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Abstract 
 
Pathway reconstruction is a fundamental task in systems biology toward an ultimate goal 
of full scale in silico simulations. The data for such reconstructions is mostly lacking, but 
collection is underway for some model organisms. However, biological specificity may 
limit the ability to extrapolate findings. High throughput data and methods may alleviate 
these problems, but only coarse or limited reconstructions are now possible.  Inclusion of 
multiple data sources may improve the situation but remains a challenge. 
 
The in silico goal and its data requirements 
 
Reverse engineering cellular pathways is a central theme in systems biology [1,2]. By 
reverse engineering, we mean the inference of signaling, metabolic or gene regulatory 
pathways from experimental data.  Ideally, enough experimentation would provide 
sufficient detail to develop in silico models as concise representations of biological 
systems.  The models may serve as integration tools where necessary components must 
be assembled and function together to recapitulate behaviors of the real system.  Taken a 
step farther, models can predict and provide insight into how complex behaviors emerge 
from simpler interactions.  Models may not need to be fully detailed to achieve these 
goals.  To varying degrees, all models are abstractions, and even simple or qualitative 
models can play very useful roles as important ways to test hypotheses and best direct 
limited experimental resources to collect the most salient data [1,3].  However, we 
suggest that predictive models with mechanistic detail best demonstrate that a complex 
system is well understood, and this is ultimately the goal of systems biology. 
 
Currently, however, we are only beginning to have enough data to construct rather 
rudimentary simulations of a handful of cellular processes.  For example, in a well 
studied system such as cell cycle, current models [4] are parsimonious descriptions 
containing mainly key players with speculative features to fill in gaps in the current 
knowledge. The point here is the paucity of data and not to degrade the value of this 
work.  One must make best use of the data at hand, and more complex models can be 
built on simpler beginnings.  The metabolic processes in E. coli is another well-
characterized system for which large-scale models have been developed [5-7].  These 
models are certainly integrative in that large amounts of data must be culled from many 
sources.  In some case, valuable insights are gained from topological [8] or semi-
quantitative methods such as Petri Nets [9].  However, more quantitative models require 
that rate or equilibrium constants be measured or extracted from the literature.  
Amalgamating data from many sources carries costs, especially if in vitro data must be 
extrapolated to in vivo conditions.  The work of Palsson and coworkers [6,7] and others 
[10] shows that additional constraints such as optimal growth rates provide the ability to 
refine parameters sufficiently to produce predictive metabolic models .  Furthermore 
constraint-based approaches point out that simply modeling all metabolic pathways is 
insufficient because all pathways are not typically active at all times; hence, no real world 
instantiation of the system is well represented.  Indeed, there is increasing work to 
understand the role that gene regulation plays in controlling metabolic processes [7,10].    
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The metabolic models can take advantage of a long history of research and well 
populated pathway-based databases.  For example, WIT [11], KEGG [12] and Ecocyte 
[13] are some of the pioneering databases to store metabolic pathways including 
genomic, enzymatic, proteomic, and functional information (for relevant websites, see 
Table 1).  To improve utility, many existing databases are being expanded to include new 
biomolecular information (i.e., carbohydrate structures in KEGG [12]) and larger 
numbers of organisms (i.e., 158 organisms are represented in MetaCyc [14]).  However, 
many other areas of biology are yet to be systematically characterized and stored.  
Developing biological databases itself is a demanding task given the need to efficiently 
handle heterogeneous and often inconsistent or incomplete data [15].  Karp has pointed 
out that most biological data exist in flat files or widely-used relational databases, 
whereas object-oriented databases may be a much more effective method of storing and 
retrieving biomolecular data [16] .  On the content side, large-scale projects are underway 
to systematically collect more consistent datasets.  The E-cell project is gathering vast 
amounts of data on E. coli to improve the ability to simulate this organism.  The Alliance 
for Cellular Signaling has been collecting data for two model cells (cardiac myocytes and 
B-cells), and more recently human macrophages, in order to have a more complete 
picture of the cellular signal systems.  Simulation of the signaling pathways is goal for 
the later stages of this project. 
 
