
RC23097 (W0401-148) January 30, 2004
Mathematics

IBM Research Report

Analysis and Control of Correlated Web Server Queues

Soumyadip Ghosh
School of Operations Research and Industrial Engineering

Cornell University
Ithaca, NY 

Mark S. Squillante
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Analysis and control of correlated Web server queues
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ABSTRACT

This paper demonstrates the existence of considerable dependencies between Web server arrival and service times, as
well as strong dependencies within the arrival process. We derive a heavy-traffic stochastic-process limit for Web server
performance, under various control policies, that captures these forms of correlations. This includes an analysis of control
policies that provide near-optimal expected response times while also maintaining good response time variance properties.
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1. INTRODUCTION

Stochastic models play an important role in the design, performance analysis, and control of Web server systems. To be
most effective in each of these areas, such models must capture in sufficient detail the key characteristics of Web server
workloads, the key characteristics of Web server control policies for executing these workloads, and the impact of these
workload and control policy characteristics on Web server performance and related measures. Of particular interest in our
present study are very efficient mathematical methods that can be exploited online to support an increasingly important
range of real-time applications (e.g., dynamic control of quality of service in Web servers to best satisfy service-level
agreements), as well as in efficient interactive tools often used offline for many different purposes (e.g., what-if analysis
and stochastic optimization for performance and capacity planning studies).

A significant body of research has investigated the workloads found in practice at a wide variety of Web servers; e.g.,
refer to the special issue ofWorld Wide Web.1 Most of these studies have demonstrated that the client request patterns
exhibited at many different types of Web servers have strong dependence structures and that the requested files sizes at these
Web servers are independent and identically distributed (i.i.d.) according to a heavy-tailed or subexponential distribution.
However, the vast majority of these studies appear to have completely ignored the issue of whether there is any correlation
between the client request arrival times and the requested file sizes or the request service times. This includes studies of
Web server workload characterization and generation, Web server performance models, and Web server control policies.

In this study, we consider data from various production Web servers to investigate the issues of different forms of
correlation in these Web server workloads and their implications on Web server performance and control policies. The
results of our data analysis demonstrate the existence of significant dependencies between the client request interarrival
times and the corresponding file sizes and service times. Our analysis also shows a strong dependence structure within
the interarrival process of client requests, whereas the sequence of service times is essentially i.i.d. To the best of our
knowledge, this is the first study to identify and quantify significant dependencies between the arrival and service processes
in Web servers (as opposed to networks, where this issue goes all the way back to Kleinrock2). We then investigate the
source of this cross correlation between the client request interarrival times and the corresponding file sizes and service
times using the data from production Web servers. The results of our data analysis support the view that such cross
correlations are primarily due to certain mixing effects involving the superposition of different classes of client requests
each with different service requirements.

Based on this causal model as our motivation, we next turn to consider a mathematical analysis of queueing models of
Web server performance, under various control policies, that capture the dependence structure within the arrival process as
well as between the arrival and service processes. Unfortunately, the research literature is relatively limited in this respect
for our purposes. Connelly and colleagues3, 4 consider models in which the service time of a customer is essentially a
linear scaling of the interarrival time associated with the customer, which is then extended along a few different lines in
subsequent papers.5, 6 The cross correlation provided by these models are often much stronger than that observed in the
Web server data used in our study, in addition to not being consistent with our causal model. Boxma et al.7 study a model
of cross correlation due to a specific type of batching, but their causal model does not match at all with the Web server
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architectures and workload data considered in our study. Fendick et al.8 consider a packet communication network queue
with cross correlation resulting from multiclass batching effects that are somewhat related to our Web servers. However, all
of these previous studies assume that the sequence of interarrival times in their system model is i.i.d., and the vast majority
of these studies assume the system arrival process to be Poisson. This is quite different from the Web servers motivating
our study where the arrival process of client requests has a strong dependence structure, both in the aggregate as well as
within and across the arrival processes of different classes of requests.

We therefore derive a mathematical analysis of Web server performance, focusing initially on control policies that are
representative of existing Web servers. Our approach is based on establishing heavy-traffic stochastic-process limits of
single-server correlated queues that capture the complex properties found in the Web servers of interest. An approximation
of Web server performance for all traffic intensities is obtained from these stochastic-process limits, yielding a closed-
form expression for the expected equilibrium response time that is asymptotically exact and is easily parameterized from
calculations based on readily available Web server data. Our experiments with data from Web servers demonstrate the
accuracy of our expected response time approximation, which is in very good agreement with simulation results across all
traffic intensities and is in excellent agreement for the range of traffic intensities of greatest interest to us. Such accuracy
levels are achieved by paying specific attention to the manner in which the parameters of the expected response time
expression are estimated. We also exploit our analysis to investigate the sensitivity of performance measures to different
forms and degrees of correlation, each of which are explicitly represented in the expected response time expression. This
includes the cross correlation between interarrival and service times observed in Web servers, which can have a significant
impact on performance but is not captured in previously considered Web server queueing models.

