
RC23103 (W0402-026) February 5, 2004
Computer Science

IBM Research Report

Achieving Scalability and Throughput in a
Publish/Subscribe System

Mark Astley, Joshua Auerbach, Sumeer Bhola, Gerard Buttner,
Marc Kaplan, Kevan Miller, Robert Saccone, Jr., Robert Strom,

Daniel C. Sturman, Michael J. Ward, Yuanyuan Zhao
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Achieving Scalability and Throughput in a
Publish/Subscribe System

Mark Astley, Joshua Auerbach, Sumeer Bhola, Gerard Buttner, Marc Kaplan, Kevan Miller, Robert Saccone
Jr., Robert Strom, Daniel C. Sturman, Michael J. Ward, Yuanyuan Zhao

Abstract— We describe the Gryphon content-based publish/subscribe
messaging system. The objective of Gryphon is to provide the capabilities
of message oriented middleware systems in widely distributed and high-
volume environments, i.e. distributed across countries or continents, with
tens of thousands of messaging clients and with tens of thousands of mes-
sages being delivered across the system each second. We introduce the es-
sential design concepts of Gryphon, with particular emphasis on the deci-
sions that led to high throughput and scalability. We present performance
benchmarks that demonstrate the effectiveness of these decisions.

Keywords— Publish/Subscribe, Content-Based Routing, Scalable Over-
lay Network

I. INTRODUCTION

P
UBLISH/SUBSCRIBE messaging (pub/sub) has emerged
as a popular paradigm for building asynchronous dis-

tributed applications [1], [2], [3], [4], [5], [6], [7]. A pub/sub
system consists of publishers that generate messages and sub-
scribers that register interest in all future messages matching the
conditions specified in their subscription. The system is respon-
sible for routing published messages to interested subscribers.
Information providers and consumers are decoupled, since pub-
lishers need not be aware of which subscribers receive their mes-
sages, and subscribers need not be aware of the sources of the
messages they receive.

Gryphon is an implementation of pub/sub on an overlay net-
work of broker machines. It is designed for high-volume, low
latency, Internet-scale distribution, that is, a target deployment
of multiple brokers distributed across countries or continents,
with tens of thousands of messaging clients and with tens of
thousands of messages being delivered across the system each
second. Gryphon is a content-based publish/subscribe system,
which means that subscriptions to messages are not limited to a
set of predefined topics but may additionally specify predicates
on message contents.

In this paper, we present the design of the Gryphon pub-
lish/subscribe messaging system, emphasizing those features
that enable Gryphon to support high throughput in its target en-
vironments.

Next, we focus on two aspects of system behavior that are
critical to Gryphon scalability and performance.
• I/O SCHEDULING: We discuss how we manage concurrency
to exploit processor power on SMP architectures, while avoiding
reduced performance due to excess context-switch time. The I/O
system has also been optimized to distinguish between broker-
to-broker links (usually a small number of fully utilized links)
and broker-to-client links (usually a large number of intermit-
tently utilized links).

The authors are employed by the IBM T. J. Watson Research Center, Yorktown
Heights, New York, USA.

• ACCESSING MESSAGE CONTENT: Messages arriving at a
Gryphon broker are filtered by being matched against content
predicates and security policies, and are then forwarded to ap-
propriate outbound links. To match a message in a content-
based system, the relevant fields must first be extracted, and then
the content filters must be evaluated. In an earlier paper [8], we
discuss how we use an optimized content filter evaluation data
structure to minimize the time to match a single message against
a large number of subscriber-defined content predicates. In this
paper, we describe how we encode structured messages defined
in a flexible schema definition language in a way that allows fast
lookup of individual fields during the content matching step.

Finally, we present an experimental analysis that measures the
performance of Gryphon and validates our design decisions.

II. GRYPHON APPROACH AND CONCEPTS

In this section, we introduce the concepts and architecture of
Gryphon.

A. Client and Broker Roles

Gryphon is a broker-based messaging infrastructure over an
overlay network. That is, within the Gryphon system, there
are two primary roles: a client that produces and/or consumes
messages, and a broker that provides the majority of messaging
function and is responsible for moving data through the network.
This approach is in contrast to a message bus or peer-to-peer ap-
proach where almost all messaging function is included at each
client node, and clients connect directly to each other. Gryphon
clients are light-weight, with the majority of function being pro-
vided at the broker.

Both client-to-broker and broker-to-broker logical links are
implemented over TCP/IP connections. In all cases, there is
only a single, bi-directional connection between any broker and
any other broker or client. An alternative approach would have
been to build a custom point-to-point protocol on top of UDP.
Since we needed many of the services of TCP, such as frag-
mentation and windowing, we chose to use standard TCP. Use
of TCP significantly reduced our development cost, and addi-
tionally allowed us to work smoothly with firewalls and other
security standards that expect TCP. As we show in Section V,
we were still able to achieve very high performance building on
TCP.

B. Broker topology

There are two topology concepts in the description of
Gryphon’s overlay broker network: cells provide a grouping
mechanism for brokers and link bundles provide a group mech-
anism for connections between cells.

A cell represents a cluster of nearby brokers that can share
load and can provide coverage in case of failure. We require that
the set of live brokers within a single cell be fully connected. A
physical broker may participate in more than one cell; in that
case, the physical broker is viewed as multiple virtual brokers.
An optimization exists to avoid having to send messages over a
physical link when two virtual brokers share the same machine.
Another optimization exists so that messages destined to multi-
ple virtual brokers in an adjacent physical machine can travel in
a single message.

A link bundle is the collection of links between a pair of cells.
The link bundle is a logical representation of all the links be-
tween brokers that may be used to route messages from one
cell to another. Link bundles provide load balancing and re-
dundancy.

The Gryphon topology is built using cells and link bundles.
At any given time, a single Gryphon spanning tree is used to
route each message. This spanning tree is constructed over
the graph of cells and link bundles, where cells are nodes in
the graph, and link bundles the arc in the graph. The brokers
then use the spanning trees to route messages through the net-
work, while still having the flexibility to choose from a redun-
dant set of routes for failure response and load balancing pur-
poses. Therefore, failures and reconfigurations are handled lo-
cally: when a broker fails, traffic is re-routed through another
broker in that cell, and when a link fails, traffic is routed through
another link in that link bundle (either directly from the current
broker or indirectly via another broker in the same cell.) A key
design principle behind Gryphon is that control and recovery
traffic should almost always be localized.

