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1 Introduction

In an accelerating trend, corporations of all sizes are outsourcing their IT in-
frastructure to service companies. Basic services offered range from shelf-space
rental, electricity, air conditioning and network bandwidth to the provision and
maintenance of servers, storage, middleware, help centers and deskside support.
These are the first steps toward a “computing utility”, in which computing ser-
vices are delivered “on-demand” like energy, communication, transportation,
and other commodity services.

The economic pressures underlying this trend are many. On the customer
side, oversubscription to accomodate peak usage requirements substantially in-
creases fixed costs, and isolated information technology (IT) departments find
it difficult to match the economies of scale that service providers have in plant,
equipment refresh rates, personnel skill development, and software infrastruc-
ture. On the provider side, Moore’s Law improvements on cost and performance
together with the steady enrichment and standardization of middleware make
it possible to supply a network in which excellent computing resources can be
distributed cheaply and securely. But Moore’s law also cuts the other way. The
slowdown in equipment refresh rates for both hardware and software, the inex-
orable decrease in unit profits, and the huge fixed costs of technical leadership
strongly incent the industry leaders to move to a services provision model with
its steady payments and opportunity for increased profits through bundling.

The future of the computing utility is today very much in the making. There
is evidence that the market may desire specialized solution offerings like human
resources, payroll, procurement, supply chain, email, Web-hosting, data stor-
age, numerically intensive computing, et cetera, all of which may depend on pre-
dictable contracts for the underlying computing infrastructure. Commoditized
computing elements together with very high global bandwidth capacity may
encourage the development of exchanges like those in the energy or telecommu-
nications industries. Finally, as the industry confronts the days of reckoning
for the current wave of outsourcing agreements, competitive pressures will un-
doubtedly lead to industry-wide standards for service agreements.
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1.1 Requirements for Service Contracts

Current approaches to managing contracts for computing utilities are necessarily
naive, since there is very little in the way of practical experience to guide the
parties. A straightforward outsourcing contract simply takes over the customer’s
entire computing infrastructure, including personnel, under a business case that
is based on anticipated savings from labor economies and Moore’s law effects.
The risks in these contracts are addressed largely by extending the contract
duration and consequently postponing the day of reckoning with the customer’s
cost reduction and QoS expectations. Slightly more sophisticated agreements
may contemplate the shared usage of network bandwidth, hosting facilities, and
possibly, service personnel.

A computing utility is more complex than an electric or a telephone utility.
Peak loads are often many orders of magnitude greater than average loads.
Performance of service personnel or installations also vary over many orders of
magnitude for a multitude of interacting causes. Performance measurements
are not standard or easily described, measured, or predicted. Even the unit
of usage is not standardized. Finally, and perhaps most importantly, actual
payment for services is made on behalf of users by the customer — who will
require evidence that their users are being well treated. This evidence will
necessarily be statistical in nature, and will be averaged over long time intervals
in order to develop reasonable Quality of Service (QoS) estimates.

This chapter discusses the requirements and features of a Service Level
Agreement (SLA) between the computing utility and the customer in such a
complex service environment. It is a discussion paper that is intended to out-
line basic issues and models. Section 2 presents basic concepts of workload
measurements, charging, accomodating Quality of Service requirements, and so
forth. Section 3 discusses issues concerning the management of portfolios of
SLA contracts. Section 4 is a study of the issues arising in a particular type of
contract in which customers purchase a committed level of service and pay a
differential rate for bursts above this level. Finally, Section 5 envisions an SLA
in which customers may place bids for service above the base level.

1.2 Preface and Acknowledgements

The research represented in the chapter is drawn from the results of a few
years of work and discussions among our colleagues in IBM Research to investi-
gate technical issues concerning on-demand computing under service level agree-
ments. Some of these sections are based on material that has been published in
the academic literature. Parts of Section 1 are adapted from [2]. Section 5 is
adapted from the paper that appeared in the proceedings of the annual PIMS
Industrial Problem Solving Workshop [4]. Finally, we would like to thank Kaan
Katirciouglu for his contributions to Section 4.
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2 Service level agreements

The computing utility and a customer enter into a contract, called the service
level agreement (SLA), that specifies properties of the Quality of Service (QoS)
performance measurements and the contract incentives and billing. Typically,
these are long-term agreements that include test-bed measurements and phase-
in periods to collect the sorts of data needed to develop some of the elements
of the SLA. In addition, periodic monitoring and assessment must take place to
adapt the infrastructure and SLA to inevitable changes in workloads over time.

