤ P[TM/G/1 > x] for sufficiently small values of x. While most re-
cently published work on the tail of the response time distribution has focused

18

on the asymptotic behavior of the tail distribution, i.e., characterizing P[T > x]
in the limit as x → ∞, our interests here are quite different due to the very
nature of the strict QoS performance guarantees motivating our study which
makes us more interested in characterizing (or bounding) the measure P[T > x]
for relatively small values of x. These and related arguments [27] suggest that
we can use the corresponding response-time tail distributions from a multiclass
preemptive-priority M/G/1 queue as an upper bound on the per-class response-
time tail distributions for each server under PPS. Our results in §3.3 clearly
demonstrate the effectiveness of this approach, especially those results based on
access logs from production commercial Web sites.

3.1.4 Cost model

Our cost model is based on the notion that revenue is gained for each request
satisfying its per-class SLA, and a penalty is paid otherwise. Let Tk be the
generic random variable for the class k response time process, across all servers
and all sites. Associated with each request of class k is an SLA constraint of
the form

P[Tk > zk] ≤ βk. (6)

Our cost model is therefore based on receiving revenue Rk for each class k
request having a response time of at most zk and incurring a penalty Pk for
each class k request which has a response time exceeding zk. Our analysis
can further handle multiple QoS performance guarantee intervals together with
profit or loss parameters for each SLA class [27].

As is common in practice, there is at least one additional request class that
is assumed not to have an SLA contract, and is instead served on a best-effort
(BE) basis. Our cost model for each BE class k is based on the assumption
that a fixed revenue Rk is gained for the entire class, independent of the number
of class k requests executed, k > K. To help simplify the presentation, we
will further assume that there is a single BE class K + 1, noting that it is
straightforward to extend our analysis to handle multiple BE classes.

3.2 Optimization of SLA profits under PPS

We now consider the resource optimization problem of allocating server capacity
among the set of class-site requests with the goal of maximizing profits under
the above cost model. Let λ

(j)
i,k denote the rate of class-k requests destined for

site j that are assigned to server i. Our objective is to determine the optimal
traffic assignments λ

(j)
i,k that maximize SLA profits, given the matrix I(i, j, k)

and the exogenous arrival rates λ
(j)
k which yield the aggregate arrival rates L

(j)
k

through the formula given in (5).
Our analysis is based on the assumption that the routing decisions at the

request dispatcher are probabilistic: A class-k request for site j is routed to
server i with probability λ

(j)
i,k/

∑M
i′=1 λ

(j)
i′,k, independent of all else. When other

routing mechanisms are used (e.g., weighted round robin), our optimal solutions

19

in this probabilistic framework can be applied to set the parameters of these
mechanisms (e.g., the per-class weights).

Our approach consists of first decomposing the queueing network into sepa-
rate queueing systems and formulating each per-class optimization problem in
terms of the profits of these queueing systems, and then solving the resulting
optimization problems. In particular, we exploit the strict ordering of SLA
classes and the properties of PPS to isolate the per-class queues at each server
by decomposing the per-class performance characteristics of each server i in a
hierarchical manner such that the analysis of the decomposed model for each
class k in isolation is based on the solution for the decomposed models of classes
1, . . . , k − 1. To elucidate the exposition, we first provide the theoretical frame-
work for our decomposition-based approach and the corresponding formulation
of the optimization problem; then we present the algorithms used to efficiently
compute our optimal solutions to these resource allocation problems.

3.2.1 Formulation of optimization problem

To simplify the analysis, suppose the optimal traffic assignments satisfy ρi,k ≡
λi,k/(Ciµi,k) < 1. We then divide the optimization problem into separate for-
mulations for the SLA classes and the BE class. Our formulation for the SLA
classes is given by:

(SLA-PPS) max
M∑
i=1

K∑
k=1

(Rkλi,k − (Rk + Pk)λi,kP[Ti,k > zk]) (7)

s.t. P[Ti,k > zk] ≤ βkωk;
N∑

j=1

λ
(j)
i,k = λi,k;

M∑
i=1

λ
(j)
i,k = L

(j)
k ;

λ
(j)
i,k = 0, if I(i, j, k) = 0;

λ
(j)
i,k ≥ 0, if I(i, j, k) = 1;

where 1 ≤ ωk ≤ β−1
k . The λ

(j)
i,k are the decision variables we seek to obtain,

and Rk, Pk, Ci, λ
(j)
k , zk, βk, ωk, µi,k are input parameters. Note that the first

constraint represents the SLA relationship among the variables, which depends
on λi,k. Note also that, by allowing zk = ∞ for any k, or equivalently by
setting Pk = −Rk, our cost model makes it possible to include the objective of
optimizing the throughput for class k. Furthermore, we note that there exists
an equivalent formulation involving only the per-class tail distributions in the
objective function of (SLA-PPS); this differs from the original objective function
value by a constant.

In our formulation of the optimal allocation problem for the BE class we
attempt to minimize the weighted sum of the mean response time for class

20

K + 1 requests over all eligible servers subject to the decisions for the SLA
classes, which yields the problem:

(BE-PPS) min
M∑
i=1

ξi,K+1

(∑K+1
�=1 λi,�b

(2)
i,�

2σi,Kσi,K+1
+

bi,K+1

σi,K

)
(8)

s.t. λi,K+1 ≤ Ciµi,K+1;
M∑
i=1

λ
(j)
i,K+1 = L

(j)
K+1;

λ
(j)
i,K+1 = 0, if I(i, j, K + 1) = 0;

λ
(j)
i,K+1 ≥ 0, if I(i, j, K + 1) = 1;

where σi,k = 1 − ρ+
i,k; Ci = Ci σi,K ; ξi,K+1 is the relative importance factor for

the mean response time of the BE class K + 1 on server i; bi,� and b
(2)
i,� are the

first two moments of the service times (recall that bi,� = C−1
i µ−1

i,�); and ρ+
i,� is the

total load of classes 1, . . . , 	: ρ+
i,� =

∑�
�′=1 ρi,�′ =

∑�
�′=1 λi,�′bi,�′ . The λ

(j)
i,K+1 are

the decision variables that we seek to obtain, and the remaining variables are
input parameters. Note that the relative importance weights ξi,K+1 are included
in our formulation as they may be of greater use when there are multiple BE
classes.

The response time expression in the objective (8) is derived from known re-
sults for the multiclass preemptive-priority M/G/1 queue; e.g., see [40]. Specifi-
cally, the set of SLA classes have absolute priority over the BE class of requests,
and thus from the perspective of the BE class, the system behaves as a K+1-
class preemptive-priority queue where BE requests represent the lowest priority
class. Moreover, following the bounding arguments made above and based on
the approximations developed below, we use the Poisson arrival process for the
higher priority (SLA) classes of requests.

In the above formulation of (SLA-PPS), we also introduced the scaling fac-
tors ωk to generalize the optimization problem. Several practical considerations
motivate the use of such scaling factors. Most importantly, the scaling factors
ωk > 1 make it possible for the hosting company to violate the SLA to a con-
trolled degree in an attempt to increase profits under equation (7), whereas the
hosting company will strictly follow the pre-defined SLA whenever ωk = 1. This
can be particularly effective when the revenues and penalties for the hosting ser-
vice provider are coupled with the corresponding revenues and penalties of each
of the customer sites being hosted, as assumed in our study.

