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Abstract

Traditional processor synchronization methods such as stall and excep-
tion handling are quickly becoming bottlenecks for new designs. In particu-
lar, both the stall mechanism and the traditional exception handling mecha-
nism are based on the assumption that computation is expensive and commu-
nication cheap. As processors move beyond the 1GHz operating frequency,
and wire delay dominates transistor switching speeds in new designs, this
is no longer the case. As a result, lockstep synchronization mechanisms
become increasingly problematic in achieving global synchronization in a
processor pipeline.

In this paper, we present a high-frequency design called BOA (Binary-
translation and Optimization Architecture). The design is built around two
principles. Architecture complexity is handled with aggressive layering
based on dynamic compilation techniques. High-frequency is achieved by
using a new mechanism for resolving structural and data hazards, and for
handling processor exceptions. This approach is based on a streaming model
of pipeline execution, where instructions continue to proceed through the
pipeline even when a hazard has been detected. Reissue logic then detects
such conditions, invalidates instructions which have violated integrity con-
straints and directs the issue logic to re-issue those instructions.
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1 Introduction

High circuit speed is an important enabler for high microprocessor performance.
To analyze the impact of high-performance design requirements on microarchitec-
ture and circuit design, several IBM design teams have developed design studies
or actual implementations based on different technologies.

These high-frequency design vehicles have included the world’s first Giga-
hertz processor, guTS [1], a fully functional IBM 64 bit POWER implementation,
Rivina [2], and a POWER design study using dynamic compilation and VLIW
design techniques, BOA [3].

While all these projects had a shared vision of achieving ultra-high perfor-
mance, they varied widely in approach. guTS and Rivina were test sites based
on the use of novel circuit design techniques, and the test site demonstrated the
feasibility of the circuit design style. BOA was a design study which focused
on using a new microarchitecture coupled with dynamic compilation techniques,
which required careful performance modeling of the microarchitecture and soft-
ware techniques.

Unlike commercial implementations which emphasize system value to cus-
tomers, these design studies were chartered to explore the most aggressive tech-
niques available. This will allow us to understand the challenges ahead for future
systems, and feed back into future design decisions.

Decoupling the public architecture from the internal structure allows many
design strategies to minimize complexity and critical paths. Several designs have
utilized decoupled architecture/implementation using sophisticated circuitry. Typ-
ically, this is achieved by layering implemented as “cracking,” wherein Decode
stages in the pipeline split more complex instructions into a sequence of simple
micro-operations.

In designs for complex architectures such as IBM System/390 (and Intel’s
x86), this led to a partitioning of the architecture into “outer” and “inner” archi-
tectures [4]. In these designs the outer architecture is responsible for the cracking
step and runs at a slower frequency. The inner architecture implements a pipeline
executing these simpler micro-operations and can operate at a higher frequency.
This strategy has also been used for implementing IBM PowerPC, but since the
PowerPC architecture is a simpler RISC architecture, decode and cracking can
work at full speed in POWER4 [5, 6].

To reduce implementation complexity, BOA opted for a simpler approach
where the layering is performed using software-based binary translation [3] based
on the principles of the DAISY design approach (DAISY stands for Dynamically
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Architected Instruction Set from Yorktown). Based on this approach, we set out
to design a simple high-performance microarchitecture with an optimized inter-
nal instruction set architecture to host a dynamic compilation system. The dy-
namic compilation system then provides compatibility with the PowerPC system
architecture by implementing a virtual PowerPC architecture and incrementally
translating (and optimizing) PowerPC code fragments to the host architecture
[7, 8, 9, 10, 11].

The dynamic compilation and layering approach employed in BOA is de-
scribed elsewhere [12, 3, 13]. In this paper we will focus on some microarchitec-
ture techniques which were used to implement the underlying high-performance
architecture. In particular, these decisions were driven to minimize the impact of
wire delay on the operating speed of circuits, since microprocessor design today
is characterized by an increasing importance of wire delay in the overall design
assumptions of processors.

This paper is organized as follows: in Section 2, we describe the design chal-
lenges facing microprocessor designers beyond the Gigahertz frontier. In Sec-
tion 3, we introduce our pipeline design strategy based on instruction stream-
ing. Section 4 introduces the BOA microarchitecture designed around these tech-
niques. In Section 5 we present our implementation of streaming pipelines based
on the recirculation buffer. In Section 6, we discuss related work and Section 7
presents performance results and draws conclusions.