We lastly turn to extend our mathematical analysis of Web server performance to further explore certain control policy
issues in Web servers, based on our causal model as motivation. The optimality results of shortest remaining processing
time (SRPT) and its variants with respect to minimizing expected response times are well known.9 Some recent studies
have further argued that SRPT does not unfairly penalize large customers in order to benefit small customers, and thus
have proposed the use of SRPT to improve performance in Web server systems.10, 11 On the other hand, first-come first-
serve (FCFS) is known to minimize the waiting time variance of customers.12 Moreover, our causal model suggests that
the workloads found at various Web servers consist of multiple classes of client requests based on the different service
requirements of these requests. We therefore consider the corresponding multiclass priority queue (using FCFS within
each class) as an alternative approach for controlling the execution of client requests in Web servers, with the goal of
providing expected response times close to those obtained under SRPT while also providing significantly better response
time variance properties. Our analysis of Web server performance is extended to investigate this alternative control policy
and demonstrate that it exhibits the desired properties.

The remainder of the paper is organized as follows.§2 presents our data analysis, and§3 presents our queueing-theoretic
analysis. We then further explore control policy issues in§4, and provide concluding remarks in§5.

2. DATA ANALYSIS

Our study is based on data from various production Web servers. In each case, the distributed architecture used to support
these Web servers generally consists of multiple single-server computing nodes to which incoming requests are routed by a
front-end, high-speed router. This router attempts to balance the Web server load across the set of single-server computing
nodes, where each computing node directly serves the requests routed to it and, in particular, operates independently of the
other nodes.

Let T be the random variable denoting the client request response time in this queueing network. From the law of total
probability we have

ET =
∑

i

ETi P[ request is served on nodei ], (1)

whereETi is the expected response time of client requests served on computing nodei. Every computing node in a Web
server maintains its own time-series access log of all client requests that are served by the node. Our approach therefore
consists of taking the access log data from each of the computing nodesi of the Web server to characterize the statistical
properties of the corresponding arrival and service processes in order to obtainETi (using the results derived in§3) and the
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conditioning probability in (1). Of course, when the statistical properties of the workloads at all of the computing nodes
are identical, thenETi = ETj for all i, j, and thus equation (1) reduces toET = ETi.

The access logs contain several pieces of useful information about each client request served by the corresponding
computing node. This includes the arrival time epoch of thekth request served on theith computing node of thej th Web
server, which we denote byA(j)

i,k , and the number of bytes comprising this client request, which we denote byB
(j)
i,k , k ∈ ZZ+.

Even though the Web servers considered in our study serve dynamic content, we use a measurement-based function of the
byte size of each client request as an accurate estimate of the service time for the request. The various arguments to justify
this assumption are omitted due to space limitations, and we refer the interested reader to our technical report13 for these
details. We further point out that even if the service times of dynamic pages included the additional time to generate the
page, this would still not eliminate the different sources of correlation demonstrated in this section. In fact, our analysis
suggests that at worse this would yield a small change in the cross correlation exhibited below.

The unit of time in the access logs available to us is one second, which is quite standard. Since there can be tens to
hundreds of client requests within a second at each computing node during peak traffic periods for the Web servers of
interest, the access log data for each computing node provides us with the corresponding discrete-time batch process for
the number of client requests per second. However, the direct use of this batch arrival process to estimate Web server
performance can overestimate measures of performance by more than an order of magnitude, as demonstrated in a recent
paper.14 We therefore apply a somewhat modified version of the methodology proposed in the paper14 to the sequence
of arrival times{A(j)

i,k} extracted from the access log data for each computing node in order to obtain the corresponding

interarrival sequence{Â(j)
i,k}, Â

(j)
i,k ∈ IR+, k ∈ ZZ+. It is important to note, however, that our analysis also includes direct

consideration of the batch arrival process where the corresponding results are completely consistent with those presented
in §2 and§3; see our technical report.13

We identify and focus on sufficiently long stationary intervals of traffic periods found in our analysis of the access logs
from each computing node of every Web server. Of particular interest are peak traffic periods, given the importance of such
intervals in capacity planning, dynamic resource allocation and other applications of performance analysis and control.
This further motivates our use of heavy-traffic stochastic-process limits in the next section. These stationary intervals of
peak traffic are comprised of traffic periods whose lengths are on the order of several hours and consist of at least several
hundred-thousand data points. Thus, the corresponding processes{Â(j)

i,k} and{B(j)
i,k} extracted from the Web server access

logs are stationary sequences. Moreover, in the interest of space, we will henceforth focus on a representative access log
from a specific computing node of a particular Web server, and therefore drop some of the indices by using the stochastic
processes{Âk} and{Bk} to characterize the workload found in the corresponding access log, whereÂk describes the
interarrival time of thekth request andBk the file size of thekth request.