Another important aspect of the problem (SLA-PPS) concerns an explicit
expression for the per-class response time tail distributions. Following the
queueing-theoretic bounding arguments of §3.1.3, we consider this optimization
problem within the context of a set of bounding multiclass preemptive priority
M/G/1 queues. Our approach within this framework depends upon the per-
class service time distribution, where the exact response time tail distribution
for a single-class M/G/1 queue is used under exponential service times and a

21

proposed approximation for the response time tail distribution in a single-class
M/G/1 queue is used under general service times. To elucidate the exposition
of this approach, we shall consider here the specific case where class 1 service
times are exponentially distributed and the other classes have general service
time distributions. More generally, one would exploit the class 1 analysis below
for each of the SLA classes with exponential service times, and exploit the re-
maining analysis below (classes 2 ≤ k ≤ K) for each of the SLA classes with a
general service time distribution.

We first consider class 1 in isolation under the previously stated assumptions.
Following the bounding arguments above, we suppose the arrival process to the
class 1 queue at each server i to be a Poisson process. It then follows from
standard results in the queueing theory (e.g., see [20]) that the left-hand-side of
the SLA constraint is given by e−(Ciµi,1−λi,1)z1 . Hence, the SLA constraint (6)
is satisfied when

P[T1 > z1] = e−(Ciµi,1−λi,1)z1 ≤ β1. (9)

As a result of (9), and since the lower priority classes do not interfere with
the execution of class 1 requests under PPS, our formulation for the class 1
optimal resource allocation problem (SLA(1)-PPS) is identical to (SLA-PPS)
but with the objective function in (7) replaced by:

(SLA(1)-PPS) max
M∑
i=1

(
R1λi,1 − (R1 + P1)λi,1e−(Ciµi,1−λi,1)z1

)
,(10)

with the SLA constraint modified according to (9), and with k = 1 in the
remaining constraints. Note that the third constraint is the resource alloca-
tion constraint, which ensures all offered traffic will be allocated in an attempt
to optimize SLA profits. However, if we instead change this constraint to be∑M

i=1 λ
(j)
i,1 ≤ L

(j)
1 and appropriately modify the objective function, then some

fraction of the offered load might not be scheduled. In particular, whenever the
optimal values of λ

(j)
i,1 sum to something less than the offered load, then admis-

sion control will be activated by denying service to the corresponding fraction of
clients. Within the context of this formulation, all such clients can be assumed
to be lowered to the BE class, and assumed to not satisfy their SLA constraint
with probability 1 [27].

Upon solving (SLA(1)-PPS) to obtain the optimal decision variables λ
(j)
i,1

∗
,

we seek to approximate the tail distribution for the class 2 queue within the same
queueing-theoretic framework, which then will be used recursively to formulate
and solve the optimization problem for the subsequent classes under the PPS
ordering. Thus, for any class k ≥ 2, we shall exploit results on preemptive
priority M/G/1 queues to approximate the tail distributions of the response
times at server i. More precisely, we assume that there exist constants γi,k and
θi,k such that

P[Ti,k > zk] � γi,ke−θi,kzk . (11)

22

These types of approximations are justified by various known results in the
queueing literature, including the exponential distribution of response times
in an M/M/1 queue (e.g., refer to equation (9) and [20]), the heavy-traffic
approximation of an exponential waiting time distribution in a GI/G/1 queue
due to Kingman (e.g., see [21]), the exponential upper and lower bounds on the
response time in G/GI/1 queues (e.g., refer to [25]), the large deviations upper
and lower bounds on queues (e.g., see [6, 14]), and the asymptotic results for
single-server queues (e.g., refer to [1]).

Note that the exact tail distributions of the response times in preemptive pri-
ority M/G/1 queues can be obtained by numerically inverting the corresponding
Laplace transforms (e.g., refer to [40]). However, such an approach will not be
very useful for our optimal allocation problem. Indeed, for our solution ap-
proach, the cost functions should be concave in the rate variables λi,k, which
does not hold true in general for the exact tail distributions.

Assuming that we have solved the optimization problem for the higher prior-
ity classes 1, . . . , k−1, then our formulation of the allocation problem for class k
(SLA(k)-PPS) is identical to (SLA-PPS) but with the objective in (7) replaced
by:

(SLA(k)-PPS) max
M∑
i=1

(
Rkλi,k − (Rk + Pk)λi,kγi,ke−θi,kzk

)
.(12)

In order to apply the efficient optimization algorithms of §3.2.2, we need to
appropriately choose the parameters θi,k and γi,k. While different schemes can
be envisioned, in this section we propose to fit the two parameters with the first
two moments of the response time distribution. Since E[Xm] = m

∫∞
0

xm−1P[X >
x]dx for any nonnegative random variable X , it then follows from (11) that

E[Ti,k] = γi,k/θi,k and E[T 2
i,k] = 2γi,k/θ2

i,k, (13)

and thus

θi,k =
2E[Ti,k]
E[T 2

i,k]
and γi,k =

2E[Ti,k]2

E[T 2
i,k]

. (14)

Using the known formulas for E[Ti,k] and E[T 2
i,k], we have [40]

E[Ti,k] =

∑k
k′=1 λi,k′b

(2)
i,k′

2σi,k−1σi,k
+

bi,k

σi,k−1
; (15)

E[T 2
i,k] =

∑k
k′=1 λi,k′b

(3)
i,k′

3σ2
i,k−1σi,k

+
b
(2)
i,k

σ2
i,k−1

+

(∑k
k′=1 λi,k′b

(2)
i,k′

σi,k−1σi,k
+

∑k−1
k′=1 λi,k′b

(2)
i,k′

σ2
i,k−1

)
E[Ti,k];(16)

where bi,k, b
(2)
i,k and b

(3)
i,k are the first three moments of the class k service times

on server i, and σi,k = 1 − ρ+
i,k.

We now establish an important result based on this formulation that shows
our solution to be globally optimal, within the assumptions of this section.

23

Theorem 1 Assume that the service time distributions of classes 1, . . . , k at
each server i belong to the family of mixtures of exponentials. Then, the objective
functions in (10) and (12) are concave in λi,k, for all i = 1, . . . , M .

Proof The objective function in (10) is obviously concave for each i as the first
term is linear in λi,k and the second term is negative and convex in λi,k. As
for the objective function in (12), it suffices to show that γi,k is increasing and
convex in λi,k and that θi,k is decreasing and concave in λi,k. These properties
are readily verified.

Indeed, we are confident that this result holds under more general assump-
tions. Furthermore, it follows from this theorem that we can recursively apply
the network flow model algorithms of §3.2.2 to the K subproblems (SLA(k)-
PPS) corresponding to classes k = 1, 2, . . . , K.

3.2.2 Optimization algorithms

We now present a brief description of the basic optimization algorithm employed
in the solution for each class k. Additional details, generalizations and references
can be found in [27, 17].