The SLA specifies how the QoS measurements are to be taken, the cus-
tomer’s estimate of normal and peak loads, and how the customer is charged or
compensated. More formally, an SLA should contain three types of provisions:

• Satisfactory versus unsatisfactory QoS measurements;

• Normal versus exceptional workloads;

• Notifications, actions required or allowed, and charging under various
loads and QoS conditions.

The first type of provision reflects the customer’s desire to obtain satisfactory
levels of QoS. The second type addresses the provider’s need to be protected
against unexpected demands on the resource pool. The third sets out the general
obligations and permissions of the parties to the contract.

Provisions of the SLA will generally be defined using terms from the following
three categories:

1. QoS Metric: utilization, response time, and/or throughput measured at
various points in the service network;

2. Statistical Measures: averages or expectations, peaks, quantiles, moments,
tail probabilities, etc., together with the sample space over which such
measures are calculated;

3. Financial/contractual: charging rates, penalties, circumstances under which
actions may be taken and/or prices and units may be changed.

Examples of such provisions are: customer must be able to successfully ping the
Web site 99.99% of the time, measured response times between certain network
nodes must be less than 3 seconds 95% of the time, and so forth, where the
sample space for these statistics is commonly defined as the QoS statistic’s
average value during each five minute interval in the billing period, usually one
month.

2.1 Workload Measurement

At the foundation of the SLA is the definition of the workload and its corre-
sponding metrics and statistical measurements. At the rawest level, one can
examine http logs to estimate request arrival and file size distributions as a
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proxy for the workload. This type of workload analysis is probably useful in
forecasting utilization rates. But it very likely does not say much about the
user experience, since the most obvious type of user QoS metric is the response
time. In today’s complex middleware environments, the detailed analysis of
what level of equipment provision contributed to what part of the response-
time measurement is very difficult, if not impossible. Moreover, many http logs
actually record the departure time rather than the arrival time for each request.

A straightforward approach that does not require middleware session mod-
eling is to define a simple set of standard user sessions and use them to “ping”
the system periodically. Metrics such as response times and throughput mea-
surements can be generated. In addition one can monitor utilization levels on
key pieces of equipment (servers, routers). Correlations between utilization lev-
els and standard user session performance statistics can be drawn over time, or
derived in a testbed environment. Then, provided the workload mix does not
change, one can set utilization QoS thresholds as a proxy for response time QoS.

A combination of the simple session ping records and the equipment utiliza-
tion logs may be sufficient to construct a time series of workload QoS measure-
ments for the purposes of an SLA. Otherwise, more sophisticated methods will
likely be required.

2.2 Charging for Resources

In the computing utility service model the promise is that resources may be
brought online when required to maintain a QoS. The canonical resources in
this type of thinking are a rack-mounted CPU or a network attached disk pack.
But there are other types of resources involved in the computing utility. There
are the various elements of the network, from the Internet itself through the
network access router to the local area network, and even the internal network
serving the rack itself. There are service personnel of all flavors, from system
administrators to Web-page programmers. There are backup facilities, tape
robots, the subsystems of the building housing the hosting facility itself, and so
forth.

One of the key distinctions is whether the resource is “assigned” to the user
or whether the resource is “shared”. The natural charging unit for assigned
resources is the utilization, the metric for the percentage of the resource actually
used. The adoption of this charging unit protects the customer from paying
for unused capacity, which is important when the service provider controls the
assignment of resources. For shared resources, the natural charging unit is the
throughput. Throughput is a metric for the number of bytes transmitted or the
number of jobs processed.