We now consider the dependence structures found in the Web server workloads used in our study. Figure 1(a) plots
the autocorrelation function (ACF) of the interarrival process{Âk}, where the ACF of the stationary process{Âk} at an
integer lag̀ is defined asCov(Â1, Â`+1)/Var(Â1). This figure clearly demonstrates that there is a significant amount of
correlation among the interarrival times at successive lags. Figure 1(b) plots the ACF of{Bk}, showing that the individual
request sizes are essentially i.i.d. Figure 1(c) plots the cross correlation function (CCF) between the two processes{Âk}
and{Bk} at an integer lag̀ defined asCov(Â1, B`+1)/

√
Var(Â1)Var(B1). This figure clearly demonstrates that there is

a considerable amount of (positive) cross correlation (relative to the statistical independence line) between the interarrival
times and service times of Web servers for small lags.

2.1. Causal Model

One possible cause of this strong cross correlation between the interarrival and service processes can be explained as
follows. Suppose the processes{Âk} and {Bk} are partitioned into different classes of client requests such that the
per-class processes{Âk,c} and {Bk,c} are independent for each classc and the corresponding expected file sizes are
different for different classesc andc′, i.e.,EBk,c 6= EBk,c′ , c 6= c′ (where at least some of the per-class interarrival times
are not exponentially distributed). Here we allow the interarrival process{Âk,c} to have a strong dependence structure,
and we further allow cross correlations among the per-class interarrival processes{Âk,c}. The key point is to have the
processes{Âk,c} and{Bk,c} be independent of each other for all classesc. It then can be easily shown, via straightforward
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Figure 1. ACFs and CCF for the interarrival and service processes: (a) ACF of the interarrival times; (b) ACF of the service times; (c)
CCF of the interarrival and service times.

calculations, that the superposition of these multiclass workload processes will yield aggregate processes{Âk} and{Bk}
that have considerable cross correlation.

To demonstrate that this is a reasonably likely cause of such cross correlation in our Web servers, we take the cor-
responding access log data and seek to find confirmation of the properties of the above causal model by partitioning the
original interarrival and service time processes from the data set into different classes based on the file size values. Specif-
ically, we divided the file-size distribution into mutually exclusive intervals and then constructed the per-class processes
{Âk,c} and{Bk,c} by assigning all requests of sizes within an interval to the corresponding class. The kernel density
estimation of the file-size distribution (from the data) may provide a good initial indication of a classification of different
types of requests, and the best intervals can be found by an exhaustive search. Of course, we are not claiming that this
classification necessarily reflects the actual multiclass behavior of the workload processes, but rather we use it to provide
support for, or against, our causal model.

We then consider the cross correlation between each of the per-class interarrival time and service time processes when
there is a total of 3, 4, 5 and 6 classes. In all cases, the resulting cross correlation within each class is significantly reduced
from that of Figure 1(c). Furthermore, these cross correlation values are indeed within two standard deviations of the
independence line, which provides support for the conjecture of our causal model that the per-class interarrival time and
service time processes are independent. Note that as the number of classes is increased, we could easily find partitions
where the cross correlation between the per-class interarrival and service processes decreases steadily.

Figure 2 provides a representative sample of our results corresponding to those presented in Figure 1(c) for a partition-
ing of the workload into 6 classes based on file sizes. Observe that the cross correlation between the per-class processes
{Âk,c} and{Bk,c} has been significantly reduced in relative magnitude (with respect to the independence line) from more
than 6 times in the original data (in Figure 1(c)) to well within 2 times the independence line in each of the classes. These
results provide considerable support for the conjecture of our causal model of an underlying multiclass workload where
the per-class interarrival and service processes are independent and the per-class service processes have different service
requirements.

3. MATHEMATICAL ANALYSIS

We next turn to consider a mathematical analysis of the queueing system representing the distributed architecture of the
Web server environment motivating our study. Our starting point is equation (1) which expresses the expected client request
response time of the entire Web server in terms of the expected response time of client requests at each of the computing
nodes comprising the Web server. We therefore focus on each computing node of the Web server of interest and model each
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Figure 2. CCF of the interarrival and service times within each class of a 6-class workload partitioning.

node as a general single-server queue, although extensions to a multiserver queue can be readily added on top of the results
derived in this section.15 For various reasons, including the argument that the actual execution ordering of client requests
at the computing nodes of many Web servers is somewhere in between pure FCFS and pure processor sharing (PS), we
consider both FCFS and PS queueing disciplines in our analysis of each general single-server queue. The results of our
analysis for the FCFS discipline are presented herein, because of our extension of this analysis in§4 to further investigate
control policy issues, but the corresponding PS results are omitted due to space limitations. We refer the interested reader
to our technical report13 for these results and related technical details.