Consider a directed network with a single source node and multiple sink
nodes. There is a function associated with each sink node. This function is
required to be increasing, differentiable and concave in the net flow into that
sink, and the overall objective function is the (separable) sum of these concave
functions. We wish to optimize this objective function. There can be both upper
(capacity) and lower bound constraints on the flows on each directed arc. We
call this the network flow resource allocation problem (NFRAP). To be precise,
consider a directed network consisting of nodes V and directed arcs A. The
arcs av1v2 ∈ A carry flow fv1v2 from nodes v1 ∈ V to nodes v2 ∈ V. The flow is
a real variable that is constrained to be bounded below by a constant lv1v2 and
above by a constant uv1v2 . That is, lv1v2 ≤ fv1v2 ≤ uv1v2 for each arc av1v2 . It
is possible, of course, that lv1v2 = 0 or uv1v2 = ∞. There will be a single source
node s ∈ V satisfying

∑
asv2

fsv2 = R > 0. This value R, the net outflow from
the source, is a constant that represents the amount of resource available to be
allocated. There are N sinks v2 ∈ N ⊆ A which have the property that their
net inflow

∑
av1v2

fv1v2 > 0. All other nodes v2 ∈ A−{s}−N are transshipment
nodes that satisfy

∑
av1v2

fv1v2 −
∑

av2v3
fv2v3 = 0. There is a single increasing,

concave and differentiable function Fv2 of the net flow into each sink node j.
Thus, the overall objective function is given by

∑
v2∈N Fv2(

∑
av1v2

fv1v2), which
we wish to optimize subject to the lower and upper bound constraints described
above.

In addition to the source node s, there are N nodes corresponding to the
sites, followed by a pair of M nodes corresponding to the servers, the latter set
being the sinks. In the first group of arcs, the jth node has capacity equal to
L

(j)
k . The second group of arcs corresponds to pairs (j, i) for which I(i, j, k) = 1,

and these arcs have infinite capacity. The capacities of the third group of arcs
on (i, k) correspond to the SLA constraints. All lower bounds are 0.

24

A special case of NFRAP is:

max
N∑

v2=1

(Fv2(xv2)) (17)

s.t. lv2 ≤ xv2 ≤ uv2 ; (18)
N∑

v2=1

xv2 = R; (19)

where each Fv2(·) is an increasing, concave and differentiable function of the real
decision variables xv2 . The optimal solution for this so-called separable concave
resource allocation problem (SCRAP) occurs at the place where the derivatives
F ′

v2
(xv2) are equal and the resource allocation constraint in equation (19) holds,

modulo the bound constraints in (18). More precisely, the algorithm proceeds
as follows. If

∑N
v2=1 lv2 > R or

∑N
v2=1 uv2 < R, there is no feasible solution

and the algorithm terminates. Otherwise, the algorithm consists of an outer
bisection loop that determines the value of the derivative D and a set of N inner
bisection loops that find the value of lv2 ≤ xv2 ≤ uv2 satisfying F ′

v2
(xv2) = D if

F ′
v2

(lv2) ≤ D and F ′
v2

(uv2) ≥ D. Otherwise, we set xv2 = lv2 (in the first case),
or xv2 = uv2 (in the second). The initial values for the outer loop can be taken
as the minimum of all values F ′

v2
(lv2) and the maximum of all values F ′

v2
(uv2).

The initial values for the v2-th inner loop can be taken to be lv2 and uv2 .
Now the general network flow problem is solved by recursive calls to a sub-

routine that solves the problem with a slightly revised network and with gener-
alized bound constraints l′v1v2

≤ fv1v2 ≤ u′
v1v2

instead of those described above.
As the algorithm proceeds it makes calls to the SCRAP solver. More precisely,
we start by solving the problem obtained by ignoring all but the source and
sink nodes. Let xv2 denote the solution to that optimization problem. In the
next step we add a supersink t to the original network, with directed arcs jt
from each original sink, forming a revised network (V′,A′). We set l′jt = 0 and
u′

jt = xv2 for all arcs connecting the original sinks to the supersink. For all
other arcs the lower and upper bounds remain the same. Thus l′v1v2

= lv1v2 and
u′

v1v2
= uv1v2 for all arcs av1v2 . We then solve a so-called maximum flow prob-

lem to find the largest possible flow fv1v2 through the network (V′,A′) subject
to the lower and upper bound constraints described above. A simple routine for
the maximum flow problem is the so-called labeling algorithm combined with a
path augmentation routine. Using the residual network one can simultaneously
obtain the so-called minimum cut partition. Those original sink nodes j which
appear in the same partition as the supersink are now regarded as saturated.
The flow fv2t becomes the lower and upper bounds on that arc. Thus we set
l′v2t = u′v2t = fv2t. For all remaining unsaturated arcs j we set l′v2t = xv2

and u′
v2t = fv2t. Now we repeat the entire process, solving the SCRAP for the

unsaturated nodes only, with suitably revised total resource, and then solving
the revised network flow problem. This process continues until all nodes are
saturated, or we reach an infeasible solution.

25

3.3 Experimental results

In this subsection we discuss some experimental results to illustrate the effec-
tiveness of our approach for optimizing SLA profits based on QoS performance
guarantees. A large number of experiments have been conducted under a wide
range of parameter settings. In each case, we numerically determine the optimal
solution using the models and methods of §3.1 and §3.2, and then we investigate
through numerical experiments and simulation the benefits of our approach. A
representative set of these experiments are discussed here; additional results and
details can be found in [27].

3.3.1 Configuration of experiments

Throughout this subsection we shall focus on the following parameter settings:
M = 12; N = 3; K = 3; Ci = 1.0 for i = 1, . . . , 6; Ci = 2.0 for i = 7, . . . , 12;
and λ

(1)
k = 0.08, 0.16, 1.2; λ

(2)
k = 0.06, 0.12, 0.8; λ

(3)
k = 0.04, 0.08, 0.4; µ−1

ik =
0.15, 0.3, 0.6; βk = 0.05, 0.1, 0.1; zk = 0.6, 1.2, 1.8; Rk = 0.3, 0.2, 0.1; ωk =
15, 8, 8; for k = 1, 2, 3. There is a strict ordering of QoS performance guarantees,
revenues and penalties from class 1 to class 3. We shall consider the effect of
the penalty-revenue ratio r := Pk/Rk by using Pk = r ·Rk in our experiments.
(One would typically have r ≥ 1, and usually r 1.) We also have investigated
the case where the SLA for class 3 is based solely on throughput by setting
P3 = −R3, where the corresponding results are only slightly different from
those provided below; refer to [27].

Although we are discussing experiments with a relatively modest number of
servers, these results can be easily used to infer the results corresponding to
Web server farms which are larger (in a uniform sense). For example, consider
a system where each of the 12 servers actually represents 10 real servers that
are identical in every way. In this case, the optimal solution for the 120 server
farm can be easily inferred from the solution provided in our experiments.

A multiplicative load factor η > 0 is used to scale the base arrival rates
λ

(j)
k to consider different traffic intensities. Thus, the load factor η provides a

relative scaling such that λ
(j)
k η is used in the experiments for the site-j class-k

arrival rate. Note that, at least for the experiments discussed below, the service
requirements depend only on the classes k, and not on the servers i.

We consider 3 configurations I1, I2 and I3 for the indicator matrix I(i, j, k).
Matrix I1 corresponds to the fully clustered server farm: any server can process
requests for any class and any site. Matrix I2 corresponds to a partially clustered
server farm: servers 1, 2 and 3 are dedicated to site-1 requests, servers 4 and
5 are dedicated to site-2 requests, and server 6 is dedicated to site-3 requests;
whereas servers 7, 9, 10 and 12 are shared by site-1 and site-2 requests, and
servers 8 and 11 are shared by site-1 and site-3 requests. Matrix I3 corresponds
to a fully partitioned server farm: servers 1, 2, 3, 7, 8, and 9 are dedicated to
site-1 requests, servers 4, 5, 10, and 11 are dedicated to site-2 requests, and
servers 6 and 12 are dedicated to site-3 requests.