There is a mechanism by which administrative entities can
dynamically change the topology: namely, to change the mem-
bership of brokers within cells, to change the neighborhood re-
lationships among cells, and to change the spanning trees in re-
sponse to such changes. There are also mechanisms for having
multiple spanning trees, although any message entering the sys-
tem is routed on exactly one of them.

In figure 1 we show an example of a Gryphon topology.

C. Client Interface

Client applications first establish a TCP/IP connection to a
Gryphon broker; once connected (and authorized by Gryphon’s
security functions), they may then publish messages or register
subscriptions to receive future messages.

Clients may define message formats using a specification
called a schema. Library functions allow publishers to write and
subscribers to read fields of messages by name. Schemas are ad-
ministratively associated with topics. Content-based subscrip-
tions to a particular topic can specify content selection pred-
icates using the names defined in the topic’s schema. As we
shall discuss later, Gryphon uses the schema specification to de-
termine a byte encoding for messages that is optimized for ef-
ficient extraction of values as messages are routed and filtered
through the broker network.

III. EFFICIENT I/O SCHEDULING

The most frequent task performed by a broker is to read a
message from an I/O connection, match the message, and send

c c cc

s 3
D3

c c c c

s1

D1

c c c c

s2

D2

c c cc

4s
D4

E
e2e1

Fig. 1. An example Gryphon topology. In this example, there are five cells: D1
through D4, and E. Each of the “D” cells consists of one or more “small” servers
(the “c” machines) and a “larger” routing server (the “s” machines) which routes
local messages to the rest of the network. Cell E is a “backbone” cell which con-
tains two large routing servers e1 and e2. The link bundles are defined between
the D’s and E such that one of the backbone servers may fail without disrupting
routing. A single spanning tree (not shown) is defined for this network and is
identical to the cell/link bundle topology.

it out on all connections with subscriptions that match the mes-
sage. A connection may be to an adjacent broker or to a client
connected to this broker. The following characteristics of a
multi-broker deployment motivate the I/O features implemented
in the broker:
1. The number of clients connected to a broker can be very
large, bounded only by the operating system’s limit on number
of sockets. These clients can have high variability in capacity
and rate of reading and writing — for instance, some clients
may be only publishing, others only subscribing.
2. Since messages may be matched against complex content fil-
ters, the processing overhead of each incoming message is non
trivial. Also, in many deployments, most data messages may be
flowing in a certain direction in the topology tree, so certain bro-
ker connections may have more incoming messages than others.
These reasons motivate decoupling reading a message from its
processing, and utilizing parallelism in processing.

The above concerns motivate careful management of threads
to exploit the intrinsic parallelism in machines, and to reduce
the overhead associated with thread switching.

Gryphon incorporates a thread scheduling component con-
taining a thread pool, whose threads are assigned to do reads
and writes on client connections. The read and write operations
are non-blocking, so the thread may be returned to the pool after
partially completing a read/write. The underlying TCP sockets
are monitored by a scheduler thread to detect whether they are
ready-to-read or ready-to-write. If a socket is ready-to-read, a
thread is assigned (from the thread pool) to do a non-blocking
read. If a socket is ready-to-write, and there is data waiting to be
sent out on this socket, a thread is assigned to do a non-blocking
write. The thread that finishes reading a message from a socket
then matches the message against the content filters, and for

2

the matching output connections, enqueues it on outgoing per-
connection output queues.

For server-server connections, the thread pool is used to per-
form socket writes, while a dedicated thread performs socket
reads. Socket reads are optimized for throughput as described
in Section III-C below.

The socket monitoring function is implemented using native
code. In Unix variants, it is implemented using the poll() sys-
tem call. The Windows I/O Subsystem is asynchronous by de-
sign and it is because of this that a combination of non-blocking
and asynchronous I/O is used to maximize scalability. Windows
asynchronous I/O is a mechanism which allows the thread that
issues the I/O to continue execution while the system performs
the I/O operation. Notification of completion of the I/O opera-
tion occurs via a callback function specified when the operation
was initiated. Completion notifications are dispatched to threads
that are part of a thread pool created and maintained by the op-
erating system on behalf of the process.

A. Cut-thru Write Optimization

When a new message needs to be written to a socket, the com-
mon case is that all previous messages have been written by the
thread pool to the socket (the output queue is empty), and the
OS has enough buffer space available to accept the new mes-
sage. In this common case, the non-optimized processing path
described earlier is inefficient, since it results in extra thread
context switches to do the write, and also increases end-to-end
message latency in the system.

With cut-thru writes, the thread doing the matching does a
non-blocking write on all matching connections whose output
queue is empty and whose socket is ready to write data. If
the write completes, nothing needs to be queued on the output
queue. However, if the message is only partially written be-
cause the socket cannot accept the full message without block-
ing, the remainder of the message is queued on the output queue,
and will be eventually written by a thread from the thread pool.
On Windows, any data that cannot written as part of the non-
blocking write will result in an asynchronous write operation
being initiated for the remaining data.

B. Socket Hierarchies for Efficient Input Monitoring

The poll() system call requires the list of sockets which are
being monitored, represented as a list of Unix file descriptors, to
be passed in as a parameter to each call. This has two problems:
(1) the large size of the parameter list — possibly tens of thou-
sands of file descriptors, and (2) the fact that some sockets are
frequently ready to read (and should be frequently polled) and
others not.

To optimize for this case, the list of sockets is automatically
organized into a 2-level hierarchy, where descriptors in the top
level are frequently ready to read. File descriptors are moved
from the top level to the bottom level if the number of messages
coming in on that connection decreases and vice versa. The bot-
tom level of this hierarchy contains more than one list since we
want to break up the typically large list of infrequent publishers
into smaller lists.

Once the list is broken up into multiple lists, the broker as-
signs a thread to monitor each list independently. Note that since

the poll() call is used, monitoring of a list in the lower level is
not less frequent than the list at the top level. However, there is
a significant performance improvement since the poll() call
will return much less frequently for such a list.