Biological specifity:  The devil is in the details  
Although some large and consistent data sets may be generated for specific cases, a 
quantitative understanding of a multitude of cell types and species will be required if 
systems biology is to fulfill its promises.  Even if signaling pathways from model systems 
generalize to some extent, the devil is often in the details.  For example, the ability to 
knock-out genes in mouse has made this species a preferred animal model.  However, 
differences in electrophysiology (i.e. basal heart rate is about 600 beat/min vs. 60 for 
human) coupled with other differences in calcium handling and myofilament properties 
[17] have caused some researchers to suggest that mouse may be a poor model for human 
hearts [18].  Likewise considerable differences exist across different cardiac tissues (i.e., 
atrium versus ventricle) even within a given species [19].  These differences have 
necessitated separate cardiac cell models to represent species- and tissue-specific 
physiologies (i.e. rat ventricle: [20]; canine ventricle: [21]; and canine atrium: [22]).  
These examples suggest that care must be taken in extrapolating data across species and 
tissue when one desires to generate detailed and quantitative models.  To some extent, the 
problem may be alleviated by automated, high throughput methods that can be used to 
collect species- and tissue-specific data sets.  However current high throughput 
technologies present difficulties as well as opportunities in terms of reconstructing 
cellular pathways.  This point will be addressed next. 
 
High throughput data to the rescue?  
The advent of gene expression array technology has provided the ability to capture a 
“snapshot” of the transcriptome, that is, to what level each gene in the genome is being 
expressed.  However, one is often faced with an odd contradiction of insufficient data for 
reconstruction despite the flood of data from this and other high throughput sources.  
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Some have suggested that “high throughput methods sacrifice specificity for scale” [23]. 
For example, studies of yeast cell cycle have yielded nearly a thousand transcript profiles 
oscillating with some synchrony to the cell cycle [24,25].  Using this data alone, the task 
of deciphering the key regulatory genes from the genes being regulated becomes virtually 
impossible considering the large number of oscillating transcript levels coupled the noise 
inherent to this technology.  The common technique of clustering expression profile only 
suggests co-regulated genes and not the causal relationships.  Moreover, many cellular 
processes that occur post-translationally will not be detected by gene arrays; hence, one is 
trying to reconstruct interactions from a limited view of the whole panorama of cellular 
processes.    
 
The current data can be characterized by several key limitations: small signal to noise 
ratios, insufficient time resolution, insufficient spatial resolution, and too few signals 
being measured.  We consider each of these briefly.  Several researchers have pointed to 
limitations of gene array data attributed to both inherent measurement noise and the 
variability of sample preparation [26,27].  Presumably repeated measurements may 
compensate for these limitations but the expense of gene arrays generally prevents 
scaling up to large numbers of measurements.  Another limitation related to expense is 
that time-course data is often collected at coarse time intervals. This coarseness leads to 
obvious problems when we wish to characterize dynamic processes such as cascades in 
gene regulatory networks.  Insufficient spatial resolution refers to the necessity of 
sampling multiple cells with gene array technologies.  One cannot assume a priori that 
each cell in a population will be in a similar internal state because of tissue 
inhomogeneity or asynchrony as in the case of cell cycle [24,25].  Yet another difficulty 
resides with the object being measured. The most mature technology of gene arrays only 
measures mRNA levels and not translated protein levels.  When comparisons have been 
made between the two signals, the correlation has been small [28]. This is a serious 
problem because many important cellular processes occur post-translationally, and high 
throughput technologies to measure these signals are still in early stages of development. 
 
Despite the difficulties described above, strategies are being developed to press on with 
reverse engineering cellular pathways from high-throughput data sources.  While this is a 
fairly nascent area of research, a wide variety of approaches have been proposed.  In this 
short perspectives article, we are limited to mention only a small number of these efforts 
(for a comprehensive review, see [29]).  We humorously say that systems biology is 
currently in state of “aiming low” and “mixing grapes.”  The first description comes from 
an old joke that states that the best way to not burden oneself with failure is to aim low.  
In this vein, the systems biologist may seek to qualitatively reconstruct pathways instead 
of aiming at fully detailed kinetic models.  Mixing grapes refers to attempts by 
winemakers to make a better wine by mixing varieties of grapes.  The idea is to 
compensate for the weaknesses of a single grape type, but the question remains if two 
“wrong” grapes make a “right” wine.  Likewise, a big push in systems biology is to 
combine disparate data sets to get a more complete picture of cellular function.  While 
this approach makes intuitive sense, one may still question the value of combining 
disparate data sets, especially if the cost is great or the data sets may be contradictory.  
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We next consider several approaches that contain variations on the themes of “aiming 
low” and “mixing grapes”.  
 