Let uk represent the time between thek − 1st andkth arrivals, and letvk represent the service time of thekth arrival,
k ≥ 1. The interarrival timeuk is identical to the interarrival timêAk of thekth client request obtained from the access
log of the Web server computing node of interest, and the service timevk is obtained directly from the corresponding byte
sizeBk of this kth request, both as discussed in§2. DefineUk = u1 + . . . + uk andVk = v1 + . . . + vk, k ≥ 1. The
sequence of successive waiting times{Wk; k ≥ 1} can then be defined in terms of the sequence{(uk, vk) : k ≥ 1} using
Lindley’s recursion16:

Wk+1 = [Wk + vk − uk+1]+ = Dk − min
1≤j≤k

{Dj} (2)

wheredk = vk−uk+1, Dk = d1+. . .+dk, k ≥ 1, D1 = 0, W1 = 0 and(x)+ ≡ max{0, x}. The rightmost representation
of Wk in (2) describes the waiting time process as a random walk process with random stepsdi, reflected at the barrier0.

Letun
k andvn

k represent the interarrival time and the service time of thekth client request in thenth queue of a sequence
of queues. The heavy-traffic limits are then obtained for scaled versions of the stochastic processes associated with queue
n such that the traffic intensities for the sequence of queues increase successively to the critical value of 1 asn → ∞.
In establishing these heavy traffic limits, we will be using the theory of weak convergence of probability measures on the
spaceD of all right-continuous functions with finite left-limits on[0,∞); refer to Billingsley17 and Whitt.15

Assuming the sequence{un
j , vn

j } is stationary, we define a sequence of queues withαn = Eun
1 andβn = Evn

1 which
vary such thatβn/αn = ρn → 1 asn → ∞. For our model of each computing node, we fix the arrival rate for all queueing
systems to the arrival rateλ from the corresponding data set and construct our sequence of queueing systems by changing
the service rate such that1 − ρn = n−1/2. Hence,αn = 1/λ for all n andβn = ρn/λ = (1 − n−1/2)/λ. We then define
a random element(Ûn, V̂ n) in the product function spaceD × D corresponding to thenth queue, where

(Ûn(t), V̂ n(t)) = (n−1/2[Un
bntc − αnnt], n−1/2[V n

bntc − βnnt]), t ≥ 0,

and bxc is the greatest integer less than or equal tox. Let D̂n and Ŵn be the random elements associated with the
differences and waiting times in (2) defined as

D̂n(t) = n−1/2Dn
bntc and Ŵn(t) = n−1/2Wn

bntc, t ≥ 0.
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3.1. General Results

We now are able to present the following important result for our completely generalG/G/1 queue of each Web server
computing node, which parallels the results in Iglehart and Whitt18; see also Whitt.15

Theorem 3.1.

(a). If (Ûn, V̂ n) ⇒ (Û , V̂ ) in D×D where(Û , V̂ ) has continuous paths with probability 1 and̂En(t) = n−1/2(αn −
βn)nt → αe, −∞ < α < ∞, asn → ∞, thenD̂n ⇒ D̂ = V̂ − Û − αe in D, wheree(t) = t.

(b). If D̂n ⇒ D̂ in D, thenŴn ⇒ Ŵ = f(D̂) in D, wheref(x)(t) = x(t) − inf{x(s) : 0 ≤ s ≤ t}, t ≥ 0, is a
functional onD that represents the reflective barrier at0.

(c). If, in addition, the limit(Û , V̂ ) is a two-dimensional Brownian motion with a symmetric covariance matrix having
elementsσ2

11, σ2
22 andσ2

12, thenD̂ is a Brownian motion (BM) and̂W is a reflected Brownian motion (RBM) with drift
−α. Furthermore, ifα > 0, thenŴ has an exponential equilibrium distribution̂W (∞) with expectation

EŴ (∞) = (σ2
11 + σ2

22 − 2σ2
12)/2α. (3)

Proof. The first two parts are elementary consequences of the continuous mapping theorem (e.g., see Whitt15). Since
Ên converges to the linear functionalαe, the joint convergence given in part (a) can be extended to(Ûn, V̂ n, Ên) ⇒
(Û , V̂ , αe). From (2),D̂n = Ûn − V̂ n − Ên, and thus (a) holds by the continuous mapping theorem applied to the
subtraction mapping. Similarly, for part (b), notice that̂Wn = f(D̂n) = f(Ûn − V̂ n − Ên), and again we obtain the
convergence by the continuous mapping theorem applied to the barrier functionf . The last part follows from the fact that
D̂n ⇒ Û − V̂ − αe is a BM with drift−α and a diffusion coefficientσ2

11 + σ2
22 − 2σ2

12, and thusf(D̂) is an RBM. If an
RBM has a negative drift, then its equilibrium distribution is exponential with the stated expectation.2

A consequence of the above theorem is the existence of Brownian limits for theD̂n andŴn processes. The BM limits
further imply that the following central limit theorems (CLTs) hold:

n−1/2[Un − αnn] ⇒ N(0, σ2
A), (4)

n−1/2[Vn − βnn] ⇒ N(0, σ2
S), (5)

n−1/2[(Vn − Un) − (βn − αn)n] ⇒ N(0, σ2
AS), (6)

where the variance parameters coincide with the functional central limit theorem (FCLT) parameters, i.e.,σ2
A = σ2

11,
σ2

S = σ2
22 andσ2

AS = σ2
11 + σ2

22 − 2σ2
12, the numerator in (3).