On Windows, the poll list and socket hierarchies are not used
to determine when data is available to read. Instead an asyn-
chronous read is issued for each socket. The asynchronous read
will only complete when data has been read from the socket and
it will be delivered to the callback notification function running
on one of the worker threads in the system managed thread pool.

C. Input Queuing on Broker Connections

Each broker connection is associated with a dedicated read
thread for reading messages from the connection. In the ab-
sence of input queuing, this thread performs the matching step
for the message and either queues the message on out-buffers or
does cut-thru writes. If the input rate is sufficiently high, this
dedicated thread is not able to keep up with the input rate. Input
queuing solves this problem by utilizing parallelism in the bro-
ker while ensuring that messages typically maintain publisher
order as they travel through the system. 1

Input queuing is configured using a count, n, representing the
number of input queues per connection, say numbered 0...n−1.
The dedicated read thread reads messages from the connection,
and hashes the publisher identifier (an integer) to yield a num-
ber in the range 0...n− 1. (A simple randomized universal hash
function requiring only one multiply and several add and shift
operations is used.) The message is enqueued on the queue rep-
resented by this number. Each of the n input queues has a dedi-
cated thread that is responsible for dequeuing the next message
from the input queue, and performing the matching and output
steps.

IV. GRYPHON MESSAGE FORMAT

A. Motivation and Context

As described in [8], Gryphon achieves sublinear time scal-
ing and linear space scaling as the number of subscriptions in-
creases. This approach, however, requires that values be ex-
tracted from arbitrary message fields in constant time. Since
messages are complex nested information structures, extracting
values in constant time is a challenge. In addition, we want the
extraction time to be as low as possible, given that messages
must start out and end up as byte arrays, that only a small frac-
tion of each message is typically accessed to make routing deci-
sions, and that an even smaller amount of each message will be
modified before retransmission. These considerations gave rise
to the design of the Gryphon message format.

We quickly rejected any format that requires the message to
be deserialized into a non-linear graph of objects and reserial-
ized if modified (e.g., the standard Java serialization format).
Most such processing would be wasted on typical messages. We
considered two approaches: tagged formats, such as XML, and
untagged binary formats, such as those used in IP and TCP net-
working layers.

1Enforcing publisher order is still the responsibility of the receiving endpoint,
since failures could cause messages to get out-of-order.

3

A.1 Tagged Formats (XML)

Tagged formats have the advantage that they are readily ex-
tended as the system evolves. XML is also quite good at ex-
pressing nesting, and so can capture the contribution of different
protocol and software layers to the composition of message. It
is possible to examine or even modify an XML message while
leaving it in serial form. But, to find arbitrary information that is
deeply buried in the tag structure of an XML document requires
a linear scan over the document and some relatively expensive
string-based parsing. XML is also an extremely bulky format,
which is problematic given that, in a pub/sub system, message
size is inversely related to system throughput.

A.2 Untagged Binary Formats

Constant time access to a flat series of fields is readily
achieved by designing tailored binary message layouts (which
are also compact). Such formats are commonly used by lower
networking protocol layers (e.g., IP and TCP). Fields of varying
length can be placed after fields of fixed length and offsets to
fields whose offset would not otherwise be predictable can be
stored at predictable offsets. With this type of design it is pos-
sible to ensure that every field’s offset is known after reading at
most one indirect offset from the message.

Untagged binary formats have three problems.
1. Creating them, and the code to use them, is labor intensive.
2. Access time increases with nesting of information, which is
inevitable in a complex system. Access to header fields may
take constant time, but it requires stepping into another format
definition in order to process the payload (which may itself be
a nested structure, so it may take several such steps to reach the
important information).
3. Untagged formats do not provide a convenient evolution
mechanism. A process expecting version N of the format will
be baffled when confronted by version N + 1. A process that
wants to support both versions will typically require case logic.

A.3 The Gryphon Binary Format

The advantages of a binary format are so substantial that we
adopted that approach, taking specific steps to overcome the
three deficiencies mentioned. The first problem is addressed
through the well-known technique of defining the messages in
a schema language and using a tool to translate the schema into
runtime artifacts. Our key contributions lay in solving the other
two problems.
1. We transform the “natural” schema (which makes the nest-
ing of information explicit for human understanding) into an
isomorphic derived internal schema that flattens the nested in-
formation structures. Constant-time access is usually achievable
with this transformation (limitations are discussed below). Our
tools and runtime hide the fact that the schema has been trans-
formed.
2. We use a novel approach to schema evolution that provides a
degree of extensibility equivalent to what can be achieved with
tagged formats, even though we use a compact untagged format
that is tuned for efficiency.
This paper will emphasize the first contribution. We also provide
some information about the second in order to clarify that one

of the key advantages of XML (extensibility) was not sacrificed
in the process.

B. Gryphon Schemas

Gryphon uses its own schema language internally, rather than
adopting a standardized one, so that the schema transforma-
tions that it needs can be easily carried out. However, Gryphon
schemas can be the translation targets of other schema declara-
tion mechanisms such as UML, XML Schema, or ASN.1.

A Gryphon schema is a tree made up of atomic, tuple, list, and
variant types, schema references, and the special type dynamic.

B.1 Atomic Types

The precise repertoire of atomic types was chosen pragmati-
cally and does not matter to other aspects of the solution. In this
paper we use a few representative types such as int, string, and
boolean.

B.2 Tuple Types

A tuple type is an indexed set of fields where the fields can be
of any type (atomic or aggregate). Tuple types are identified by
listing their field types between square brackets.

[int , [string , boolean]]

The empty tuple type [] is permitted.

B.3 List Types

A list type denotes zero or more repetitions of its item type,
which can be any non-vacuous type. Lists are identified by
enclosing the item type in special parentheses, e.g. *(int)*,
([int,boolean]) etc.

B.4 Variant Types

A variant type is a choice amongst alternative cases, which
can be of any type. Variant types are identified by listing their
cases between curly braces separated by bars.