For both styles of charging, one also must consider the quality of the service
received. In Web-hosting, the universally adopted metric is the response-time.
In the case of utilization charging, response-time can be accomodated by im-
posing an upper bound on the utilization threshold — meaning that the user
may not be charged for utilization levels that degrade the agreed response time.
When charging is done on a per-transaction basis, then compensation may be
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based on the actual response time achieved.
Customers who are assigned resources actually receive a more complex ser-

vice than just the usage of a particular piece of equipment for a time interval.
They also benefit from a resource shared across all customers: namely, an inven-
tory of equipment sufficient to permit customers to get resources “on-demand”.
As with many service examples, someone renting equipment actually purchases
a bundle of services. Although the charging unit is essentially related to utiliza-
tion, the pricing structure will include compensation for all these services.

2.3 QoS-adjusted charging

When the system does not satisfy the agreed QoS, then the SLA must address
this in some way. One natural way to do this for throughput charging is to
impose a penalty on the service provider, such as a penalty charge for each
throughput unit that was handled with an unsatisfactory QoS. In the case of
utilization charging, it would be more natural to handle this in terms of utiliza-
tion QoS thresholds.

As the previous subsection noted, QoS concerns may limit the desirable uti-
lization to a threshold fraction that is somewhat less than one. Scaling the uti-
lization by this number produces a metric, the QoS-adjusted utilization, which
takes the value 1 for “full” utilization — that is, for the highest utilization
consistent with the QoS. This scaling can be tuned to reflect the different per-
formance characteristics of different classes of equipment. The customer would
be charged for no more than the QoS-adjusted utilization, or even impose a
penalty term for the size of the utilization violation above the QoS-adjusted
threshold.

For shared resources, when the system happens to be out of compliance with
the QoS then the throughput charges may be scaled back or even converted
into a penalty to the service provider. This can be viewed as a QoS-adjusted
throughput. This makes intuitive sense to customers who sign on for a service
only to find that it is busy precisely when they wish to use it.

2.4 Normal versus Exceptional workloads

Workloads in computing systems are highly variable. Workload bursts measur-
ing many magnitudes higher than “normal” are common, and the SLA must
address these circumstances. There are two aspects to this issue. The first is
the provider’s need to get some information from the customer about how much
equipment might be required to provide the agreed QoS. The second is the cus-
tomer’s desire to obtain service even when the Web site is bursting above the
contracted levels.

2.4.1 Variable service level charging schemes

Providers often structure their computing utility service charges into a commit-
ted service level charge plus a variable service charge. The customer selects a
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committed service level at the beginning of the month. The provider agrees to
provide the committed level of service at the agreed QoS.

In a utilization charging scheme, the service level is most naturally described
in terms of the number of QoS-adjusted utilization resource units. For example,
the user could specify a committed service level of 100 CPU-equivalents of a
certain Pentium grade. In throughput charging schemes the user could specify
a committed service level in terms of a throughput rate.

If the customer bursts above the committed service level, then the provider
agrees to provide that level of service on a “best-effort” basis. The provider
may assign new resources if they are available. If not then the load is handled
on the available equipment. At the end of the month, the customer pays a
variable charge based on some cumulative measurement of the workload above
the committed level.

The advantage of this scheme is that it provides information to the provider
concerning the customer’s own quantile estimate of usage, in addition to pro-
tecting the provider from QoS charges. The disadvantage is that the customer
perceives that they must pay a higher rate for the less-desirable best-effort ser-
vice.

There are many types of cumulative measurements that can be used for the
variable charges. In section 4 we compare two types of measurements: the peak
load, and the average load above the committed level. This analysis shows that
the ratio between the committed and variable charging rates is important in
determining the customer’s choice of committed level.

In the most commonly used version of this scheme, the variable charge is
related to the 95% peak. For the provider this scheme has a natural association
with the size of equipment needed to support peak bursts. However, the analysis
also shows that such a scheme could result in highly volatile monthly payments.
Unfortunately, the apparently fairer charging scheme (averaged usage above
committed level) requires such a high ratio between the committed and the
variable charging rate to achieve reasonable committment levels that this scheme
is probably unsustainable in the marketplace.

2.4.2 Price directed allocation for variable service

An alternative method to allocating resources for variable, sometimes bursty,
workloads is to devise a method in which customers pay variable rates for ad-
ditional service above the committed level. The outcome for the customer is
similar to the variable service level charging schemes, in that they have to pay
a variable charge for service above the committed level, but the context is com-
pletely different since customers will be competing among themselves for the
additional resources.