Network inference using high throughput data 
 
As described earlier, current data limit our ability to produce fully detailed kinetic models 
of cellular processes.  Data issues aside, the task of detailed kinetic reconstructions based 
on time-series data alone is extremely difficult indeed.  Even from a theoretical 
perspective, the underdetermined nature of the problem (more unknowns than equations) 
implies that a unique solution is not generally possible because an infinite number of 
reconstructed systems are consistent with any given set of time-series data.  To deal with 
this non-uniqueness, the solution space is often limited by a priori, and often reasonable, 
assumptions such as linearity [30-32], sparseness  [31,32], or predetermined model 
structures such as reactions limited in the number of possible reactants and substrates 
[33].   While these methods may hold promise in the future, unfortunately the limitations 
of existing data render these approaches as mostly theoretical exercises except for very 
small systems with high quality data [32].   If one accepts that detailed large-scale kinetic 
reconstructions are not generally feasible yet, then the next logical step is to aim lower by 
considering reconstructions that are coarser or less detailed (see Fig. 1). The question is 
then how low to aim. A logical place to start is a diagram or map of the chemical 
connections in a system without all the information to fully understand the dynamics of 
the system [1]. To organize our discussion, we next consider two hierarchical levels at 
which cellular pathways can be described. 
 
Inferring Network Topology - In this level we are only concerned with identifying the 
interaction between nodes (genes, proteins, metabolites, etc) in the system. The goal is 
the generation of a diagram of non-directional connections between all interacting nodes 
(See Fig. 1A). For example, many have sought to develop large-scale maps of protein-
protein interactions derived from various sources.  Two-hybrid studies have produced 
genome-wide interaction maps for E. coli bacteriophage T7 [34], yeast [35], drosophila 
[36] and C. elegans [37].  Although this approach can be comprehensive in regard to 
being genome wide, many interactions are not reproducible (a potential source of false 
negatives) and putative interactions occur between unlikely protein combinations (a 
potential source of false positives).  Noting such problems, the most recent studies of this 
type proposes computational methods to better assess the confidence of the putative 
interactions [36,37]. 
 
Another approach to constructing large-scale connection maps is by mining databases. 
Specific databases of protein interactions are being developed, the largest of which are 
DIP [38] and BIND [39].  These databases combine data from many high throughput 
experiments along with data from other sources, such as published literature. Other 
methods have sought to mine MEDLINE/PubMed abstracts that are considered to contain 
concise records of peer-reviewed published results. The simplest methods, often called 
“guilt by association”, seek to find co-occurrence of genes or protein names in abstracts 
[40] or even smaller structures such as sentences or phrases [41].  This approach assumes 
that co-occurrences are indicative of functional links, although an obvious limitation is 
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that negative relations (e.g., A does not regulate B) are counted as positive associations.   
To overcome this problem, other natural language processing method involves syntactic 
parsing of the language in the abstracts to determine the nature of the interactions (i.e. 
[42,43]).   There are obvious computation costs in these approaches, and the considerable 
complexity in human language will likely render any machine-based method imperfect.  
Even with limitations, such methods will likely be required to make knowledge in the 
extant literature accessible to machine-based analyses [13]. For example, PreBIND used 
support vector machines to help select abstracts likely to contain useful biomolecular 
interactions to “backfill” the BIND database [44].   
 
Along other lines, investigators have attempted to identify topological links by analyzing 
the dynamic behavior of networks.  Pioneering work in this area shows that metabolic 
network topologies can be derived from correlation of time-series measurements of 
species concentrations [45]. The method is further refined to better identify connections 
in non-linear systems using mutual information instead of correlation [46].  In another 
method, pair-wise correlation of gene expression data is used to predict functional 
connections that could then be combined into “relevance networks” of linked genes [47].  
Other methods may seek to use some combination of data sources, although this may not 
be completely straightforward.  For example, discrepancies have been reported between 
yeast two-hybrid interaction data and gene expression profiles; some long-lasting 
complexes such as the 20S proteasome correlate well, while transiently interacting 
proteins tend to correlate poorly [48].  Part of the discrepancy may lay in the noise that 
plagues some of the employed methods such as the yeast-two hybrid technology. 
However, noisy datasets can often be combined with other complementary data to 
produce more reliable results [36,48,49].  Hence, although one may want to use multiple 
data sources to gain a richer picture of cellular function, in some cases, the results is a 
smaller but more accurate characterization. 
 