26

For comparison with our optimal allocation algorithm, we consider the pro-
portional assignment scheme that employs:

λ
(j)
i,k =

λ
(j)
k Ciµi,kI(i, j, k)∑M
�=1 C�µ�,kI(, j, k)

; (20)

λi,k =
N∑

j=1

λ
(j)
i,k ; (21)

to allocate the per-class per-site traffic among the eligible servers. This is a
natural way to assign the traffic and server capacity, and it is provably the
best load balancing scheme in terms of stability regions. Moreover, for a more
competitive comparison with our optimal solution, we consider a PPS discipline
at every server. If on the other hand existing Web server scheduling disciplines
were used together with proportional allocation instead of PPS, then the results
under our optimal solutions would provide significantly larger profits than those
discussed in this subsection.

3.3.2 Comparison of profits

We now quantitatively compare the profits obtained under our optimal resource
allocation algorithm with those obtained under the proportional assignment
scheme. For each of the experimental configurations considered we only discuss
profit results for the SLA classes, because the BE classes do not impact the
profit value under our cost model. Various comparisons are discussed under
different stochastic assumptions.

Poisson Arrivals and Exponential Service Times. Consider first the
case where the arrivals form a Poisson process, and the service times are ex-
ponentially distributed. We consider 4 values of r, starting with r = 10 and
doubling up through r = 80. Since we are considering the profit per unit time,
ideal performance under this metric corresponds to a linear function.

We observe that both algorithms yield a profit for small values of r, with
considerably larger profits under the optimal assignment as well as strictly pos-
itive profits for somewhat higher values of r. For very large values of r, it is not
possible to be profitable, with greater losses under proportional assignment than
the optimal solution. At light to moderate loads the profits under the optimal
assignment essentially grow linearly, and the curves are nearly on top of each
other. This is the ideal situation: Penalties are rare. The profits do start to tail
off at heavy loads. Naturally, the higher r values degrade more seriously, and
the ordering of the curves is strictly determined by the value of r.

We also note that the optimal curves for I2 are, for all practical purposes,
almost identical to those for the fully clustered matrix I1. Indeed, this is a
further indication of the robustness of the overall optimal resource allocation
algorithm. Even though the partially clustered and fully partitioned matrices
correspond to distinctly different scenarios, there is enough flexibility to allow
the optimizer to find solutions equivalent to the globally optimal solution given

27

in the fully clustered case. Naive schemes such as proportional will not be as
robust, which is further illustrated next.

Renewal Arrival Process and General Service Times. Now consider a
more general case in terms of the distributional model assumptions. We focus on
I1 with the penalty to profit ratio fixed at r = 20. The interarrival and service
time sequences are each assumed to be independent and identically distributed,
but otherwise arbitrary. We consider a comparison between the optimal solution
and the proportional scheme under different coefficients of variation for these
distributions, where coefficients of variation of 5 and 10 for the interarrival times
and the service times are studied.

In comparison to the previous case where the coefficient of variation equals
1 for both interarrival and service times, the profits under both optimal and
proportional solutions are decreased. These profits are decreasing in the coeffi-
cients of variation of both service times and interarrival times. This is not very
surprising, as it is well known that the response times increase as the coefficients
of variation increase. It is, however, important to note that the gaps in profits
between the two solutions is increased with the increase of the coefficient of
variation.

Access Logs from a Production Commercial Web Server. We next
consider the case where the request arrival times and service times are taken
from the access logs of a production commercial Web site, which exhibit long-
range dependent arrival patterns with a Hurst parameter of around 0.78 and
subexponential (Weibullian) service requirements. The corresponding results
for I matrix configurations and various penalty to profit ratios r are studied.

It is interesting to observe from these results that the gap between the prof-
its under both optimal and proportional solutions is even bigger than those
discussed above for the stochastic interarrival and service processes. Moreover,
we see that all of the trends observed under the above workloads are also discuss
in the results based on a production commercial Web site.

3.4 Concluding remarks

The growth in Web usage creates a vital need to provide QoS guarantees for
each differentiated service class across a wide range of Web hosting environ-
ments. In this section we explored the problem of optimizing profits under SLA
contracts based on strict QoS performance guarantees and a general cost model.
Our optimal resource allocation solution is obtained in a hierarchical manner
using methods from probability theory, queueing theory and combinatorial op-
timization.

Our results provide important insights into the fundamental problem of op-
timizing SLA profits in Web hosting environments. In particular, we observe
that the optimal resource allocation algorithm provides significantly larger prof-
its per unit time than those obtained under the natural scheme of proportional
assignment combined with PPS. This also illustrates the validity of our overall
approach, including the viability and profitability of the class of SLA contracts
used in our study. The optimal allocation consistently provides large profits over

28

a wide range of system loads, whereas the naive algorithm typically yields losses
which can be quite considerable. While it is possible to increase the capacity of
the system to make a profit under proportional allocation, much greater prof-
its can be obtained under the optimal allocation algorithm with fewer system
resources, thus making a profit in a more efficient manner. Our results further
demonstrate the effective use of bounds and approximations on the per-class
response time distribution when closed-form expressions are not known, at least
within the context of our SLA contracts and related models. Finally, numerical
experiments also demonstrate our methods to be extremely efficient in practice,
making it possible to exploit them on-line in Web hosting environments.

4 Dynamic Multi-Resource Assignment

We continue our investigation of a general revenue/penalty-based multi-resource
allocation problem by building upon the optimal routing and scheduling of server
resources at a relatively fine time scale of the previous section and by focusing on
the related control problem of optimal server assignments at a relatively coarse
time scale. In particular, one of the key tasks of the hosting service provider
is to allocate servers to each of the Web sites to satisfy the agreed upon QoS
performance guarantees for the different classes of incoming requests at each
point in time, while maximizing its profits. Doing so requires consideration
of what might happen over multiple periods of time. However, the number of
scenarios to which the system can transition in just a short amount of time
grows quickly with the system dimensions, making it computationally infeasible
to find the optimal control policy for dynamically assigning servers, as well
as adding new servers, within the context of the set of SLAs. We propose a
solution to the Web server allocation problem based on approximate dynamic
programming, and compare our algorithm against a deterministic policy that
optimizes the allocation based on the average Web site traffic.

The remainder of the section is organized as follows. Aspects of our formal
framework for the resource allocation problem are presented in §4.1. We then
formulate the server allocation problem in the MDP framework in §4.2 and dis-
cuss applications of approximate linear programming in §4.3. We demonstrate
how problems stemming from state space and action space complexity can be
addressed in §4.4 and §4.5. We present experimental results in §4.6, and offer
closing remarks in §4.7.

4.1 Formal framework

4.1.1 Solving the scheduling and routing problems

We consider a variant of the formal Web hosting framework in Section 3.1 con-
sisting of a collection of M Web servers that are shared by N customer Web
sites. The scheduling policy at each Web server is GPS. We will solve the server
capacity scheduling and routing problem over 2.5-minute intervals. The Web
server assignments and arrival rates are assumed to remain fixed within each

29

of these intervals. We use the symbol I to denote a particular encoding of
the Web server assignment and let L denote a vector of aggregated endoge-
nous/exogenous arrival rates Lk. The solution of the scheduling and routing
problem is a function of the pair (I, L).