The default version of this scheme is one in which the provider keeps an
inventory of excess equipment on hand, and brings it into service at a fixed rate
on a first-come-first-served basis.

A slightly more sophisticated version of this allocation scheme would envision
two classes of service, say gold and silver, with rates that differ. Customers
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would indicate which service scheme they wished, and then resources would be
allocated by the service provider using revenue maximization concepts. This
type of system is explored in the operational chapters.

Spot markets for resources could develop in which customers bid for resources
in a local market to obtain additional services. It could even allow customers
to trade their excess committed service levels among themselves. A brief sketch
of such a system is contained in section 5. Finally, contracts enabling future
resource reservation, and possibly even options could also be envisioned.

3 SLA Portfolio and Feasibility Planning

A Web-hosting facility at any given time will have a portfolio of contracts, each
with their associated revenue and resource allocation histories. Additionally,
the collection of resources in the facility that supports the contract portfolio
(routers, servers, disk packs, etc.) can also be viewed as a resource portfolio.
One major question that arises in this portfolio perspective is whether or not
the resource portfolio is sufficient to serve the workload of the contract portfolio
over, say, the weekly cycle of user demand.

To address this question of feasibility planning, one must turn to a different
class of models than those considered in the control and optimization chapters,
although this class of models can certainly exploit those in the other chapters.
First of all, the problem involves considerably longer time horizons and pre-
dicting the arrival and service characteristics in the workload processes with
limited uncertainty over a weekly (or longer) time horizon can be very difficult,
if not impossible. Secondly, it can be very difficult to build a control model
with uncertainty that operates over multiple time scales spanning a wide range.
In this section we propose a method to address this question that is based on
robust optimization and that exploits the models and methods developed in the
control and optimization chapters.

Related issues concern the addition of a new contract, any changes to exist-
ing contracts, the addition of new services, the investment in new resources to
existing portfolios, and so on. The proposed approach can be employed in an
analogous manner to address these related issues.

3.1 Forecasting

Web loads are notoriously non-stationary and bursty processes. Despite this,
many commercial Web sites show predictable patterns of usage with daily,
weekly and monthly cycles [5, 6, 7]. In addition, a pool of Web sites with
independent sources of usage-variability will be less variable in the aggregate
because of laws of large numbers effects.

For planning periods of a day, week or month, it is reasonable to divide
the period into stationary epochs during which the Web sessions seem to have
predictable or forecastable arrival and service statistics of the type required for
operational management. During these stationary epochs, models and methods
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such as those in the control and optimization chapter can be used to allocate
resources to the workloads.

3.2 Robust Allocation

If the amount of variability in the epochal workload statistics will be very large,
then the error distribution of the forecast epochal workloads is an important
source of uncertainty that should be incorporated into the portfolio and feasi-
bility planning. One specific way to conveniently capture this type of uncer-
tainty is through the robust optimization model of Bertsimas and Sims [1], in
which one solves for a solution that is feasible in a probabilistic sense, where
the probability distribution is generated by the (independent) variation of each
forecast error about its forecast mean.

During each stationary epoch, one can build a model in which the allocation
of servers to Web sites is an variable of optimization. More specifically, this
model would provide an estimate of the profit as a function R(I(t), L(t)) where
Lj(t) denotes the forecasted workload for Web site j during epoch t and Iij(t)
denotes the assignment of resource i to Web site j during epoch t. We must
have ∑

j

Iij(t) ≤ bt (1)

where bt is the total number of servers available during epoch t (which could
also be a forecasted number). This model would be developed based on the
corresponding models and methods employed as part of the operational man-
agement of the system in order to have an accurate representation of the system
behavior. By further exploiting the models and methods of the control and op-
timization chapters for this purpose, one can determine the maximum profit
estimate obtained under the optimal scheduling of the workload on the servers
with this objective. If there are, say, four epochs in a workday and two epochs
in each weekend day, then there would be a total of 24 such models and 24
sets of resource allocation variables to be determined. The transitions between
epochs could also be handled in a similar manner.