Inferring Qualitative Connections - In this level we include not only associations between 
cellular entities but also the causal relations of such associations, such as which entities 
serve as input to others.  The goal of this level is to create a diagram of directional 
connections (arrows) from input to output nodes (See Fig. 1B).  The issue of causality 
becomes critically important for reconstructing biological networks as many levels of 
causal connections may exist.  In the category, most methods seek to identify a 
qualitative indicator of how the input affects the output (i.e. a positive or negative arrow).   
Researcher have proposed methods that infer connectivities from the estimations of the 
Jacobian matrix for metabolic [50], signaling and genetic networks [51].  Ross and 
coworkers have proposed method based on propagated perturbations of chemical species 
can reconstruct causal sequences of reactions from synthetic [52] and experimental data 
[53].  To reconstruct gene regulatory systems, methods include fuzzy logic analysis of 
facilitator/repressor groups in the yeast cell cycle [54] and reconstruction of binary 
networks (e.g., [55]).   However, the wide application of such methods is often limited 
because the continuous nature of many biological systems prevents easy abstractions into 
coarser signals.  Recently there has been considerable work using Bayesian network 
inference.  Examples include inferring gene regulation using gene expression data from 
yeast cell cycle [56] or using data from synthetic gene networks [57].   
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Of the methods discussed, Bayesian networks have found the widest usage and, hence, 
are described in more detail.  Friedman et al. [56] first used Bayesian inference methods 
to analyze gene expression data. Others have published refinements or variations of this 
general approach (e.g., [58]).  Proponents of the Bayesian approach point to several 
important advantages including the ability to handle noisy and incomplete data sets; easy 
incorporation of a priori knowledge of the network structure with new data; the ability to 
accommodate hidden variables, and a quantitative output that can be scored against new 
observations.   Some properties of the Bayesian approach are not well suited to biological 
systems. For example, in principle, Bayesian networks can handle continuous value 
variables whereas, in practice, data such as mRNA levels must be discretized to allow for 
computation of joint probabilities between input variables.  The optimal discretization 
method is not obvious and must balance more a faithful representation of the input data 
(many fine bins) versus a better estimation of joint probabilities (fewer large bins).  
Another problem may arise if feedback loops exist in the biological system because the 
inferred Bayesian networks must be acyclic and hence cannot represent loops.  In theory, 
this can be solved with dynamic Bayesian networks that can “unroll” loops, but in 
practice, a bottleneck might arise because of  the amount of data needed to pursue this 
approach.  As we will discuss momentarily, current approaches already have trouble 
constraining time-invariant Bayesian networks, let alone dynamic Bayesian networks. 
 
In the preceding paragraph we suggest that Bayesian networks have some important 
advantages and disadvantages.  We also see differences in what is possible in theory 
versus what is practically possible with the data available today.  Let us consider these 
points in a bit more detail. Some initial results with Bayesian networks were less than 
spectacular.  For example, the work of Hartemink et al. showed that even three node 
networks were hard to reconstruct in the yeast galactose metabolic pathway [58]; 
however, much of the trouble may lie with the quality of the experimental data and not 
the method per se.  Later work by the same group showed better results using synthetic 
gene networks where the researchers had better control of the data quality and quantity 
[57].  Still, there was trouble in the reconstruction of connections, especially in the case 
of many connections converging on a node.  While the discussion above focuses on 
Bayesian inference methods, many of the issues discussed generalize to other 
reconstruction methods as well.  Many studies have employed synthetic data or have 
considered restrictive sizes or types of connections in networks in order to improve the 
quality of the reconstruction. 
 