Using an approach based on stochastic bounds and approximations, our
routing and scheduling decision variables reduce to λi,k, the arrival rate of class
k requests routed to server i, and φi,k, the fraction of server i capacity assigned
to class k. The arrival rates across servers for any given class have to equal the
total arrival rate for that class Lk. Furthermore, the total assigned capacity for
any given server cannot exceed 1.

The SLA establishes that the response time Tk for each class k request must
satisfy

P (Tk > zk) ≤ βk,

for given parameters zk and βk. As discussed in [26], we bound this constraint
from above by

e(λi,k−φi,kµk)zk ≤ βk,

via arguments based on stochastic bounds and approximations.
We also consider a simplified variant of the cost model in Section 3. In par-

ticular, a usage-based cost model is considered in which server usage is charged
per time with rate Pk for class k. The expected time server i devotes to class k
in each 2.5-minute interval is given by λi,k/µk, provided that arrival rates and
service times are expressed in the correct time scale, and therefore the expected
profit generated by class k requests processed on server i is given by

Pk
λi,k

µk
.

We thus have the following optimization problem for determining server
capacity scheduling and routing policies:

(Usage-GPS) max
M∑
i=1

K∑
k=1

Pk
λi,k

µk
(22)

s.t. λi,k ≤ ln(βk)
zk

+ φi,kµk, if I(i, k) = 1, i = 1, . . . , M, k = 1, . . . , K;

M∑
i=1

λi,k ≤ Lk, k = 1, . . . , K;

λi,k = 0, if I(i, k) = 0, k = 1, . . . , K, i = 1, . . . , M ;
λi,k ≥ 0, if I(i, k) = 1, k = 1, . . . , K, i = 1, . . . , M ;
K∑

k=1

φi,k ≤ 1, i = 1, . . . , M ;

φi,k = 0, if I(i, k) = 0, k = 1, . . . , K, i = 1, . . . , M ;
φi,k ≥ 0, if I(i, k) = 1, k = 1, . . . , K, i = 1, . . . , M.

30

The λi,k and φi,k are the decision variables we seek to obtain. Here our use of
I(i, k) is a slight abuse of notation and it indicates whether server i is assigned
to the Web site associated with class k.

The optimal value of problem (Usage-GPS) is denoted by R(I, L), corre-
sponding to the expected profit over a 2.5-minute interval when arrival rates
are given by L and the Web server assignment is given by I.

The LP (Usage-GPS) can be solved analytically, which speeds up compu-
tation. Note that it decomposes into N smaller problems of scheduling and
routing for each Web site. Moreover, we can show that the following greedy
strategy is optimal:

1. assign the minimum capacity − ln(βk)/zkµk to each class k;

2. assign the remaining capacity as needed to classes based on a priority
scheme, serving classes according to profit Pk.

Optimality of the procedure above is easily verified as follows. Suppose we have
two classes k and k′ with Pk < Pk′ , with

∑
i λi,k′ < Lk and φi,k > 0 for some

i. Then we can reallocate server capacity according to φ̄i,k = φi,k > 0 − ε,
φ̄i,k′ = φi,k′ + ε so that

∑
i λi,k′ + εµk ≤ Lk and φ̄i,k ≥ 0, which is a new feasible

solution to (Usage-GPS). This incurs a change in profit of

Pk′

µk′
εµk′ − Pk

µk
εµk = Pk′ − Pk > 0.

We conclude that an optimal policy must serve all requests of the most expensive
classes first, hence the greedy policy is optimal.

Note that the constraint

λi,k ≤ ln(βk)
zk

+ φi,kµk,

corresponding to the SLA for class k, requires that a minimum server capacity
be assigned to requests of class k even if that server is not processing any
requests of that type. This is due to the fact that the SLA constraint is based
on a stochastic bound, which is not tight for small (or zero) arrival rates λi,k.
Ideally, problem (Usage-GPS) would be reformulated to correct for that, but
this would lead to a nonconvex optimization problem. In a different relaxation
of the original scheduling and routing problem, we may approximate the number
of servers needed for serving all requests of class k by

Lk

µk + ln(βk)
zk

, (23)

and assign the available servers to the classes associated with a Web site accord-
ing to that number. In this situation, server capacity is not assigned to classes
with no requests being processed in a given server. Expression (23) is motivated
by the fact that, if a server i is totally dedicated to class k requests (φi,k = 1),
it can process at most µk + ln(βk)

zk
requests of that type. With expression (23)

31

as an approximation for the number of servers needed for each class, we have a
nearly optimal policy by assigning available servers greedily according to profit
Pk/µk.

The Web server allocation problem will next be solved by dynamic program-
ming. We will use the optimal value of problem (Usage-GPS) — R(I,L) — as
one-step rewards. Dynamic programming is called for due to the time-variant
nature of arrival rates: changes in the incoming traffic will typically require
adjustments in the number of servers allocated to each Web site. However, be-
fore tackling the Web server allocation problem, we will discuss the arrival rate
process.

4.1.2 Arrival Rate Process

As explained in Section 3.1.3, there are two types of Web page requests in
a Web server farm: exogenous, corresponding to users initiating a browsing
session, and endogenous, corresponding to subsequent requests in an already
initiated session. As mentioned before, we will consider the aggregated arrival
rate, making no distinction between these two types of requests.

We consider the following model for the arrival rate process for requests of
class k associated with Web site i:

Lk(t + 1) = max(L̄k + ak(Lk(t) − L̄k) + σkNk(t) + MkBi(t), 0) (24)

where {Nk(t), k = 1, . . . , K, t = 0, 1, . . .} is a collection of independent standard
normal random variables and {Bi(t), i = 1, . . . , N, t = 0, 1, . . .} is a collection of
independent Bernoulli random variables.

We interpret the arrival rate process in (24) as follows. L̄k represents a
prediction for the average arrival rate associated with class k. We assume that
arrival rates fluctuate around their average value L̄k, where ak is a scalar be-
tween 0 and 1 representing how persistent deviations from the average arrival
rate behave. The normal random variables Nk(t) represent regular fluctuations
around the average arrival rate, and the Bernoulli variables Bi(t) capture arrival
bursts. Note that the occurrence of a burst is associated with a Web site as a
whole, not with any particular classes of users.

4.2 MDP Model for Web Server Assignment Problem

We model the Web server assignment problem in discrete time, with each time
step corresponding to 2.5 minutes which represents the time necessary to allocate
or deallocate a server. The state of this model should contain all information
that is important for the assignment decision. In the Web server assignment
problem, with the simplified model in (24) for arrival rates presented in §4.1.2,
a natural choice for the state variable is the pair (I, L), where I indicates the
servers assigned to each Web site and L is a K-dimensional vector of arrival
rates.

Actions A take values on the same space as Web server configurations I
and indicate new Web server configurations. Valid actions must satisfy the

32

constraint that only currently deallocated servers can be assigned to a Web
site. A state (I, L) under action A transitions to state (A, L̃) with probability
P (L, L̃) determined by the arrival rate processes in (24).

We have to specify rewards associated with each state-action pair. For sim-
plicity, we will assume that the arrival rate L remains constant over each time
step in the Web server assignment problem, and consider the expected reward
R(I, L) for the static scheduling/routing decision given by the optimization
problem (Usage-GPS).

We will seek to optimize the discounted infinite-horizon reward. We expect
to use reasonably large discount factors (in the experiments, α = 0.99) so that
our criterion can be viewed as an approximation to average reward.