2 Design Challenges in Multi-GHz Designs

Historically, processors have been designed based on the notion that communica-
tion was cheap, and that logic delay was the critical aspect of processor designs.
As a result, processor control logic was based on the immediate communication
of any exceptional events, so that immediate recovery could be started. This max-
imizes the throughput achieved with the logic elements.

In processor pipelines, hazard conditions need to be detected and resolved for
modern processors to work correctly. Hazard conditions include structural hazards
where multiple instructions compete for the same function units, and data hazards
where consumer instructions can only access a result after the producer instruction
has computed them.

These conditions are usually resolved by introducing a processor “stall”. Dur-
ing a “stall”, the processor’s control logic suspends the processing of instructions
which wait for a function unit or an input value to become available. Processing
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of the stalled instructions resumes when the hazard has been resolved and the stall
condition has been cleared.

The mechanics of stall processing require that stall information be distributed
to other pipeline stages which may need to synchronize their stalling with the
original instruction. Specifically, when an instruction stalls, it can cause other
instructions to stall due to one of two hazards:

data hazard When an instruction must stall, other instructions expecting to re-
ceive their input operands from the stalled instructions may have to stall
until the stalled instruction generates its result.

structural hazard When an instruction stalls, it may block a function unit re-
quired by another instruction. This would require that instruction to stall
until the unit becomes available.

Stalls conditions are transitive, so as instructions are forced to stall, they in
turn may cause additional instructions to stall. In some implementations, a stall
may force all upstream instructions to stall, to enforce correct in-order execution
behavior.

This involves wire delays across significant portions of a microprocessor de-
sign, and can rapidly become a bottleneck in the processing speed. This problem
is exacerbated by the late availability of stall condition information: stall condi-
tions can be fairly complex to evaluate, and are often available only towards the
end of a processing cycle when processing detects an abnormal condition.

Thus, there is little or no overlap between logic and wire delay, and the wire
delay represents an additive penalty to the cycle time.

Following the description in [1], it already takes 5% of the available cycle
time to cross a single pipeline stage in guTS. In a moderately pipelined archi-
tecture with 8 pipeline stages, this may constitute 40% of the overall cycle time
following the same technology assumptions. This trend is exacerbated by the
choice of deeper pipelines (which reduces the amount of logic FO4 per stage and
hence increases the relative contribution of wire delay to a given cycle), and future
process technologies which suggest increasing wire delay relative to logic speed
and density.

We estimate for a 0.1 � m technology the chip to be 15.9mm x 17.39mm for
four processor cores plus L2 Cache. This includes a 4MB L2 cache with L3
interface and bus logic, and in each core: 256KB L1 instruction cache, 4 fixed
point units, 2 floating point units, 2 load/store units and 64KB L1 data cache.
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Figure 1: Floorplan for a four core chip-level multiprocessing system based on
the BOA architecture. A core consist of four integer pipelines each containing a
register file in the lower right corner of the core, two load/store units and the data
cache in the lower left corner, two floating point units on the left in the mid-tier,
and the instruction cache and instruction decode and dispatch logic in the upper
tier.

Figure 1 shows a floor plan at the basis of our architecture study. The figure
also shows the estimated wire length for an unrepeated 500ps transition in thick
LM and narrow M3 with standard SiO2 oxides and copper wire. It can be seen that
it takes approximately 500ps in last metal to traverse the height of the core. Dense
wires would only traverse approximately half this distance in the same time.

As a result of the projected wire delays, overall system performance could be
reduced by a factor of up to 2 to 3 due to wire delay. While clever floor planning
can reduce this penalty to some extent, a significant cycle time penalty remains.
In synchronous designs, this budget for communication across the chip has to be
allocated in every execution cycle even if no stall condition occurs.

In addition to the wire delay penalties, these designs can also produce quite
complex control logic, based on different states that each pipeline stage can be in,
and makes the design of processor control logic complex, error-prone and slow.
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Complexity also biases the design approach towards synthesis-aided HDL design,
which can result in slower circuit speeds.

In this paper, we present an alternative pipeline control design mechanism,
based on a streaming model of pipeline execution, where instructions continue to
proceed through the pipeline even when a hazard has been detected. Reissue logic
then detects such conditions, invalidates instructions which have violated integrity
constraints and directs the issue logic to re-issue those instructions. This scheme
requires no global signals for synchronous communication. Despite a large chip
size, the elimination of wire delay from such global signals allows the design to
achieve a very high operating frequency (currently estimated at more than 3GHz).