The variance parameters in the CLT limits also can be identified more generally in the case where the CLTs hold for

αn → α andβn → β (and not necessarilyα = β) asσ2
A = α2C2

A, σ2
S = β

2
C2

S andσ2
AS = σ2

A + σ2
S − 2αβC2

AS , where
C2

A, C2
S andC2

AS are the asymptotic variability parameters defined as

C2
A = lim

n→∞n
Var(Un)
(EUn)2

= lim
n→∞

Var(Un)
nα2

n

, (7)

C2
S = lim

n→∞n
Var(Vn)
(EVn)2

= lim
n→∞

Var(Vn)
nβ2

n

, (8)

C2
AS = lim

n→∞n
Cov(Un, Vn)
(EUn)(EVn)

= lim
n→∞

Cov(Un, Vn)
nαnβn

. (9)

The existence of these limits imply that the variance of the quantitiesUn andVn and the covariance between them increases
at the same rate asn, which is equivalent to assuming that the processes are weakly dependent.15

While the CLTs in (4) – (6) are most useful for our heavy-traffic analysis, the asymptotic variability parameters in
(7) – (9) are most useful for calculating performance measures based on our heavy-traffic limits from the data at the
corresponding Web server computing node. In particular, we can estimate the heavy traffic steady-state waiting time in our
generalG/G/1 queue of each Web server computing node from the values ofC2

A, C2
S andC2

AS . From our formulation
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of the sequence of queueing systems, we have in the heavy traffic limiting sequenceαn = 1/λ, βn = ρn/λ = (1 −
n−1/2)/λ → 1/λ, andn1/2(αn − βn) → 1/λ. Hence,

σ2
AS =

1
λ2

(C2
A + C2

S − 2C2
AS), (10)

which implies that

EŴ (∞) =
1
λ

(C2
A + C2

S − 2C2
AS)

2
. (11)

From previous heavy-traffic stochastic-process limit theorems,15, 18, 19 we know that the limits of the sequences of
normalized equilibrium waiting time expectations exist and that they coincide with the expected equilibrium measure of
the corresponding RBM. It then follows for the heavy-traffic regime

lim
n→∞n−1/2 EWn

∞ = lim
n→∞(1 − ρn)EWn

∞ = EŴ (∞) =
1
λ

(C2
A + C2

S − 2C2
AS)

2
, (12)

EWn
∞ ∼ EŴ (∞)

(1 − ρn)
≈ EŴ (∞)

(1 − ρ)
=

1
λ

(C2
A + C2

S − 2C2
AS)

2(1 − ρ)
= β

(C2
A + C2

S − 2C2
AS)

2(1 − ρ)
, (13)

wheref(n) ∼ g(n) denotes thatlimn→∞ f(n)/g(n) = 1. In order to obtain the corresponding steady-state waiting time
approximation for any traffic intensityρ < 1, it is important to note that the Brownian approximation in (13) actually
represents the conditional expectationE[W ρ(∞) | W ρ(∞) > 0]. Thus, upon unconditioning,16 we have

EW ρ(∞) =
ρ β

1 − ρ

(C2
A + C2

S − 2C2
AS)

2
, (14)

with the corresponding steady-state response time expressed as

ET ρ(∞) = β +
ρ β

1 − ρ

(C2
A + C2

S − 2C2
AS)

2
, (15)

where the three quantities in the numerator of the last term can be easily estimated from the data at the corresponding Web
server computing node using the asymptotic variability relations in (7), (8) and (9).

3.2. Application of General Results

The first step in exploiting the general results of§3.1 for our purposes consists of showing that the conditions of Theo-
rem 3.1 are satisfied for our generalG/G/1 queue of each Web server computing node, especially focusing on the BM
assumption of part (c) in the theorem. This is because having the BM condition of (c) hold implies that the conditions of
part (a) are also satisfied, which in turn implies that the assumption of part (b) holds.

Let us first consider the case ofV̂ n. Recalling from§2 that the service times of client requests in the Web server access
logs from each computing node are i.i.d., we shall henceforth suppose that thevn

i are i.i.d. with a squared coefficient of
variationC2

s . Then, by Donsker’s theorem,15 sinceβn → β = 1/λ, we have

V̂ n(t) = n−1/2[Vbntc − βnnt] ⇒ V̂ ,

whereV̂ is a zero drift BM with variance constantσ2
22 = (1/λ2)C2

s .

Considering the case of̂Un, we recall from our statistical analysis in§2 that the interarrival process has a strong
dependence structure. We can still have the desired BM limit asn → ∞ provided that the correlation structure does
not grow too fast. In fact, the existence of the limit in (7) is a necessary condition. The sufficiency conditions to be
satisfied by an arrival process in order for the BM limit to exist, however, are stronger; refer to Whitt.15 For example, if a
process is stationary with uniform mixing, or if a process is ergodic and martingale properties hold, then the BM limit is
known to exist. While these conditions can be difficult to check with complete certainty, many stochastic processes such
as martingales, discrete-time Markov chains, continuous-time Markov chains, Markovian Arrival Processes (MAPs) and
regenerative processes have been shown to satisfy these conditions; see Billingsley17 and Whitt.15 Whitt15 further notes
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that in practical applications it is often reasonable to assume that the FCLT is valid if the asymptotic variance parameter is
finite (which holds in our case).