{ [] | int | *(string)*}

A variant type must have at least one case.
Variants are important in message schemas because of their

role in managing layered sets of protocols. What is a “payload”
or “body” at one protocol level has an enumerable set of alter-
native definitions at the next higher level, depending on the type
of payload in question. Gryphon allows variants to be extended
with more alternatives, as part of its evolution mechanism, so
this is not a deterrent to using them to enumerate all the cases
that are presently known.

B.5 Dynamic Types

A dynamic type (identified by the keyword dynamic) rep-
resents a point in a schema where something conforming to a
different schema (not yet known) will be substituted at runtime.
Access to information in a dynamically typed field is not con-
stant (it takes time to step into a dynamic field, just as it takes
time to step from the IP packet into the enclosed TCP packet
when using traditional binary formats).

4

B.6 Schema Names and Schema References

Once a schema is given a name, fields can then be declared
has having that schema, thus incorporating one schema within
another. Recursive references are possible, but the recursive in-
corporation of a schema uses the same runtime mechanism as
dynamic, and thus does not achieve constant time reference.

C. The Flat-Tuple Transformation

The purpose of the flat-tuple transformation is to take a
schema that is readily understood by humans and derive from it
a schema that can achieve constant time access to fields whose
declaration in the original schema may be deeply nested and/or
conditioned on the case settings of variants.

C.1 The Theoretical Basis

The transformation is based on established work in the iso-
morphisms of types [9], [10]. In this body of work, a set of ax-
ioms establishes equivalence, under isomorphism, between pairs
of types. Inverse transformations always exist between values of
isomorphic types. Accessors and mutators that expect a partic-
ular type can be transformed into equivalent operations on the
isomorphic type. Type isomorphisms have been used in the past
to support flexible retrieval of components from libraries [11],
[12] and automated generation of converters and adapters [13],
[14].

In a type system containing tuple types and variant types, the
important rules are the following.
1. Tuple and variant types each obey an associative law. For
example,
[int, [string, boolean]]
<=> [int, string, boolean]

and
{{ [] | string } | *(string)* }
<=> { [] | string | *(string)* }

2. Tuple types distribute over variant types. For example,
[int, { string | boolean }]
<=> { [int, string] | [int, boolean] }

In a type system containing tuples and lists, there is an additional
morphism that is available.
3. A list of tuples can be encoded as a tuple of lists. For exam-
ple,
([string, int]) => [*(string)*, *(int)*]
This is an isomorphism only under the constraint of equal length
for the lists. However, it works for our purposes because we only
apply it in one direction (which results in the constraint always
being met).

By repeatedly applying the associative rules in the flattening
direction, the distributive rule in the distributing direction, and
the list/tuple rule in its only available direction, one can derive
a schema whose values encode the values of any actual schema
but that takes on the following constrained form:
• Every tuple type is either at top level or is directly enclosed
in a variant (tuples enclosed in tuples were eliminated by the
associative rule for tuples and tuples enclosed in lists were elim-
inated by the list/tuple rule).
• Every variant is either at top level or is directly enclosed in
a list (variants enclosed in variants were eliminated by the as-

sociative rule for variants and variants enclosed in tuples were
eliminated by the distributive rule).

C.2 The Optimal Outcome

If there are no variants enclosed in lists (directly or indirectly)
in the original schema, and no recursive schema references, the
derived schema that results from a flat-tuple transformation will
have the following components.
• At most one variant type (at top level). We call the top-level
variant of the transformed schema the super-variant.
• All tuple types (if any) are directly enclosed in the super-
variant. We call the the tuples that are directly enclosed in the
super-variant flat-tuple types. If there is no super-variant, then
there is only one flat-tuple type and it is the top-level type.
• Everything else is either a basic type (atomic or dynamic) or
a nested stack of list types enclosing a basic type.
For example, consider the following schema:

com.ibm.gryphon.envelop: [
priority: int,
properties: *(
[

name: string,
value: string

]
)*,
payload: {
absent: [] |
subscribeRequest: [

topic: string,
selector: string

] |
subscribeReply: int |
other: dynamic

}
]

Its flat-tuple transformation (ignoring non-leaf names) is as fol-
lows:

{
[
priority: int,
id: long,
(name: string),
(value: string)

] |
[
priority: int,
id: long,
(name: string),
(value: string),
topic: string,
selector: string

] |
[
priority: int,
id: long,
(name: string),
(value: string),

5

subscribeReply: int
] |
[
priority: int,
id: long,
(name: string),
(value: string),
other: dynamic

]
}

The transformation into super-variant/flat-tuple form means that
the message can be represented as follows.
• There is a single integer enumerating which of the super-
variant’s flat-tuple cases is the active one. We call this the multi-
choice code.
• This is followed by a straightforward binary offset encoding
of the fields that are present in the selected flat-tuple case.

Constant time access is thereby achieved, certainly, for fields
that are not lists. The message may still contain (possibly
nested) lists, and access to these is not quite constant. The fixed
length elements of a list of such are accessed in constant time
by multiplying the index position by the element size, but this is
only after locating the start of the list by the usual mechanism.
Similarly, the variable length elements of a list of such are ac-
cessed in constant time by using an offset table at the start of the
list. So, the access time increases based (only) on the number of
nested lists and whether each list is fixed or varying. The cost
of stepping into a list is less than, but comparable to, the cost of
stepping into a dynamic field.

The ability of the flat-tuple transformation to completely flat-
ten a schema is spoiled by the presence of either recursion or
of variants that are dominated by lists. We consider these hard
cases next.

C.3 Recursion

Recursion is handled by replacing the recursive schema ref-
erence with a dynamic. This pretends that we don’t know the
schema until runtime. We actually do, we are merely using this
device to avoid an infinite regress during flat-tuple transforma-
tion. But, having made the substitution, we are forced to use
the dynamic mechanism at runtime, and we give up on constant
time access.

C.4 Variants Dominated By Lists

Variant types that are dominated by lists will end up getting
“stuck” under the list during the transformation because there is
no rule of isomorphism that enables further progress. The best
we can do is to perform a secondary flat-tuple transformation on
everything under the list-variant node pair as if the variant were
the root of its own schema. The field that results in the message
is called a variant box and it gets its own multi-choice code and
binary encoded flat-tuple. The cost of stepping into a variant
box is roughly the same as the cost of stepping into a dynamic
field (bearing in mind that such fields are always in lists, so there
is list indexing overhead as well).