3 Streaming pipeline control

To eliminate the frequency penalty inherent with the global communication re-
quirements of stall-based pipeline synchronization, we departed from the tradi-
tional design techniques employing sophisticated control logic to sequence the
flow of instructions. Instead, we defined a new streaming dataflow pipeline man-
agement architecture for BOA.

We first summarize the limitations of traditional stall processing. According
to this traditional sequencing technique, logic in each pipeline stage determines
whether there is a need to raise a stall condition. Typical causes triggering stall
conditions are data dependent processing (e.g., for iterative shift, multiply and
divide, for large normalization shifts due to massive cancellation in floating point
processing, for special handling of denormalized numbers) or a miss in caching
structures (data caches, TLBs, segment tables, and so forth). Depending on the
specific nature of the stall condition and instruction sequence, this can trigger a
data hazard, a structural hazard, or both.

Figure 2 (a) shows the processing of instructions with a traditional pipeline
stall design. Each cycle shows time allocated for processing (white) and commu-
nication between logic, such as propagating stall signals. For illustrative purposes,
these are uniformly fixed fractions across all stages, but these may (and will) ac-
tually vary across different stages. The broadcast pipeline stage BC allows for
the propagation of wider buses using dense and slow metal layers across a single
processor core (which may or may not be necessary for some designs).

Figure 2 (b) shows how immediate propagation of a stall condition (a TLB
miss in this illustrative example) can cause other instructions to suspend execution
at the start of the next processor cycle until the stall condition is resolved.

6



F1 F2 ID IS RF EX BC WB

F1 F2 ID IS RF AG TLB D1

add r2,r3,r4

lwz r6, 0(r1) D2 BC WB

F1 F2 ID IS RF EX BC WBaddi r2,r2,10

F1 F2 ID IS RF AG TLB SCstw r2,8(r6)

F1 F2 ID IS RF EX BC WB

F1 F2 ID IS RF AG TLB reload

add r2,r3,r4

lwz r6, 0(r1) reload reload D1

F1 F2 ID IS RF EX BC WBaddi r2,r2,10

F1 F2 ID IS RF AG TLB SCstw r2,8(r6)

D2 BC WB

stall stall stall

stall stall stall

(a)

(b)

Figure 2: (a) This pipeline diagram includes time budgeting information: for each
cycle, a fraction of the overall processing time is allocated for processing (white)
and communication for managing stall signals (gray): with increasing wire delays,
a significant time budget must be allocated to propagating stall information across
a processor core. (b) When a stall occurs, the condition can be signaled to other
pipeline stages to prevent processing to occur in the immediately following cycle.

According to the streaming pipeline control we adopted for the BOA microar-
chitecture, time for communication is not allocated in each processing cycle. In-
stead, we aim to set the processor cycle to match the cycle of a single block of
processing logic (such as a 64b adder), and make communication explicit in the
microarchitecture. Specifically, this involves providing cycles for result transfers,
and dealing with the time needed to propagate an extraordinary condition through
the core.

The decision to not allocate time for distributing stall information implies that
when a hazard is detected, it cannot be resolved by suspending operation of depen-
dent instructions. By the time control information reaches all units, instructions
have latched into the next pipeline stage, and started processing. As a result, in-
structions may have violated integrity constraints, as they may be unable to bypass
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correct inputs when necessary, access units which may still be blocked, etc.
Since it is impossible to reach other units (or even far away stages within the

same unit), no attempt is made to stop execution. Instead, each instruction is
allowed to proceed in the pipeline and when a hazard is detected, the instruc-
tion is marked as carrying an incorrect result. To ensure that the architected
state cannot be corrupted, marking an instruction suppresses its ability to commit
state changes, and, for an in-order implementation, all subsequent instructions.
Blocking all subsequent instructions from changing the state is required because
in in-order processors, integrity violation is transitive, i.e., when an instruction
has violated its integrity constraints and cannot complete successfully, then all its
successor instructions have violated these constraints.

Instructions which have violated their integrity constraints are eventually aborted,
and re-issued. This is achieved by downstream logic embedded in each pipeline
which tests tests instructions for their execution integrity. If an instruction has
executed successfully, it is allowed to complete and update the processor state. If
it has violated any integrity constraints, it is aborted, and the Issue stage is told to
reissue the instruction to the processor pipeline. When the instruction is reissued
into the processor pipeline, hazards will most likely have been resolved, and the
required resources be available.