Turning to the data from§2 for each computing node comprising the Web server, we note that recent studies using the
same data sets have shown that these stationary arrival times are consistent with and can be accurately modeled by various
instances of a MAP.20, 21 We shall therefore conclude that the computing node arrival process is a MAP, which is further
supported by the strong accuracy of our approximation in equations (14) and (15) obtained using the results of Theorem 3.1
as illustrated later in this section. This implies, as noted above, that the corresponding BM limit exists. The interarrival
procesŝUn is the inverse process associated with the MAP computing node arrival process. Hence, by Corollary 13.7.2 in
Whitt,15 we then have

Ûn(t) = n−1/2[Ubntc − βnnt] ⇒ Û ,

whereÛ is a zero-drift BM with variance constantσ2
11 = (1/λ2)C2

A.

The next step is to establish that the joint convergence for(Ûn, V̂ n) also holds. Clearly, the convergence of the
marginalsÛn andV̂ n does not necessarily imply that this joint-convergence will hold, and thus the processes will have
to satisfy some stronger conditions to ensure that the joint limit exists. We know from the Cramer-Wold device (e.g.,
see Billingsley17) that the joint limit for(Ûn, V̂ n) exists if, and only if, the summ1Û

n + m2V̂
n converges for every

combination of(m1, m2) ∈ IR2. The asymptotic variability parameter of the sum, if it exists, is then(m2
1C

2
A + m2

2C
2
S +

2m1m2C
2
AS)/4, and thus it is finite as long asC2

AS is finite. Our statistical analysis in§2 of the data from each computing
node comprising the Web server shows that this is indeed the case. Hence, in a similar vein as our findings for the FCLT
of Û to hold, we conclude thatC2

AS is finite and thus the FCLT for the sum holds.

Notice that, as pointed out in Fendick et al.,8 since the limit process for̂Wn is inferred only from the limit for the
processD̂n = Ûn − V̂ n − Ên, the existence of̂D is technically sufficient for the limit̂Wn ⇒ Ŵ to hold. HereD̂n is a
translation of a linear combination of thêUn andV̂ n with asymptotic variability parameter given byC2

A + C2
S − 2C2

AS .
We can therefore reasonably suppose that the limit for theD̂n andŴn processes holds given that the constantsC2

A, C2
S

andC2
AS are finite.

Finally, the approximation for the steady-state waiting time in (14) is dependent on the underlying processesÛn and
V̂ n only through the asymptotic parametersβ, C2

A, C2
S andC2

AS . Moreover, this expression is invariant to what distribution
is chosen or how the dependence structure is modeled, as long as the asymptotic parameter values do not change. This
feature is of course true in general for approximations obtained from Brownian limits.

3.3. Numerical Experiments

Let us now turn to consider the accuracy of our expressions for the steady-state waiting time and response time in (14)
and (15), respectively. Figure 3 plots a representative sample of the expected waiting time and response time measures
as a function of the traffic intensityρ, together with the corresponding empirical steady-state waiting and response times
obtained directly from the sequences{Âk} and{Bk} using Lindley’s recursion in (2). The asymptotic variability constants
C2

A, C2
S andC2

AS in (14) and (15) are estimated from the data at the corresponding Web server computing node through
the asymptotic variability parameters in (7) – (9). This involves estimating the asymptotic variance parametersσ2

A, σ2
B

andσ2
AB, which from the CLTs areVar(Un)/n, Var(Vn)/n andVar(Vn − Un)/n asn → ∞. As in our analysis above,

to preserve the statistical properties of the interarrival times in the Web server data set, we consider a sequence of queues
with the workload increasing to the critical value of1 by steadily scaling up the service times via the single-server queue
capacity.

We observe from these results that our closed-form expressions for the expected equilibrium waiting time and response
time in (14) and (15) provide excellent approximations for traffic intensitiesρ > 0.5. In fact, the confidence intervals
for our expected waiting time approximation completely overlap with those from Lindley’s recursion applied to the Web
server data when0.5 < ρ < 1. Moreover, in comparing the expected response time curves, we find that they are essentially
indistinguishable forρ > 0.5. Although our primary interest is in moderate to heavy traffic intensities (e.g.,ρ > 0.5), we
observe that the expected response time curve from our approximation in (15) differs with the corresponding curve from
Lindley’s recursion by very small margins under lighter traffic intensities. We further observe that our approximations
provide an upper bound on the expected waiting and response time measures across all traffic intensities, at least for the
Web servers used in our study.
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Figure 3. Accuracy of our approximations as a function of the traffic intensityρ: (a) Expected waiting time from (14) and (2), together
with confidence intervals; (b) Expected response time from (15) and (2); (c) Best batch size for estimating approximation parameters.