In order to minimize the number of fields that get caught in
variant boxes, we apply the list/tuple rule of isomorphism to a

list before applying the distributive rule to anything enclosed in
the list. For example, if we had

([string , { int | boolean }])

we would transform it to

[*(string)* , *({ int | boolean })*]

rather than

({ [string , int] | [string , boolean] })

Distributing tuples over variants too eagerly, as in the third ex-
ample, results in more fields getting caught in variant boxes. In
the example just shown, the string escaped from the box by get-
ting its own list.

C.5 A Practical Implementation

The previous section describes the flat-tuple transformation
as a potentially static operation on schemas. It could be im-
plemented that way, but such an implementation is not neces-
sarily practical. It should be clear that a schema gets larger in
the process of distributing its variants. If the schema has many
independent variants, you can get a combinatorial effect. For
example,

[{ w:int | x:int },
{ y:int | z:int }]

is transformed to

{ [w:int, y:int] |
[w:int, z:int] |
[x:int, y:int] |
[x:int, z:int] }

In the Gryphon system schema, for example, the super-variant
has several thousand cases. Each case has a certain amount
of additional metadata (offset tables, variant case setting maps,
etc.) that are used to speed up runtime decoding of the actual
flat-tuple. So, the memory footprint and load time for the com-
plete transformed schema could be considerable. Every inde-
pendent variant that is added to the schema multiplies the size
of this footprint by the number of cases in the variant.

But, in typical usage patterns, only a modest fraction of those
cases are used at all, and some of those very infrequently. So,
most of the transformed schema would be wasted space if the
transformation were applied eagerly. In fact, each flat-tuple
case represents a concrete assemblage of fields in a message
that might occur in practice. It turns out that we can wait un-
til that combination of fields actually does occur before doing
the requisite part of the transformation.

Gryphon’s incremental runtime form of the flat-tuple trans-
formation keeps the original untransformed schema in memory.
The transformation is then applied one flat-tuple case at a time
as messages conforming to that case are encountered for the first
time. The metadata for flat-tuples that have been encountered
before are retained to amortize the cost of producing them. If
the amount of retained metadata were to become too large, an
LRU policy could be used to discard little-used cases (Gryphon
does not currently implement LRU discarding).

6

D. Achieving Extensibility

Gryphon makes its untagged binary messages extensible in
the same sense that tagged formats like XML are extensible.
When we say that tagged formats are extensible we really mean
the following two properties.
1. A tag retains its meaning no matter what other tagged values
are present in a message. Therefore, older systems can ignore
values it doesn’t understand.
2. The absence of a tagged value can be detected. Therefore,
newer systems are aware that the value is missing.

Gryphon’s schema interpretation tools achieve these goals,
essential to allowing message formats to evolve without recom-
piling applications. As we have chosen to concentrate on perfor-
mance issues here, the details of how this is achieved is beyond
the scope of this paper.

V. PERFORMANCE MEASUREMENTS

Sections V-A, V-B and V-C describe performance measure-
ments for the corresponding I/O optimizations discussed in Sec-
tion III. Section V-D describes performance measurements for
the message formatting architecture presented in Section IV. To
isolate the impact of I/O optimizations and message formatting
architecture, the I/O experiments do not use content filtering,
and message format experiments perform no I/O.

All tests were conducted on a local network of twelve IBM
F80 6-processor workstations running the AIX operating system
and IBM’s JDK 1.3. The workstations are connected by both a
gigabit and 100 Mbit ethernet LAN. All I/O performance tests
were executed on the gigabit network.

A. Cut-thru Performance

The effects of cut-thru were evaluated by fixing the number
of publishers (and hence the number of topics) and the mes-
sage input rate, and varying the number of topic-based sub-
scribers. In particular, six publishers were configured, each
publishing on a separate topic, with an aggregate input rate
of 150 messages/second (25 msgs/sec/topic). The number of
subscribers was varied from 500 to 7000 with subscribers dis-
tributed evenly over all available topics (one topic per sub-
scriber). This yields an expected message output rate of 25 mes-
sages/second/subscriber. All publishers and subscribers were
connected to a single broker. Note that since each publisher
publishes on a separate topic, two publishers will never compete
for the same subscriber. Figures 2 and 3 summarize the results
with cut-thru enabled and disabled. Each test was executed for
30 minutes.

Cut-thru attempts to reduce latency and increase scalabil-
ity by skipping unnecessary intermediate queuing, and by self-
throttling publishers when client load dominates the cost to pro-
cess a message. This effect is apparent in our sample runs when
more than 3000 subscribers are connected. At this point, mes-
sage delivery begins to dominate the cost of processing an in-
bound message.

With cut-thru enabled, a single thread is used to both ac-
cept and deliver an inbound message to clients. As a result,
both inbound and outbound message rates are throttled when
delivery cost dominates and the system is overloaded. This is

Fig. 2. Average publish rate and subscriber receive rate versus number of sub-
scribers, with cut-thru enabled and disabled.

Fig. 3. Average change in the aggregate outbound queue size for subscribers
versus number of subscribers, with cut-thru enabled and disabled.

demonstrated by the close correlation between subscriber re-
ceive rate and publish rate in Figure 2 when between 3000 and
4500 clients are connected (the system is moderately overloaded
in this range).

With cut-thru disabled, publish and subscriber receive rates
are relatively independent as long as sufficient buffering re-
sources are available to the system. As a result, publish rate
remains relatively steady in Figure 2, whereas subscriber re-
ceive rate degrades rapidly as queuing and delivery overhead
dominate. As a secondary effect, delivery queues grow mono-
tonically (Figure 3) as delivery threads fall further behind.

From figure 2, we can compare the peak subscriber load
that can be supported in the 2 cases, while delivering 25
msgs/sec/topic to each subscriber. We see that cut-thru disabled
can support 1500 subscribers, while cut-thru enabled can sup-
port 3000 subscribers, a factor of 2 improvement.