Athough studies of synthetic networks are important to test and understand methods, the 
eventual goal is, of course, to reconstruct networks from real data.  In an elegant work 
[32], researchers were able to reconstruct much of a nine-gene sub-network in a DNA 
repair pathway in E. coli by controlled perturbations of a subset of the member genes. 
This work made the assumption of sparseness of the pathway connections and included a 
robust experimental design that kept low levels of noise in the real-time PCR 
measurement of the transcript levels. In other recent studies [23,59] genome-wide yeast 
expression data and preliminary clustering was used to determine likely functional 
modules, i.e. the sets of genes working together to perform a particular function.  In 
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addition, other data sources (candidate regulatory genes [59] and yeast two-hybrid data 
[23]) were combined to predict the functional modules.  Hence, better results are found 
for understanding the regulation of sets of genes (versus single genes in initial attempts), 
more and perhaps better quality data, and the use of complementary data types in addition 
to expression data alone.  These differences bring us to the next section.  
 
Bringing it all together: Modules and integrative approaches 
 
An important theme in systems biology has been to look for functional modules that have 
been conserved and reused.  The idea of breaking biological systems into small functional 
blocks has obvious appeal; the parts can be divided and conquered so that the most 
complex of machines become readily understood in terms of block diagrams or sets of 
subroutines.  Clearly some conserved modules exist such as the ribosome and the 
tricarboxylic acid cycle. One method to search for modules involves looking for higher-
order structures or recurring sub-networks (often termed “motifs”) in metabolic [60] or 
gene regulatory networks [61].  Another approach mentioned earlier is clustering 
expression profiles to produce groups of genes that appear to be co-regulated that should 
ideally reveal the functional modules.  However, this assumption does not appear to 
generalize to all functional groups under all conditions, as some functional groups show 
well-correlated expression profiles whereas others do not.  In [62], the low correlation of 
genes observed within some functional groups was attributed to the fact that some of 
these genes belong to multiple functional classes.  In another analyses in E. coli, 99 cases 
where found where one reaction existed in multiple pathways in EcoCyc [13].   These 
observations above suggest potential pitfalls with anticipating too much functional 
modularity in terms of biology being neatly partitioned into non-overlapping modules. 
Moreover, the tissue- or species-specific differences mentioned earlier may prevent 
simplistic transfer of modules from one biological system to another. It remains to be 
seen if biology is as modular as the system biologist might like it to be.    
 
Biological modules may turn out be more interconnected and overlapping than 
independent in many systems.  In addition, the experiences with pathway reconstruction 
suggest that the combinations of data source produce a more accurate if not more 
complete characterization of the system under study.  These observations point to an 
eventual need to develop large-scale, predictive models based on a multitude of data 
sources.  For example, metabolic models may combine data from many sources into a 
quantitative set of equations that can make predictions amenable to experimental 
verification [6,7,10].  In another system, cardiac models can bridge data at multiple levels 
(i.e., molecular, cellular, organ, etc.) and their corresponding characteristic timescales 
[2,63].  In this system, modeling efforts at the single cell level in the heart [64] suggested 
a mechanism of increased contraction force that was later confirmed in experimental 
studies of whole heart [65].  The ability to make predictions that are later experimentally 
verified is often considered a key validation of the utility of the biological models.    
 
With good quantitative data and relative long histories of development, metabolic and 
cardiac models are clearly special cases. As argued before, we still generally lack the 
knowledge to build highly detailed models of many biological systems.  However, 
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systems biology seems to be on the path to rectify this situation. Current tools such as 
GenMapp [66] and Cytoscape [13] already allow for gene expression data to be 
combined and analysed with pathway and other biological data.   Compiling pathways 
and characterizing their dynamic properties is the obvious place to begin the process of 
the development of simulation-based models.  Others are working to improve the 
infrastructure for integrative modeling in systems biology.  Specific simulation platforms 
are in development like the E-Cell [5], Gepasi [67], and the Virtual Cell Project [68].  
Markup languages based on XML [63,69]  and associated tools called System Biology 
Workbench have been developed to ease the exchange of biological data and models.  
For example, the pathways in the KEGG data have recently been released in XML format 
[37].  The development of ontologies to organize genomic and proteomic data (such the 
Gene Ontology Consortium [70]) have proven extremely useful as standardized data 
resources.  These resources can be used to validate new data and automated processing 
methods (i.e., see [36]).   An automated system has been developed to build ontologies of 
regulatory networks by extracting relationships from the literature using natural language 
processing [71].  Other ontologies for the exchange of physiological and anatomical 
information are just beginning to be developed and deployed [63].  The hope is that 
standardized tools, data and exchange methods will facilitate the development of detailed, 
quantitative simulations that capture the dynamic nature of biology more effectively than 
mostly static pathway maps.  
 