Remark 3.2. Since the desired estimators are asymptotic limits, we employ steady-state estimation techniques such as
batch-means to obtain these estimates ofC2

A, C2
S andC2

AS and to produce confidence intervals for the corresponding
estimate of expected waiting time. The key idea behind the batch-means estimates is to divide (or section) a single sample
path into intervals (or batches) which can be assumed to be approximately independent. We observe from our experiments
that the results of our approximation can be quite sensitive to the batch size selected for these calculations, where our
empirical results in Figure 3(c) show that the best batch size is relatively small for light traffic intensities and that the best
batch size increases as the traffic intensityρ increases. This demonstrates the increasing impact of correlations on our
steady-state performance measures asρ increases. The results in Figure 3(a)-(b) were obtained using the best batch sizes
from our empirical analysis, which ranged from 50 to 2400.

It is important to note that heavy-traffic approximations are well known to have the potential to be inaccurate at light
to moderate traffic intensities. This has been observed in a number of studies, many of which have developed heuristics
to address such inaccuracies. These heuristics are often based on some form of interpolation between light-traffic and
heavy-traffic formulas, one of the most notable being the approach proposed by Reiman and Simon.22 In our study we
have instead focused on issues related to the steady-state estimation methods used to obtain the values of the parameters of
our heavy-traffic approximations, as explained in Remark 3.2. This appears to be an interesting area of research which we
plan to explore in more detail as part of future work.

Our closed-form expressions for the expected equilibrium waiting time and response time in (14) and (15) represent
very efficient mathematical methods that can be exploited online to support an increasingly important range of real-time
performance and control applications, such as the dynamic control of resource allocation in Web servers to best satisfy
performance guarantees as part of service-level agreements. These results can be equally well exploited in efficient inter-
active tools often used offline for many different purposes, such as what-if analysis and stochastic optimization as part of
performance and capacity planning studies. In addition to these obvious applications of our results, the expression in (14)
can be used directly to gain key insights into the performance impact of correlations and variability within and between the
interarrival and service processes. Specifically, the expected equilibrium waiting time varies linearly with changes in either
of β, C2

A, C2
S or C2

AS while keeping the other parameters constant. Moreover, additional variability or correlation within
the interarrival or service processes tends to increase the expected waiting time, while an increase in the (positive) cross-
correlation between the two processes tends to decrease the expected waiting time. The rate of increase with increasing
C2

A or C2
S is the same, whereas the rate of decrease with increasingC2

AS is twice as large.

Lastly, we note that, in addition to the significant dependence structure within the arrival process (as captured inC2
A),

the cross correlation between the arrival and service processes (as captured inC2
AS) observed in the access logs of the

computing nodes comprising the various Web servers used in our study can also be quite significant. Thus, Web server
queueing models from previous studies that do not capture these correlation factors will yield expected response time
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Figure 4. Ratios of expected response time and response time variance for the control policies as a function of the traffic intensityρ: (a)
Expected response time ratio of MCPQ to SRPT; (b) Response time variance ratio of SRPT to MCPQ.

estimates with considerable errors from what will be experienced in practice, at least for the Web server environments of
interest in our study.

4. CONTROL POLICY ISSUES

The causal model of§2 suggests that the workloads found at various production Web servers consist of multiple classes
of client requests based on the different service requirements of these requests. We therefore consider the corresponding
multiclass priority queue (MCPQ) as an alternative to existing control policies for scheduling the execution of client
requests in Web servers, with the goal of providing expected response times close to their optimal values obtained under
SRPT9 while also providing significantly better response time variance properties. Serving requests within each class
according to an FCFS discipline can reduce the waiting time variance,12 while the priority discipline among the classes
can provide an execution ordering somewhat close to SRPT provided that the service time variability within each class is
relatively low.

In this section our analysis of Web server performance is extended to investigate these control policy issues. We start
by considering the representative workload data set from§2 and use simulation to estimate the first two moments of the
client request response times under SRPT. For comparison, we use a variant of the partitioning from§2 of this workload
into different classes of client requests (for the case of 5 classes), and obtain via simulation the first two moments of the
client request response times (taken over all classes) in the corresponding MCPQ. In both cases, preemptive versions of the
scheduling mechanisms are considered. A representative sample of our relative expected response time and response time
variance results are provided in Figure 4.

We first observe that, with the possible exception of heavy traffic intensities, the foregoing goal is achieved: Expected
response times under the MCPQ are relatively close to those obtained under SRPT while yielding significantly smaller
response time variances (note the difference in scale between the y-axis of the two plots). Moreover, even at heavy
traffic intensities, our results illustrate a very interesting tradeoff between a non-negligible relative increase in the expected
response time and a significant relative decrease in the response time variance (more than a factor of 3.5). It also should
be noted that there obviously will be less preemption overhead incurred under the MCPQ than under SRPT (which is not
modeled in the results of Figure 4). Furthermore, if non-preemptive versions of both approaches are employed instead, we
would expect the mean response time results in Figure 4 to be even closer with relatively little changes to the response time
variance results in Figure 4.