Because the variable expense of a Web server system is negligible and fixed
costs dominate, it seems reasonable to develop a plan that meets (and hopefully
exceeds) a revenue target τ . Then the objective could be modeled as the surplus
revenue over target, which should be maximized. More specifically, we could
seek to maximize the surplus revenue over target∑

t

R(I(t), L(t)) − τ (2)

subject to this surplus being non-negative and to the resource constraint in
(1) and the underlying constraints of the operational management all being
satisfied. Of course, the solution of this optimization problem should exploit
whatever properties are known for the functions R(I(t), L(t)), such as linearity
in the case of many utilization-based scenarios and convexity in the case of many
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throughput-based scenarios with response-time guarantees. This is a model that
is similar in style to the portfolio optimization example in [1].

The advantage of the robust optimization model over more traditional stochas-
tic programming models, as in [3], is that the resulting optimization problem
only increases linearly in the number of sources of uncertainty. The interpre-
tation of the solution is that it generates a robust allocation that maximizes
the risk-adjusted expected revenue which is feasible with a certain level of con-
fidence that can be bounded from below. This would likely suffice for the type
of planning system at hand.

3.3 Adding a new resource

The robust allocation model may not be feasible with sufficiently high confi-
dence. In this case one must allow the model to add resources. One must
then address the question of how to expense the new resource. One possibility
would be to assign an amortization schedule for the resource and require that
each added resource subtract its assigned amortization from the total revenue
generated by the workloads.

3.4 Adding a new contract

Once the weekly plan has been made with a certain confidence, then one can
address the question of whether to add an additional contract, with its fore-
casted workloads, to the contract portfolio. In some cases the weekly variation
of the contract will be such that it complements the existing portfolio, and so
the additional revenue will come with no additional expense. Obviously, at-
tracting such a contract will be very much in the interest of the operator, and
so pricing discounts might be appropriate. In other cases, the variation will
require additional resources and so the operator can use the robust planning
model to determine whether this additional contract will be profitable or not.

4 Analysis of Customer choice of Committed
Service Levels

This brief section examines the service provider’s behavior and revenue impli-
cations under two versions of a contractual scheme in which customers select a
“committed service level” c0 with charge r0c0 and pay a variable charge r1 for
service levels above c0. The service is labeled bandwidth, but it could be for
any service with a variable user demand.

One version applies rate r1 to the total usage above c0

r0c0 + (r1/T )
T∑

t=1

{max[0, Ct − c0]} (3)
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where Ct is the sequence of sampled bandwidth rates, measured by sampling
bandwidth usage rates every five minutes. We may call this the CB-AB pricing
method.

A second version levies rate r1 for the variable peak load, so that the monthly
bill to the customer is

r0c0 + r1 max[0, P95 − c0] (4)

where P95 is the 95% quantile, measured by rank ordering the sample sequence
Ct and choosing P95 so that it is the smallest number that is greater than 95%
of the sample. Call this the CB-PB scheme. (There are many philosophical
objections to this pricing method. For one thing it makes a difference to the
service provider whether the peak is narrow or wide. But it is in very wide
usage.)

4.1 Modeling Customer Choice

Under both charging schemes, the customer is faced with making a choice of c0.
What information will the customer take into consideration?

The customer will have to make some assumptions about the (related) dis-
tributions of the peaks P95 and the paths C = {Ct}, t = 1, . . . , T . Let FP be
the distribution function for the peak load, that is,

FP (α) = Pr{P95 ≤ α} (5)

One may as well make the assumption that the Ct are independent and iden-
tically distributed and that the time average is equal to the space average, so
that

(1/T )
T∑

t=1

{max[0, Ct − c0]} ≈
∫

max[0, x − c0]dFC(x) (6)

where FC is the distribution function for C1.
The customer will also need to make assumptions about their self-imposed

penalty d1 for best effort processing (slow response time, for example, or possibly
no response at all). Assume that the available bandwidth is so large that there
is no effective upper bound to the choice of committed bandwidth c0.

Under the PB-CB pricing scheme, the customer’s choice can be represented
by solving the following optimization:

min
c0

r0c0 +
∫

(r1 + d1)max[0, x − c0]dFP (x) (7)

The second term is the expected monthly variable charge for loads above the
committed level.