Conclusions- 
 
Despite the availability of genome-wide high-throughput data, we are still far from 
having all the information needed for large-scale, kinetic simulation of cellular dynamics.  
Hence, as a logical first step, current pathway reconstruction methods are directed at 
more static descriptions of the connections between cellular components.  Early results 
generally show that reconstruction improves by the integration of multiple data types.  
Approaches that propose to identify functional modules are enticing, although problems 
may arise when modules are formed by cellular components that belong to more that one 
functional class.   The necessity to combine disparate data sets combined with the desire 
to extract maximum information for existing data is driving the development of new 
methods and analysis tools.  Similarly, some large-scale efforts are underway to collect 
the necessary data to better reconstruct pathways in at least some cell types. It remains to 
be seen how well these will generalize, because critical species- and tissue- specific 
differences are often found despite more general modules or motifs being reused in 
biology.  The full task of pathway reconstruction and eventual quantitative modeling will 
require effective tools, data, and data management techniques that will probably keep 
systems biology practitioners busy for the foreseeable future. But the expected result, 
namely the organization of the vast amounts of data into predictive models of cellular 
function, is definitely worth the challenge. 
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Figure 1 – Examples of hierarchical levels of biological reconstructions are shown.  The 
examples shown are illustrative only and do not represent any particular system.  The 
nodes can represent genes, proteins, metabolites or other biological entities. The 
connections represent physical interactions (i.e., protein-protein binding or substrate-
product linkages) or functional relationships (i.e., expression of gene E activates 
expression of gene H).  A. At the level of topological connections, the goal is a diagram 
of non-directional connections between all interacting nodes. B. At the level of 
qualitative connections, the goal is to create a diagram of directional connections 
showing causality and an indication of how input nodes affect the output nodes.  As is 
typically shown, arrows indicate positive or activating connections, and lines terminated 
with perpendicular segments indicate negative or inhibitory connections.  C. At the level 
of quantitative connections, one also wants a quantitative function of how the inputs 
control the output.  For an example, H = fH(E) would describe how the expression level 
of gene E would affect the expression level of gene H.  Similarly, G = fG(D,H) would 
explicitly describe the co-dependence of the expression of gene G with respect to 
expression levels of D and H.  Note that such information is not conveyed at the level 
qualitative connections.  For example, one cannot know the relative influence of D and H 
on G (i.e., the net result on G by raising both D and H) from the information in panel B 
alone. 
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Examples -protein-protein interactions 
from two hybrid methods [34-37]; pair-
wise correlation of metabolic species 
[45] or gene expression [47] profiles; 
co-occurrences of gene/protein names 
in Medline abstracts [40,41]. 

Examples – estimation of Jacobian 
matrices [50,51]; perturbations 
analysis of metabolic species [52,53]; 
Bayesian inference networks [56-58]; 
fuzzy logic analysis of facilitator/ 
repressor groups [54] . 

Examples – flux-balance and 
constraint-based metabolic models 
[6,7,10]; linear models of gene 
regulation based on perturbations [32] 
or singular value decomposition and 
regression [31]. 

H=fH(E) 

G=fG(D,H) 
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Table 1- Relevant websites 
E-cell project  www.e-cell.org 
Berhnard Palsson - In Silico Organisms  gcrg.ucsd.edu/organisms 
Alliance for Cellular Signaling www.signaling-gateway.org 
KEGG www.genome.ad.jp/kegg 
EcoCyc ecocyc.org 
MetaCyc metacyc.org 
MEDLINE/PubMed www.ncbi.nlm.nih.gov/entrez 
GenMapp  www.GenMapp.org 
Cytoscape www.cytoscape.org 
Virtual Cell Project www.nrcam.uchc.edu 
Gepasi www.gepasi.org 
Go Consortium www.geneontology.org 
SBML www.sbml.org 
Systems Biology Workbench Project www.sbw-sbml.org/the_project.html 
CellML www.cellml.org 
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