B. Socket Hierarchies Performance

The effect of socket hierarchies was evaluated by observ-
ing CPU utilization in a mixed environment of relatively few
“hot” publishers and subscribers, and a relatively large number
of “cold” publishers and subscribers. For each test, a “cold”
publisher published on 10 topics at a rate of 0.1 msg/sec/topic.
These messages were received by 4000 “cold” subscribers,

7

Fig. 4. CPU utilization under one and two tier socket hierarchies. The termi-
nology X-Y indicates a test with X poll lists in tier 1 and Y poll lists in tier
2.

which were equally distributed among the “cold” topics (i.e. 400
subscribers/topic). This yields an aggregate rate of 400 “cold”
msgs/sec through the broker. Similarly, four “hot” publishers
each published on a unique topic at a rate of 20 msgs/sec/topic.
These messages were received by 400 “hot” subscribers which
were equally distributed among the “hot” topics (i.e. 100 sub-
scribers/topic). This yields an aggregate rate of 8000 “hot”
msgs/sec through the broker. Typically, all clients will be
equally spread among the available first tier poll lists. Slower
clients may migrate to the second tier (if available) as described
in Section III.

Three tests were executed with three different socket hierar-
chy configurations. Cut thru was enabled for all tests and the
message rate was not high enough to cause outbound queuing.
As a result, most of the poll cycles in the broker were caused
by new inbound data from one of the publishers. The results are
summarized in Figure 4.

The first test uses a single tier hierarchy with all clients evenly
divided among four poll lists. A single tier increases the size of
individual poll lists which increases broker overhead each time
a poll list is assembled. This behavior is illustrated by the user
CPU utilization, where poll lists are manipulated at least as fre-
quently as the “hot” publish rate. Note that system CPU utiliza-
tion is proportional to the poll list size, and is similarly high in
this test.

The second and third tests illustrate the advantages of provid-
ing two tiers and allowing slower clients to be handled less fre-
quently. In each of these tests, all clients initially start in the top
tier. The lack of queuing on the outbound side2 causes all sub-
scribers to eventually migrate to the second tier. Similarly, the
“cold” publishers are eventually migrated as well. This leaves
only the “hot” publishers which are sufficiently active to remain
in the first tier. As a result, the size of the poll lists at the top tier
are significantly reduced, resulting in lower overall user and sys-
tem CPU utilization. The second tier poll lists, although much
larger, are polled less frequently and contribute little to overall
CPU utilization.

2Recall that the message rate for these tests is sufficiently low so that cut-thru
always succeeds in writing a message directly on an outbound connection. This
eliminates the need to poll subscribers.

Fig. 5. Average subscriber receive rate versus number of clients and input
queues.

C. Input Queuing Performance

The effects of input queuing were evaluated by fixing the
number of publishers and publisher rate, and varying the num-
ber of input queues. For each selection of input queues, clients
were added until the system could no longer maintain the de-
sired subscriber receive rate.

The topology for this test consisted of two brokers linked by a
single connection. Six publishers were connected to one broker
publishing at an aggregate rate of 960 msgs/sec over 120 sepa-
rate topics. The topics were equally divided among the publish-
ers yielding a message rate of 8 msgs/sec/topic. All subscribers
were connected to the second broker, where each subscriber was
associated with a single topic. This yields an expected message
receive rate of 8 msgs/sec/subscriber. The Mbit ethernet was
used for the broker connections and the gigabit ethernet for the
client connections.

The number of input queues was varied from zero to six. An
upper limit of six was chosen as this would maximize the avail-
able concurrency on the 6-processor test machines. In particu-
lar, since publishers are evenly distributed among available in-
put queues (within the constraints of message ordering), the six
input queue case will dedicate a single input queue to each pub-
lisher.

Tests were executed only in the range of clients known to sat-
urate a given input queuing configuration. Figure 5 summarizes
the results.

There is little difference between no input queueing and one
input queue: all inbound messages will be handled by a single
thread. This accounts for the similarity in performance for these
two cases.

With two input queues, we see a dramatic improvement in
performance with nearly twice as many clients supportable at a
steady receive rate. This is not surprising since two input queues
will divide the inbound messages equally between two threads
servicing clients. Thus, we would expect to be able to support
roughly double the number of clients in the zero or one queue
case.

With three input queues, we see further improvement, though

8

not as dramatic as in the two input queue case. Although there
is more available concurrency for processing inbound messages,
there is also more contention at the system I/O level with each
thread competing to write messages to clients. A similar effect
occurs when four, five or six input queues are used, resulting in
smaller improvements for these cases.

In particular, in the six input queue case, we were not able
to proceed further due to excessive congestion on the broker-
broker link, which results in buildup of the outgoing message
queue on the broker connection at the first broker. Note that
this congestion occurs despite the fact that the first broker is not
increasing the number of messages it sends to the second bro-
ker, and the broker connection is on a different physical link
(100Mbit ethernet) from the client traffic (which is increasing).
Our investigation eliminated our broker code, and resources
managed by the broker code (such as queue sizes) as the cause of
this congestion. In addition, the second broker has enough spare
CPU resources to read messages at a much faster rate than are
being sent by the first broker. We have narrowed the problem
to resource contention in the system I/O layer on the machine
hosting the second broker. We intend to investigate further to
identify the exact cause, and if it can be alleviated by increasing
the resource limit settings.

D. Message Format Performance

Message format performance was evaluated using six differ-
ent message schemas.
1. The flatInt schema was as follows:
flatInt: [
field0: int,
field1: int,
...
field9: int,
fieldA: int,
...
fieldF: int

]
with sixteen fields in all.
2. The flatString schema was identical to flatInt except all
fields were string rather than int.
3. The nestedInt schema organized the same sixteen fields into
a four-deep hierarchy. There were two “parts,” each with 8
fields, divided into four “sections” with four fields each, divided
into eight areas of two fields each, and finally sixteen “pieces”
each containing a field.
nestedInt: [

partA: [
sectionA: [

areaA: [
pieceA: [
field0: int

],
pieceB: [
field1: int

]
],
areaB: [

pieceC: [

field2: int
],
...
],
pieceN: [
fieldD: int

]
],
areaH: [

pieceO: [
fieldE: int

],
pieceP: [
fieldF: int

]
]

]
]

]

4. The nestedString schema was like nestedInt, but using
string values.
5. The optNestInt schema was a variation on nestedInt in
which every fourth field was rendered optional through the use
of a variant.

optNestInt: [
partA: [
sectionA: [

areaA: [
...