Under the CB-AB pricing scheme the customer’s choice can be represented
by

min
c0

r0c0 +
∫

(r1 + d1)max[0, x − c0]dFC(x) (8)
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Both of these optimization problems have the same form, so we can analyze the
customer choice framework under the assumption that the distribution function
F could be either FC or FP .

The customer’s choice is assumed to be unconstrained optimization. The
answer is found by taking derivatives and setting equal to zero. The main
observation that helps this procedure is to observe that the derivative of the
integral is equal to

d
dc0

∫ ∞
c0

(r1 + d1)(x − c0)dF (x) = d
dc0

(r1 + d1)[
∫ ∞

c0
xdF (x) − c0

∫ ∞
c0

dF (x)]
= (r1 + d1)[−c0F

′(c0) − [1 − F (c0)] + c0F
′(c0)]

= (r1 + d1)[F (c0) − 1]
(9)

It follows that c0 should be chosen to solve

0 = r0 + (r1 + d1)[F (c0) − 1] (10)

The customers choice is the familiar newsboy solution. One can show that

c̄0 =

{
0 if d1 < r0 − r1,

F−1
(
1 − r0

(r1+d1)

)
if d1 ≥ r0 − r1.

(11)

The customer’s choice of c0 is essentially the 1 − r0
(r1+d1)

quantile estimate for
the distribution F .

Let us now examine the expected revenue consequences for the service provider,
assuming that each customer accurately projects their distribution. Label the
customers by j = 1, . . . , J . Each customer chooses c̄j

0 as in (11) with parameter
dj
1 and distribution function F j . The expected revenue for the service provider

is∑
j r0c̄

j
0 +

∑
j r1

∫
max[0, x − c̄j

0]dF j(x) =
∑

j

[
r0c̄

j
0 + r1

∫
c̄j
0
xdF j(x) − r1c̄

j
0

(
1 − F j(c̄j

0)
)]

=
∑

j

[
r0c̄

j
0 + r1

∫
c̄j
0
xdF j(x) − r0c̄

j
0(

r1

r1+dj
1
)]
]

=
∑

j
r0dj

1

r1+dj
1
c̄j
0 + r1

∑
j

∫
c̄j
0
xdF j(x).

(12)
In equation (11) the j-th customer’s choice of c̄j

0 depends on the relationship
between the customer’s penalty rate dj

1 for usage above the committed service
level, and the difference r0−r1 between the charging rates. Notice that if dj

1 ≈ 0
then the revenue will be dominated by the second term. Let us now examine the
various relationships and their consequences for the provider’s revenue streams.

At one extreme one can set r0 � r1. Then the customers with dj
1 < r0 − r1

have c̄j
0 = 0, which places them in the best effort service state all of the time.

The expected revenue is

r1

∑
j

∫
0

xdF j(x). (13)

In the CB-PB charging scheme, the expected revenue is r1 times the sum of
these customers’ expected peaks P j

95. The CB-AB revenue is r1 times the sum
of their expected usage E{Cj}.
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At the other extreme, one can set r0 � r1. All customers will have dj
1 >

0 > r0 − r1 and hence c̄j
0 � 0. The expected revenue is

∑
j

[
r0d

j
1

r1 + dj
1

c̄j
0 + r1

∫
c̄j
0

xdF j(x)

]
. (14)

Specifically, suppose that r0 = r1/5, and suppose that dj
1 is very small compared

to r1. Then the customer’s newsboy choice c̄j
0 can be interpreted as the 1−1/5 =

.80 quantile. Then the revenue term will be dominated by

r1

∑
j

∫
c̄j
0

xdF j(x). (15)

In the CB-PB charging scheme, this is r1 times the conditional expected value
of the P95 peak given that this peak is above its 80% quantile. In the CB-AB
charging scheme, this can be interpreted as the conditional expected value of
usage given that usage is above its 80% quantile. As dj

1 becomes more significant,
the quantile level at which these conditional expectations are taken will rise but
the revenue will still be dominated by the second term.

4.2 Conclusions

The equations (13) and (15) highlight the fact that the two-rate contractual
scheme can be interpreted as a single-rate scheme r1 with a required quantile
level 1− r1/r0. These equations also allows us to compare the different versions
of the charging schemes. For the service provider, of course, it is important to
be paid for the equipment outlays needed to accomodate peak demands. The
scheme chosen should bear some relationship to peak demands. Which scheme,
CB-PB or CB-AB, is better in this regard?