In addition to these performance results, the approach based on the MCPQ has the added advantage of not having
to know precisely the service times of each client request. Instead, one only needs to be able to partition the workload
into different classes where the service times within each class are relatively close to each other and the service times
across classes are relatively different. Along these same lines, it is important to note that the partitioning of the Web server
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workloads into multiple classes taken from§2 can be improved for our purposes here. Recall that our objective in§2 was to
obtain a partitioning that yielded mutually independent arrival and service processes within each class, in order to support
the conjecture of our causal model for cross correlation between the arrival and service processes. Our objective for the
partitioning here is very different in that improvements over the results presented in Figure 4 can be achieved by obtaining
a partitioning that takes into account the goals of this section. These issues are the subject of future work.

Given the above potential benefits of the MCPQ, we next extend our mathematical analysis to consider the general
G/G/1 queue of each Web server computing node under this control policy for scheduling the execution of client requests.
Our (preliminary) approach consists of first decomposing the MCPQ into separate per-class queues and then solving the
resulting per-class queues based on the mathematical analysis derived in§3. Specifically, we exploit the strict ordering
of the priority classes and the properties of the preemptive priority queueing discipline to isolate the per-class queues by
decomposing the per-class performance characteristics in a hierarchical manner such that the analysis of the decomposed
queue for each classk in isolation is based on the solution for the decomposed queues of classes1, . . . , k − 1.

Our starting point is to obtain the expected response time of client requests served on computing nodei in the corre-
sponding MCPQ, which is then used in equation (1) to obtain the overall expected system response time as in the previous
section. From the law of total probability we have

ETi =
∑

k

E[ Ti | request belongs to classk ] P[ request belongs to classk ],

=
∑

k

ETi,k P[ request belongs to classk ], (16)

whereETi,k is the expected response time of classk requests served in the MCPQ on computing nodei. Let Ck represent
the capacity of the Web server nodei from the perspective of classk. Since class1 has the highest priority, we setC1 to
be the overall capacity of the Web server node. Defineρ̃k = λkβ̃k andβ̃k = C−1

k µ−1
k , whereµ−1

k is the expected offered
service time of classk requests.

We first consider the class1 queue in isolation. Since the lower priority classes do not interfere with the execution of
class1 requests under the preemptive priority queueing discipline, then from equation (15) the expected response time of
class1 requests is given by

ETi,1 =
ρ̃1 β̃1

1 − ρ̃1

(C2
A,1 + C2

S,1 − 2C2
AS,1)

2
+ β̃1. (17)

Then, as a first-order approximation, class 2 sees a server with capacity that has been reduced by class 1 requests, and thus
we setC2 = C1(1 − ρ̃1) and recursively obtain the solution for the next class. In general, assuming we have obtained the
expected response times for the higher priority classes1, . . . , k− 1, the expected response time of classk requests is given
by

ETi,k =
ρ̃k β̃k

1 − ρ̃k

(C2
A,k + C2

S,k − 2C2
AS,k)

2
+ β̃k, (18)

whereCk = C1(1 − ∑k−1
k′=1 ρ̃k′). Of course, in estimating the parametersC2

A,k, C2
S,k andC2

AS,k we would need to include
the various forms of correlation both within and across classes, and we follow the approach presented in§3.

The foregoing analysis is clearly a first-order approximation. However, comparisons between these closed-form ex-
pressions and the simulation results in Figure 4 demonstrate that the relative errors are less than5 − 10% for ρ > 0.5 and
they are always within15% for all values ofρ. We are exploring more accurate and robust approximations, based on our
heavy-traffic stochastic-process limits of§3, for the expected response times in the MCPQ considered in this section. The
collection of these results and those in (17) and (18) can then be used together with bounds and approximations on the
variance of the BM and RBM limits in§3 to investigate in more detail the key tradeoff between small relative increases in
the expected response time and large relative decreases in the response time variance under the multiclass priority control
scheme, especially at heavy traffic intensities.

5. CONCLUSIONS

In this paper we used data from various production Web servers to demonstrate the existence of considerable dependencies
between the arrival times and the service times of client requests, in addition to a strong dependence structure within
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the arrival process. Our data analysis investigated the likely causes of this cross correlation, and our queueing analysis
demonstrated that such cross correlation can have a significant impact on performance (independent of the cause of such
correlations) which has not been captured in previously considered Web server performance models. An approximation of
Web server performance was derived, based on heavy-traffic stochastic-process limits, that captures both the correlations
within the arrival process and the correlations between the arrival and service processes. We then demonstrated the accuracy
of our asymptotically-exact approximation, which is excellent across all traffic intensities and is especially accurate for the
range of traffic intensities of greatest interest to us. Such accuracy levels are achieved by paying specific attention to
the manner in which the parameters of the expected response time expression are estimated. Our mathematical analysis
was then extended to further investigate certain control policy issues in Web servers, demonstrating the ability to provide
expected response times relatively close to their optimal values obtained under SRPT while also providing much better
response time variance properties.
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