4.3 Approximate Linear Programming

In the previous subsection, we specified the parameters necessary to formulate
the Web server assignment problem as a dynamic programming problem. Ide-
ally, an optimal policy would be determined based on the optimal value function
J∗(I, L), which is the unique solution to Bellman’s equation:

J∗(I, L) = max
A

{R(I, Z(L, A)) + αE [J∗(A, L(1))|L0 = L]} .

Function Z(L, A) determines the servers available to each Web site when the
configuration is changing from L to A (for instance, if a server is being added
to a Web site, it will only be available in the next time step; however, if it is
being removed from that Web site, it becomes unavailable right away).

An optimal policy A∗ can be derived from J∗ as follows:

A∗(I, L) = argmax
A

{R(I, Z(L, A)) + αE [J∗(A, L(1))|L0 = L]} .

There are several algorithms for solving Bellman’s equation. However, we ob-
serve that even with a reasonably simple model for the arrival rate processes
such as that given by (24) — and certainly with more sophisticated models that
one might eventually want to consider — our problem suffers from the curse of
dimensionality. The number of state variables capturing arrival rate processes
grows linearly in the number of Web sites being hosted, and the number of states
for the mapping of servers to Web sites is on the order of O(MN). Clearly, for
all but very small Web server farms, we will not be able to apply dynamic
programming exactly, as it would require computing and storing the optimal
value function over a huge state space. Alternatively, we use approximate linear
programming [36, 9].

Approximate linear programming is based on the linear programming ap-
proach to dynamic programming [11, 12, 13, 29]. It involves an approximation
of the optimal value function by a linear combination of prespecified basis func-
tions φi, i = 1, . . . , p:

J∗(I, L) ≈
p∑

i=1

riφi(I, L).

33

A reasonable set of weights ri, i = 1, . . . , p to be assigned to each of the basis
functions can be found by the solution of the following linear program:

minri

∑
i

ri

∑
I,L

c(I, L)φi(I, L)

s.t. R(I, Z(L, A)) +
∑

i

riE [φi(A, L(1))|L0 = L] ≤
∑

i

riφi(A, L), ∀(I, L, A).

We refer to this problem as the approximate LP. The objective function coeffi-
cients c(I, L) are state-relevance weights and they determine how errors in the
approximation of the optimal value function over different portions of the state
space are weighted.

We face the following design decisions in the implementation of approximate
linear programming:

• choice of basis functions φi;

• choice of “state-relevance weights” c;

• development of a mechanism for dealing with the intractable number of
constraints involved in the approximate LP.

We address these design questions in the next subsection.

4.4 Dealing with State Space Complexity

A suitable choice of basis functions is dictated by conflicting objectives. On
one hand, we would like to have basis functions that accurately reflect the
advantages of being in each state. To satisfy this objective we might want to
have reasonably sophisticated basis functions; for instance, values of each state
under a reasonably good heuristic could be a good choice. On the other hand,
choices are limited by the fact that the implementation of the approximate LP
in acceptable time involves the ability to compute a variety of expectations
of the basis functions relatively fast. In particular, we need to compute or
estimate the objective function coefficients cT Φ, which correspond to the vector
of expected values of each of the basis functions conditioned on the states being
distributed according to the state-relevance weights c. Expected values of the
basis functions also appear in the approximate LP constraints; specifically, a
constraint corresponding to state (Ik, Lk) and action Ak involves computing
the expected value of the basis functions evaluated at (Ak, Lk+1), conditioned
on the current arrival rates Lk. To keep the running time acceptable, we would
like to have basis functions that are reasonably simple to compute and estimate.
We would also like to keep the number of basis functions reasonably small.

Our approach was to extract a number of features from the state that we
thought were relevant to the decision-making process. The focus was on having
smooth features, so that one could expect to find a reasonable scoring function
by using basis functions that are polynomial on the features. After some amount
of trial and error, we have identified the following features that have led to
promising results:

34

• number of servers being used by each class, assuming that server capacity
is split equally among all classes associated with each Web site. Denote by
I(i) the number of servers allocated to Web site i, and by N(i) the number
of classes associated with that site. The number of servers Uk being used
by each class k associated with Web site i is the minimum of I(k)/N(k)
and expression (23) for the approximate number of servers needed by that
class.

• current arrival rates per class, given by Lk.

• average server utilization for each Web site. This is computed as the ratio
between the total number of servers being used by all classes associated
with a given Web site, assuming that server capacity is split equally among
all classes, and the total number of servers assigned to that Web site. More
specifically,

∑
k Uk/I(i).

We let server capacity be split equally among all classes associated with
each Web site in the choice of features for the sake of speed, as that leads to
simpler expressions for the features and allows for analytical computation of
certain expected values of the features and functions thereof. We have a total
of N + 2K features, where N is the number of Web sites and K is the total
number of classes. We consider basis functions that are linear in the features,
for a total of N + 2K + 1 basis functions.

We need to specify a distribution over pairs (I, L) to serve as state-relevance
weights. Recall that states are given by pairs (I, L) corresponding to the current
server assignment and arrival rates. Following the ideas presented in [10], we
sample pairs (I, L) with a distribution that approximates the stationary distri-
bution of the states under an optimal policy. Since the arrival rate processes
are independent of policies, it is not difficult to estimate their stationary dis-
tribution. We use the following approximation to the stationary distribution of
arrival rates:

Lk(∞) ≈
(

L̄k +
σk√

1 − a2
k

N(0, 1) + Ji

∞∑
t=0

at
kBt, 0

)+

.

In choosing state-relevance weights, we have simplified the expression further
and considered

Lk(∞) ≈ max

(
L̄k +

σk√
1 − a2

k

N(0, 1) +
Ji

1 − ak
B0

)+

.

We sample arrival rate vectors L according to the distribution above, and
then select a server assignment I based on L. While the evolution of arrival
rates is independent of decisions being made in the system in our model, the
same is not true for server assignments. Hence sampling Web server assignments
I based on the arrival rates is a more involved task. Our approach is to choose
a server configuration based on the approximate number of servers needed per

35

class, according to expression (23). Servers are greedily assigned to Web sites
corresponding to classes with the highest profits Pk/µk. As discussed in §22 in
the context of the scheduling and routing problems, such a procedure is nearly
optimal for fixed arrival rates. Hence our underlying assumption is that an
optimal dynamic server allocation policy should somewhat track the behavior
of the short-run optimal allocation.

Naturally we cannot expect that states visited in the course of running the
system under an optimal policy would always correspond to pairs of arrival rates
L and server assignments I that are optimal with respect to L. To account for
that, we randomize the assignment being sampled for each vector of arrival rates
by moving some servers between Web sites and between allocated and deallo-
cated status with some probability, relative to the optimal fixed assignment.
More specifically, the randomization is performed in two steps:

1. for each originally unallocated server, with probability pa allocate it to a
Web site chosen uniformly from all Web sites;

2. for each originally allocated server, with probability pd deallocate it.

The choice of probabilities for the randomization step involved some trial and
error. We found that relatively high values of pa lead to the best performance
overall, whereas pd can be made reasonably small. Typical values in our exper-
iments were pa = 0.9 and pd = 0.1.

The objective function coefficient cT Φ is estimated by sampling according
to the rules described above. Note that with our choice of basis functions,
conditional expected values of φi(·) involved in the constraints can be computed
analytically.