The CB-PB case purports to obtain revenue for peak demands. Therefore,
in this scheme it seems that one ought to set r0 � r1 and obtain revenue
proportional to the expected value of the sample peak P95 service measurement,
as in (13). The impression that CB- PB is unfair to users is quite correct in
charging schemes where r1 > r0 as one can see from (15). In this setting the
users are being charged proportional to the expected value of the peak service
measurement P95 given that that peak is above the 1− r0

r1+d1
-quantile, however

that peak will be below this level most of the time.
On the other hand, while it may seem that the CB-AB revenue might not

relate to peak demands, in fact it does. If one sets r1 � r0 then equation (15)
shows that revenue will be proportional to the conditional expected value of
service usage given that it is above the 1 − r0

r1+d1
-quantile. This will be quite

similar to the P95 for sufficiently high ratios of r1/r0. However, these ratios
are much higher than the market expectations (typically r1 ≈ 1.5r0). One way
around this is to require the customer to select a quantile level directly, instead
of implicitly as in the two-rate scheme.
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r1/r0 1 2 3 4 5 6 7 8 9 10
c0 level 60 102 114 121 126 129 132 135 137 139
c0 as quantile 0.09 0.524 0.677 0.756 0.803 0.836 0.859 0.877 0.891 0.909
CB-PB 149 197 220 235 244 249 252 252 250 246
CB-AB 101 124 133 138 142 145 147 149 151 153

Table 1: Comparison of PB and AB charging.

The example in Table 1 compares the two schemes. It supposes that C1

follows a lognormal distribution with mean 100 and standard deviation 30, that
r0 = 1, that d1 = 0.1, and that the sample peak distribution FP is replaced
by placing probability one at the true peak P95 = 149. The table compares
the amount of revenue collected by the provider under the CB-PB and CB-AB
schemes.

One can see that the CB-PB charging scheme grows very rapidly as r1 in-
creases. Its peak value is approximately 152 which is reached around r1 = 8.
The CB-AB charging scheme grows much more slowly. At r1 = 8r0 it crosses
the revenue for the CB-PB value. One sees that the CB-AB scheme does even-
tually resemble the CB-PB charges with high enough ratio r1/r0, but it is a
much more stable curve. When one considers the volatility of the variable part
of the provider’s revenue, one may speculate that the CB-AB revenue is more
stable. This conclusion would depend on a careful analysis of the variance of
the sampled peak P95 versus that of the sampled conditional expectation.

5 Customer Directed Allocation in Service Level

Agreements

In this section we describe an agreement between the provider and the clients
in which the service level can be increased at the direction of the customer by
providing an explicit bid for additional service above a base level. We also sketch
a simple algorithm for the hosts problem of allocating resources to changing
workloads.

5.1 Customer Directed Service Level Agreement

The customer directed service level agreement has the following components.

1. Base Service Level L, representing the maximum number of servers L to
be allocated to a specific class of requests based on the parameters offered
by the client.

2. Per-Unit Bid B, representing the variable rate the client agrees to pay for
adding servers beyond Base Service Level.
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Service up to the customer’s Base Service Level L is guaranteed. Requests that
exceed L are satisfied if possible when the per-unit bid equals or exceeds the
current spot market price, which is the maximum of the bids B over the set
of customer’s requesting additional service. The host can impose a minimum
variable charge M (i.e., cost + economic profit) and customers that wish service
beyond L must supply a bid B ≥ M . Whether the bid is 0, M , or B, it reflects
the nature of the customer:

• if the customer wants no service beyond its base level, then its implicit
bid is 0;

• if the customer wants service beyond its base level, then its implicit bid is
M ;

• if the customer wants requests beyond its base level to be completed, then
its explicit bid is B.

Finally, the provider must satisfy a basic response time type QoS constraint for
allocated servers or pay a penalty charge. It should be noted that the contract
is designed so that the customer may change B at any time.