],
areaB: [

pieceC: [
field2: int

],
{ [] |

pieceD: [
field3: int

]
}

]
],
...
sectionD: [

areaG: [
...

],
areaH: [

pieceO: [
fieldE: int

],
{ [] |
pieceP: [

fieldF: int
]

}
]

]
]

9

]
6. The optNestString schema was like optNestInt, but using
string values.

We measured the time it took to retrieve a single field from a
message (chosen at random) and also the time it took to retrieve
nine randomly chosen fields.

We randomly generated 10,000 messages serialized to byte
array form. Each message existed in two forms with identical
contents. One was Gryphon message format, the other XML
(scalar primitive values were expressed as XML attributes and
nested structure was expressed by nesting XML elements). Four
different samples were used (the results shown below are aver-
ages). Variance between samples was negligible.

XML value retrieval was done using the Xerces DOM parser
available from apache.org. To avoid unfairly penalizing XML,
retrieval of values from the XML message did not start with
path expressions which would themselves require parsing but
rather with the parsed form of such paths (as arrays of string
tag values). The equivalent retrieval tokens for Gryphon mes-
sage format were integers resulting from numbering the nodes
of the schema. In both cases, the appropriate tokens were com-
puted from the schema once only and this computation was not
repeated for each message.

The times, in microseconds, to retrieve a single value from
each message are shown in the following table.

Schema Gryphon XML
flatInt 5.5 948.9

flatString 7.7 948.3
nestedInt 5.5 1306.9

nestedString 7.7 1299.4
optNestInt 5.5 1268.6

optNestString 7.5 1269.1
The times to retrieve nine fields from each message are shown

next.
Schema Gryphon XML
flatInt 27.5 1000.0

flatString 36.4 982.6
nestedInt 27.6 1693.4

nestedString 36.4 1671.0
optNestInt 25.4 1617.2

optNestString 33.4 1625.6
The most striking feature of the results is that the gryphon

format is at least 25 times faster and up to 225 times faster in
some cases. Since we used an off-the-shelf DOM parser and
did not attempt to do selective parsing with the XML messages,
a highly-tuned XML-based implementation will likely to bet-
ter than what is shown here. But, these results certainly illus-
trate that attention to message formatting details can produce
dramatic results.

A second important thing to note is that gryphon message pro-
cessing time is quite insensitive to the message layout, at least
for the cases shown (recursive schemas and lists of variants were
not measured in this benchmark). The results show that Pro-
cessing time depends only on the type of data retrieved and the
number of fields retrieved.

The third observation is that XML processing has a high fixed
cost no matter how many fields are accessed while the gryphon
processing time is much more sensitive to the number of fields

accessed. We believe that this is what you want in a content-
based pub/sub system.

Finally, there are some minor additional sources of variation.
XML times are generally better with strings than with integers
while that difference is reversed for the gryphon format. This is
simply a consequence of the scalar encoding formats used in the
two cases. Also, both formats run slightly faster when some of
the data is missing. This is simply due to the fact that both are
able to stop processing when they detect that no value is present
in the message.

VI. RELATED WORK

There are several publish/subscribe systems that focus on
scalability and low latency, such as Siena [5], Elvin [6], [15],
Rebeca [7]. However, none of these have addressed the is-
sue of performing efficient I/O with large numbers of clients or
peer brokers with widely differing message rates and capacities.
They also do not address the problem of message formatting for
fast content matching.

An efficient I/O mechanism is critical to achieve scalability
and latency. For example, Elvin [6] has identified threads as a
major structural and performance issue for the Elvin implemen-
tation. The Elvin server, by its nature, involves large amounts
of I/O coupled with fairly intensive computation. Threads were
chosen to reduce the latency of notification traffic. This is the
same point of view as the Gryphon system. However, Elvin
maintained a thread for connection handling, a read, write and
notification evaluation thread for each active connection, and a
single thread for updating subscription expressions (and emit-
ting quench expressions). This approach does not allow the
Elvin server to scale to large number of clients because the max-
imum number of threads allowed by the underlying system will
become a bottleneck. In addition, operating systems usually op-
erate well with a reasonable amount of threads which is usually
much less than the maximum number of threads allowed. The
overhead with large number of threads, such as cache and TLB
misses, scheduling overhead and lock contention, yields a sys-
tem with suboptimal performance.

What’s more, none of the aforementioned systems identifies
the large diversity and variation in different client connections,
such as a usually-high-input-rate publisher client connection as
opposed to a usually-low-input-rate subscriber client connec-
tion. And since server to server connections are the backbone
of a publish/subscribe network (or server federation), the server
to server connections usually aggregate the input from various
publishers and thus are of extremely high rate of communica-
tion. This makes one thread per connection insufficient.

Java has become more and more important as the language
of choice for middleware systems. Besides Gryphon is im-
plemented in Java, Sienna has switched from a C implemen-
tation to a Java implementation. Starting from JDK1.4, Java
also provides non-blocking I/O operation. Not surprisingly,
the JDK1.4 non-blocking I/O [16] is similar to the unix “poll”
or “select” function and we can expect implementations using
them through Java Native Interfaces. This feature, however,
will only solve part of the problem a publish/subscribe system
would face, namely, the non-blocking of threads while waiting
for socket reads to be available. As a general framework, Java

10

non-blocking I/O cannot solve the problem with the large num-
ber of connections present in a high-volume publish/subscribe
system. More specific solutions, such as Gryphon’s socket hi-
erarchy schema, are needed to address the situation where con-
nections have high variance in the frequency of communication.

SEDA [17] proposed a design framework for highly concur-
rent Internet server applications. The proposed architecture is
a staged event-driven architecture. The platform provides effi-
cient, scalable I/O interfaces as well as several resource control
mechanisms, including thread pool sizing and dynamic event
scheduling. In SEDA, applications are divided into stages with
queues interconnecting adjacent stages. SEDA’s scalable non-
blocking I/O mechanism uses a small number of threads per
stage, rather than a single thread per task as in Gryphon. Stages
thus can run in sequence or in parallel, or a combination of the
two, depending upon the characteristic of the thread system and
scheduler.