To deal with the intractable number of constraints involved in the approxi-
mate LP, one approach is to sample state-action pairs according to the frequency
with which they would be observed if the system were running under an optimal
policy. It can then be shown that, for a sufficiently large and tractable number
of samples, solving the approximate LP with only the sampled constraints yields
a good approximation to the full problem; see [10]. Determining the frequency
of state-action pairs under an optimal policy is not feasible; alternatively, we
choose a distribution that is only approximately representative of how often
state-action pairs are visited.

In our constraint sampling scheme, we sample states according to the same
procedure used for the state-relevance weights. Once a state (I, L) is sampled,
we still need to sample an action A corresponding to a new server assignment.
We choose a feasible action as follows:

1. compute the approximate expected arrival rates at the next time step as
follows:

Lk(+) = L̄k + ak(Lk − L̄k) + sk + 20 ∗ P [Bi = 1]Mk.

Note that we overestimate the arrival rates; the true expected arrival rate
at the next time step is actually given by L̄k +ak(Lk−L̄k)+P [Bi = 1]Mk.

36

However, experimental results suggested that overestimating future arrival
rates led to improvements in the overall quality of the policy generated by
approximate linear programming; it is helpful to plan for some slack in the
capacity allocated to each Web site since true arrival rates are uncertain.

2. compute the number of needed servers per class k for arrival rates Lk(+),
as given by expression (23). For each class, with probability pr randomize
the number of needed servers by multiplying it by a uniform random
variable between 0 and 1.

3. assign the unused servers according to need, with priority given to classes
k with higher values of Pk/µk.

4. determine the number of servers with usage less than a threshold value
(in our experiments, 40%). With probability pr, randomize the number of
underused servers by multiplying it by a uniform random variable between
0 and 1.

5. deallocate the underused servers.

In our experiments, pr was set to 0.1. Note that the action sampling procedure
corresponds to a randomized version of a greedy policy.

4.5 Dealing with Action Space Complexity

The Web server assignment problem suffers from complexity in the action space,
in addition to having a high-dimensional state space. In particular, a naive
definition of the problem leads to a large number of actions per state: there are
two choices for each allocated server (to keep it allocated or to deallocate it)
and N + 1 choices for each deallocated server (allocate it to each of the Web
sites or keep it deallocated).

An approach to dealing with the large number of actions is to split them into
sequences of actions, so that in each point in time it is necessary to choose from
smaller sets of actions. A natural choice is to consider actions for each server
in turn; we would have a sequence of M decisions, with each decision being a
choice from at most N+1 values. This approach does not fully solve the problem
of having a large action space; instead, we transfer the complexity to the state
space. As suggested in the discussion of the previous subsection, we choose an
alternative approach: we “prune” the action space, using the structure present
in the Web server allocation problem to discard actions that are most likely
suboptimal in practice.

Our pruning of the action space is based on different rules for allocating and
deallocating servers. In deciding how many servers to assign to each Web site,
we first generate a rough estimate of how many extra servers each class will need,
given by expression (23), and we order the classes according to the associated
profits Pk/µk. We then use the scoring function generated by approximate
linear programming to decide on the total number of Web servers to be allocated,
ranging from 0 to the total number of free servers. Servers are allocated based

37

browsers buyers
service rate (µk) 10 5
profit (Pk) 1 3
response time threshold (zk) 1 2
maximum fraction of requests with service time ≥ zk) (βk) 0.1 0.2

Table 2: Characteristics of browsers and buyers.

class \ Web site 1 2 3 4 5 6 7 8 9 10
browsers 20 26 26 19 19 16 14 11 9.6 10
buyers 5 3 4 4 2.5 2 4 4 2 5

Table 3: Average arrival rates L̄k.

upon need, following the profit-based class ordering. In deciding how many
servers to deallocate, we first estimate their usage over the current and next
time steps, and order servers based on usage. We then consider deallocating a
number of servers ranging from 0 to the number of servers with usage under some
threshold (in our experiments, 40%). We decide on the total number of servers
to be deallocated based on the scoring function generated by approximate linear
programming. Actual servers being deallocated are decided based on the usage
ordering (least used servers are deallocated first).

4.6 Experimental Results

To assess the quality of the policy being generated by approximate linear pro-
gramming, we compared it to a fixed policy that is optimal for the average
arrival rates L̄k + MkP [Bi = 1]/(1 − ak). We considered problems with up
to 65 Web servers and 10 Web sites, with 2 classes of requests per Web site
(“browsers” and “buyers”), for a total of 20 classes.

The actual advantage of using approximate linear programming as opposed
to a fixed allocation depends on the characteristics of the arrival rate processes.
In particular, in our experiments the best gains were obtained when arrivals
were bursty.

Tables 2–6 present data for a representative example with 65 servers and 10
Web sites. The two classes of requests per Web site — “browsers and buyers” —

class \ Web site 1 2 3 4 5 6 7 8 9 10
browsers 0.95 0.95 0.97 0.95 0.95 0.95 0.97 0.95 0.95 0.95
buyers 0.95 0.95 0.97 0.95 0.95 0.95 0.97 0.95 0.95 0.95

Table 4: Persistence of perturbations in arrival rates over time ak.

38

class \ Web site 1 2 3 4 5 6 7 8 9 10
browsers 1.92 1.28 2.56 0.64 1.60 1.28 1.60 0.96 0.64 0.64
buyers 0.32 0.32 0.48 0.32 0.22 0.32 0.80 0.16 0.22 0.48

Table 5: Arrival rate fluctuation factors σk.

class \ Web site 1 2 3 4 5 6 7 8 9 10
browsers 60 100 170 80 100 58 130 53 50 70
buyers 40 20 90 24 14 10 70 32 20 70

Table 6: Magnitude of bursts in arrival rates Mk.

were assumed to have the same characteristics across Web sites. Service rates,
price per unit of time and SLA values for browsers and buyers are presented in
Table 2. Characteristics of Web site traffic are presented in Tables 3–6. We let
the probability P [Bi = 1] of observing a burst of arrivals in any time step for
each Web site i be the same and equal to 0.005.

Simulation results comparing the policy generated by approximate linear
programming with the fixed allocation policy optimizing for average arrival
rates L̄k + Mk/(1 − ak) show that the policy generated by approximate lin-
ear programming led to average profits that are 15% higher than the profits
obtained by the fixed policy, as well as to a dramatic increase in the QoS, with
about half as many dropped requests. Furthermore, achieving approximately
the same profit with a fixed allocation was empirically determined to require as
many as 120 servers.

When the bursty component MkBi(t) in the arrival rate processes is rela-
tively small, the gains resulting from the use of approximate linear programming
relative to that of the naive fixed allocation are smaller. Note that in this sit-
uation the fluctuations are driven by the term σkN(t). We have two different
possibilities in this case: σk is small, in which case there is little fluctuation
and fixed policies should do well; and σk is large, in which case there is much
fluctuation and one might think that dynamic allocations would do better. The
problem with the latter is that there is a considerable amount of noise in the
system, which makes it difficult for any dynamic policy to track the variations
in arrival rates fast enough. In fact, in our experiments the policies generated
by approximate linear programming in this case tended to perform few changes
in the server allocation, settling in a fixed allocation that had average reward
comparable that of the fixed allocation that is optimized for average arrival
rates.

The approximate linear programming algorithm was implemented in C++
and the approximate LP was solved by CPLEX 7.5 on a Sun Ultra Enterprise
6500 machine with Solaris 8 operating system and a 400 MHz processor. Re-
ported results were based on policies obtained with approximate LP’s involving
200,000 sampled constraints. The constraint sampling step took ∼46 seconds

39

on average and solution of the approximate LP took 17 minutes.