5.2 Resource Allocation

The host reallocates servers by considering the revenue implications of such a
move. Consider a family of servers sharing the load of one Web site. When
the number of requests for a Web site causes the probability of a large response
time to the customer, we say the family of servers is going red or enters in a
critical phase.

To complicate matters, it is not possible to reallocate a server instanta-
neously. To reallocate a server, we must first let its active threads die out,
remove the existing environment, and install the new environment. Only then
can it be reallocated to a new customer (this can take on the order of 5 minutes).
Finding an optimal solution through dynamic programming is an extremely dif-
ficult task due to the long-time horizon in this problem (24 hours) and the short
intervals on which decisions are made. This leads to a problem of such large
magnitude that an exact solution is impractical.

Instead, various threshold algorithms can be used to get good solutions. We
give an example of such a scheme below. We will make our decisions based on
three important values, namely

• the probability of a server family going red,

• the expected cost rate C incurred from going red,

• the expected revenue rate R for providing service beyond the customer’s
required level.

Note that C and R are both non-negative values and cannot be both zero at
the same time for a particular family of servers. This is because C is non-zero
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when we have gone red as a result of not providing the resources required in
the SLA, whereas R is non-zero when we have gone red as a result of traffic
being so high that the level of resources agreed to in the SLA is insufficient.
As mentioned above, it can take about 5 minutes for a server being moved to
come on-line in its new family. However, the server does not immediately stop
contributing to its original family. One can approximate that it continues to
work for approximately 1/3 of a 5-minute interval, after which it is removed
from its family. So, for 2/3 of a 5-minute interval, it is not active in any family.
This reflects the period in which it is shutting down and being rebooted.

We will introduce subscripts to reflect when the parameter is measured.
A subscript of 1 indicates the parameter is measured 5 minutes from now, a
subscript of 2 indicates 10 minutes from now, and so on. We will introduce a
superscript of +1 or -1 to our parameter P to indicate the probability of going
red given the addition or subtraction of a server from the family, respectively;
i.e., P−1

1 indicates the probability of going red 5 minutes from now given that
we have removed a server from the family. For each family of servers, we have
created the following measures:

Need = P1 · C1 + P2 · C2 + (1 − P+1
1 )R1 + (1 − P+1

2 )R2 (16)

Note that due to the mutually non-zero relationship of C and R mentioned
above, either the first two terms above are zero, or the second two terms are
zero. If the first two terms are zero, this indicates that a traffic level higher than
agreed to in the SLA would push us into red, and if the last two terms are zero,
this indicates that we might fall into a penalty situation. Thus, Need can reflect
either a possibility to make extra revenue (if action is taken), or the possibility
of paying penalties (if action is not taken), depending on which terms are zero.
The higher the Need of a family is, the more money that can be lost or earned
by adding a server to that family.

Availability = 2
3P−1

1/3 · C1/3 + P−1
1 · C1

+ P−1
2 · C2 + 2

3 (1 − P1/3)R1/3 + (1 − P1)R1 + (1 − P2)R2

(17)
Availability is closely related to Need, but there are two significant differences.
The first is that the superscripts reflect that we are considering removing a
computer from the family, as opposed to adding one. The second difference is
that there are two extra terms. These terms reflect the fact that the server will
be removed from the family after 1/3 of the first 5 minute interval. Availability
is intended to measure the amount of penalties that will be paid, or revenue lost
if we move a server from that family.

In order to decide when to take action and move a server from one family
to another, we use the following heuristic:

1. Calculate the Need and Availability for every family of servers.

2. Compare the largest Need value with the smallest Availability value. If
the Need value exceeds the Availability value, one server is taken from
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the family corresponding to the Availability value and given to the family
corresponding to the Need value.

3. If a server was told to move, go back to step 1 (note: the probabilities
will change as the number of servers used to make the calculations will
be different). Terminate the loop if no server was told to move in the last
iteration.

The above iteration loop should be performed on a frequent basis. We suggest
about every 15 seconds. This is only one possible heuristic, and we have yet to
actually compare it in simulation with an optimal solution. However, it has the
obvious advantage of requiring considerably less computation than a long-time
horizon dynamic program, which allows it to be performed very often. This
allows us to react nearly instantaneously to a predicted critical situation. The
P , C and R values are obtained from forecasts provided from the router control
level.
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