VII. DISCUSSION

In this paper, we have shown that a publish/subscribe mes-
saging system can be built for high performance and near linear
scalability. Given these results there are several interesting im-
plications on related research areas. In this section, we outline
some of these areas and describe some of the key implications.
• message processing performance: As shown in Section V-
D, the Gryphon system has achieved very efficient main-line
message processing performance. In fact, user-space process-
ing consumes only 40% of a fully loaded broker’s cpu capac-
ity, the other 60% being consumed by the O/S. As such, for a
broker-based messaging system, there is little room for further
optimization of user-space message processing. This work may
serve as a point of reference for researchers evaluating perfor-
mance of new messaging function. Also, it is an interesting area
of research on how advanced O/S techniques may be applied to
reducing the system-time cost of message processing [18]. In
the past, such techniques have been applied extensively to web
serving and it is an open question if such techniques could also
be effective in a messaging environment.
• peer-to-peer messaging networks: A common argument for
peer-to-peer messaging networks is their inherent scalability.
However, with the scalability of a system such as Gryphon, the
need to use peer-to-peer networks for scalability becomes com-
pelling only at the very highest scales (and peer-to-peer systems
need to be shown to scale to this degree in practice). As such,
the benefits of peer-to-peer messaging is primarily in eliminat-
ing the need for a centralized infrastructure. This infrastructure
cost must be weighed against the generally increased complexity
in the resulting system, the increased load on clients that must
also forward messages, and the difficulties in deploying such
systems in networks, such as the Internet, dominated by private
firewalls.
• network multicast messaging systems: The traditional an-
swer to highly scalable messaging systems has been to exploit
underlying network multicast protocols. However, these pro-
tocols have not been demonstrated to scale well over wide ar-
eas [19], and do not map well to very selective but overlapping
subscriptions [20]. Gryphon brokers solve these two problems
well, with its support for high speed broker-to-broker links and

for content-based subscriptions. We view Gryphon message
brokering technology as complementary to network multicast-
based messaging, and are exploring using multicast for distri-
bution of common data (e.g. financial market pricing data) in
a local-area setting at the “edges” of the network while using
Gryphon for more selective data and for the long-haul connec-
tions between LANs.

REFERENCES

[1] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting, “Con-
sul: A Communication Substrate for Fault-Tolerant Distributed Pro-
grams,” Tech. Rep. TR 91-32, Dept. of Computer Science, The University
of Arizona, November 1991.

[2] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen, “The Informa-
tion Bus - An Architecture for Extensible Distributed Systems,” Operating
Systems Review, vol. 27, no. 5, December 1993.

[3] David Powell, “Group Communication,” Communications of the ACM,
vol. 39, no. 4, pp. 50–97, April 1996, (Guest Editor).

[4] Dale Skeen, “Vitria’s Publish-Subscribe Architecture: Publish-
Subscribe Overview,” Tech. Rep., Vitria Technology Inc., 1996,
http://www.vitria.com.

[5] Antonio Carzaniga, Architectures for an Event Notification Service Scal-
able to Wide-area Networks, Ph.D. thesis, Politecnico di Milano, Decem-
ber 1998.

[6] B. Segall and D. Arnold, “Elvin has left the building: A publish/subscribe
notification service with quenching,” in Proceedings of AUUG97, 1997.

[7] Gero Mühl, Large-Scale Content-Based Publish/Subscribe Systems, Ph.D.
thesis, Darmstadt University of Technology, September 2002.

[8] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra,
“Matching events in a content-based subscription system,” in Proceedings
of the Principles of Distributed Computing, 1999, May 1999, pp. 53–61.

[9] K. Bruce, R. Di Cosmo, and G. Longo, “Provable isomorphisms of types,”
Mathematical Structures in Computer Science, vol. 2, no. 2, pp. 231–247,
1992.

[10] R. Di Cosmo, Isomorphisms of Types: from λ-calculus to information
retrieval and language design, Birkhauser, 1995.

[11] M. Rittri, “Using types as search keys in function libraries,” Journal of
Functional Programming, vol. 1, no. 1, pp. 71–89, 1991.

[12] A. M. Zaremski and J. M. Wing, “Signature matching: a tool for using
software libraries,” ACM Transactions on Software Engineering Method-
ology (TOSEM), April 1995.

[13] D. J. Barrett, A. Kaplan, and J. C. Wileden, “Automated support for seam-
less interoperability in polylingual software systems,” in Fourth Sympo-
sium on the Foundations of Software Engineering (FOSE), October 1996.

[14] Joshua Auerbach, Charles Barton, Mark Chu-Carroll, and Mukund
Raghavachari, “Mockingbird: Flexible stub compilation from pairs of dec-
larations,” in 1999 IEEE International Conference on Distributed Comput-
ing Systems, July 1999.

[15] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content
based routing with elvin4,” in Proceedings of AUUG2K, Canberra, Aus-
tralia, April 2000.

[16] “New i/o functionality for java 2 standard edition 1.4,” in
http://developer.java.sun.com/developer/technicalArticles/releases/nio,
current as of August 2003.

[17] M. Welsh, D. Culler, and Eric Brewer, “Seda:an architecture for well-
conditioned scalable internet services,” in Proceedings of the Eighteenth
Symposium on Operating Systems Principles (SOSP-18), 2001.

[18] Philippe Joubert, Robert B. King, Richard Neves, Mark Russinovich, and
John M. Tracey, “High-performance memory-based web servers: Kernel
and user-space performance,” in USENIX Annual Technical Conference,
2001, pp. 175–187.

[19] Kenneth Birman, Andre Schiper, and Pat Stephenson, “Lightweight causal
and atomic group multicast,” ACM Transactions on Computer Systems,
vol. 9, no. 3, pp. 272–314, August 1991.

[20] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and
D. C. Sturman, “An efficient multicast protocol for content-based publish-
subscribe systems,” in Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems, 1999, 1999, pp. 262–272.

11