4.7 Closing Remarks

We proposed a model for the optimal resource allocation problem in Web hosting
systems and developed a solution via approximate linear programming. The ex-
perimental results suggest that our approach can lead to major improvement in
performance compared to the relatively naive approach of optimizing allocation
for average traffic, in particular when Web site traffic is bursty.

Several extensions of the current model and solution may be considered in
the future:

• More extensive comparison with other heuristics;

• Refinement of the arrival rate processes, with the possibility of including
forecasts and accounting for cyclical patterns often observed in Internet
traffic;

• Refinement of the choice of basis functions;

• Further development of the action space pruning strategies;

• Extending our model for the scheduling and routing problems to support
priority scheduling at the servers, either instead of or in addition to the
proportional scheduling policy considered herein;

• Integration with the problems of scheduling and routing, by considering all
of them within the dynamic programming framework, rather than solving
the first two by stochastic bounds and approximations;

• Consideration of capacity planning, where the number of servers does not
remain fixed but may increase as new servers are acquired over time at
some cost.

References

[1] J. Abate, G. L. Choudhury, D. M. Lucantoni, and W. Whitt. Asymptotic
analysis of tail probabilities based on the computation of moments. Annals
of Applied Probability, 5:983–1007, 1995.

[2] F. Avram, D. Bertsimas, and M. Ricard. Fluid models of sequencing prob-
lems in open queueing networks; an optimal control approach. In F. Kelly
and R. Williams, editors, Stochastic Networks, volume IMA 71, pages 199–
234, 1995.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. S. Naor, and B. Schieber. A
unified approach to approximating resource allocation and scheduling. In
Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, pages 735–744. ACM, May 2000.

40

[4] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scien-
tific, 1995.

[5] D. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

[6] C. S. Chang. Performance Guarantees in Communication Networks.
Springer-Verlag, London, 2000.

[7] Y.-C. Chang, X. Guo, T. Kimbrel, and A. King. Bandwidth broker: Rev-
enue maximization policies for Web hosting. Technical report, IBM Re-
search Division, 2001.

[8] D. P. de Farias, A. King, M. S. Squillante, and B. van Roy. Dynamic
control of Web server farms. In Proceedings of the INFORMS Revenue
Management Section Conference, June 2002.

[9] D. P. de Farias and B. V. Roy. The linear programming approach to ap-
proximate dynamic programming. Conditionally accepted to Operations
Research, 2001.

[10] D. P. de Farias and B. V. Roy. On constraint sampling in the linear pro-
gramming approach to approximate dynamic programming. Conditionally
accepted to Mathematics of Operations Research, 2001.

[11] G. de Ghellinck. Les problèmes de décisions séquentielles. Cahiers du
Centre d’Etudes de Recherche Opérationnelle, 2:161–179, 1960.

[12] E. V. Denardo. On linear programming in a Markov decision problem.
Management Science, 16(5):282–288, 1970.

[13] F. D’Epenoux. A probabilistic production and inventory problem. Man-
agement Science, 10(1):98–108, 1963.

[14] N. G. Duffield and N. O’Connell. Large deviations and overflow probabil-
ities for the general single-server queue, with applications. Mathematical
Proceedings of the Cambridge Philosophical Society, 118:363–374, 1995.

[15] M. Garey and D. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

[16] G. Gordon. Approximate Solutions to Markov Decision Processess. PhD
thesis, Carneggie Mellon University, 1999.

[17] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Ap-
proaches. The MIT Press, Cambridge, Massachusetts, 1988.

[18] S. Irani. Page replacement with multi-size pages and applications to web
caching. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, pages 701–710, El Paso, Texas, May 1997.

41

[19] J. F. C. Kingman. The effect of queue discipline on waiting time variance.
In Proceedings of the Cambridge Philosophical Society, volume 58, pages
163–164, 1962.

[20] L. Kleinrock. Queueing Systems Volume I: Theory. John Wiley and Sons,
1975.

[21] L. Kleinrock. Queueing Systems Volume II: Computer Applications. John
Wiley and Sons, 1976.

[22] G. P. Klimov. Time sharing service systems I. Theory of Probability and
Its Applications, 19(3):532–551, 1974.

[23] G. P. Klimov. Time sharing service systems II. Theory of Probability and
Its Applications, 23(2):314–321, 1978.

[24] S. A. Lippman and S. Stidham, Jr. Individual versus social optimization in
exponential congestion systems. Operations Research, 25(2), March 1977.

[25] Z. Liu, P. Nain, and D. Towsley. Exponential bounds with an application
to call admission. Journal of the ACM, 44:366–394, 1997.

[26] Z. Liu, M. S. Squillante, and J. L. Wolf. On maximizing service-level-
agreement profits. In Proceedings of the ACM Conference on Electronic
Commerce (EC’01), October 2001.

[27] Z. Liu, M. S. Squillante, and J. L. Wolf. Optimal control of resource alloca-
tion in e-business environments with strict quality-of-service performance
guarantees. Technical report, IBM Research Division, 2001.

[28] Z. Liu, M. S. Squillante, and J. L. Wolf. Optimal control of resource alloca-
tion in e-business environments with strict quality-of-service performance
guarantees. In Proceedings of the IEEE Conference on Decision and Con-
trol, December 2002.

[29] A. S. Manne. Linear programming and sequential decisions. Management
Science, 6(3):259–267, 1960.

[30] P. Marbach, O. Mihatsch, and J. N. Tsitsiklis. Call admission control
and routing in integrated service networks using neuro-dynamic program-
ming. IEEE Journal on Selected Areas in Communications, 18(2):197–208,
February 2000.

[31] J. McGill and G. J. van Ryzin. Revenue management: Research overview
and prospects. Transportation Science, 33(2):233–256, May 1999.

[32] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A. Mendes. A
methodology for workload characterization of e-commerce sites. In Pro-
ceedings of the 1999 ACM Conference on Electronic Commerce, 1999.

42

[33] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A. Mendes. Business-
oriented resource management policies for e-commerce servers. Perfor-
mance Evaluation, 42:223–239, 2000.

[34] A. Odlyzko. A modest proposal for preventing internet conges-
tion. Technical report, AT & T Labs-Research, September 1997.
http://www.research.att.com/˜amo.

[35] I. C. Paschalidis and J. N. Tsitsiklis. Congestion-dependent pricing of
network services. IEEE/ACM Transactions on Networking, 8(2):171–184,
February 2000.

[36] P. Schweitzer and A. Seidmann. Generalized polynomial approximations
in Markovian decision processes. Journal of Mathematical Analysis and
Applications, 110:568–582, 1985.

[37] W. E. Smith. Various optimizers for single-stage production. Naval Re-
search and Logistics Quarterly, 3:59–66, 1954.

[38] M. S. Squillante, D. D. Yao, and L. Zhang. Web traffic modeling and web
server performance analysis. In Proceedings of the IEEE Conference on
Decision and Control, December 1999.

[39] J. Subramaniam, S. Stidham, Jr., and C. J. Lautenbacher. Airline yield
management with overbooking, cancellations, and no-shows. Transporta-
tion Science, 33(2):147–167, May 1999.

[40] H. Takagi. Queueing Analysis: A Foundation of Performance Evaluation.
Volume 1: Vacation and Priority Systems, Part 1. North Holland, Ams-
terdam, 1991.

43