If for any reason, the resources are still not available, the instruction will again
be invalidated and re-issued, and so forth. To reduce cost (and power consump-
tion) of recirculating the same instruction multiple times, more sophisticated con-
trol may be provided. This may take the form of specifying a data or unit avail-
ability time (e.g., in the form of a hold-off cycle count to indicate a minimum
bound for resource availability), or by providing a second level of issue logic.

When using recirculation-based pipeline management, it is imperative that the
entire state of the processor prior to the recirculated instruction be recoverable.
This includes not only the register file, but also implicit machine state registers
and memory state. In an out-of-order processor, this may be accomplished using
register renaming or history files. However, simpler in-order processors may want
to forgo such complexity and use a strategy based on matching pipeline depths for
different execution pipelines to ensure that any state is only changed after potential
cancel signals have been distributed. Results can be made available via result
bypassing to eliminate any CPI degradation as a result of such a microarchitectural
decision.

Figure 3 shows a pipeline diagram employing streaming pipeline control. Ex-
plicit cycle time allocated to propagating control signals has been eliminated from
each cycle. The cycle allocated for result communication is also used to propa-
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Figure 3: (a) Pipeline execution of a code fragment. (b) As no time has been al-
located for transferring stall conditions, pipeline management is performed using
a strategy based on aborting and re-executing dependent instructions. This allows
control signals to arrive at any time before state changes are committed to the
architected state.

gate control information throughout the entire core leading to the suppression of
instructions (by inhibiting writeback to the register file, the store buffer (SC), or
any other architected resources), and to trigger re-execution of suppressed instruc-
tions.

We conclude our description of the basic pipeline control mechanism with
two observations. First and foremost, it should be noted that the information to
re-issue an instruction could use multiple processor cycles to be conveyed to the
Issue stage, and hence does not determine the processor frequency.

Secondly, this approach can be employed to implement other global signals
which might otherwise limit the achievable operation frequency. Examples where
this approach can be employed include the exception handling, branch mispredic-
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tion, and micro-code entry for complex corner cases. In each case, the instruction
which causes the control event is returned to the issue queue, together with addi-
tional information.

In the case of an instruction which has raised an exception, the exception-
raising instruction is returned to the Issue stage together with control informa-
tion describing the nature of the exception. An exception-raising instruction also
blocks state changes to the architected state until the first instruction of the ex-
ception handler is encountered.1 The Issue stage will then not reissue the original
instruction, but start issuing the exception handler in its place. A similar mech-
anism can also be employed to transfer control to microcode to handle special
instruction conditions using microcode.

In the case of a mispredicted branch instruction, a mispredicted branch is recir-
culated together with the correct branch target address. In addition, the incorrectly
executed branch instruction prevents state changes by instructions starting at the
mispredicted branch target address until the correctly predicted branch is issued.

Recirculation is necessarily more expensive in terms of CPI impact, since a
single stall cycle is replaced by multiple execution cycles which will later be in-
validated, followed by one or more cycles of transmission back to the issue queue,
and finally the instruction re-execution. Additional penalties may be involved to
actually suppress the execution of some instructions. Thus, the cost of encounter-
ing a recirculation condition is the sum of the pipeline depth, the cost to suppress
instructions, and the recirculation penalty. This compares to degradation corre-
sponding to the latency of actual stall event as seen by the traditionally managed
(stall-based) execution sequence.

However, we feel that careful management of the occurrence of recirculation
conditions can reduce the overall impact using a variety of factors. First, care-
ful code scheduling can reduce the need to dynamically discover dependencies.
This is particularly easy to guarantee in the BOA system where code is generated
dynamically at runtime for the specific underlying machine model. Secondly, us-
ing issue logic which is careful to issue instructions only when they have a high
probability of succeeding, and using hold-off information to reduce spurious re-
circulation for long latency operations.

A final strategy to reduce the impact of the recirculation cost on performance
is to reduce the cycle penalty incurred. To reduce this penalty, we have intro-
duced a recirculation buffer which reduces the recirculation penalty significantly
over the case when instructions are re-fetched from the instruction cache prior to

1Very limited state changes are allowed in this case to reflect the exception information.
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recirculation.
Recirculation-based pipeline management offers significant advantages and is

an important enabler to ensuring high operating frequency with robust pipeline
control, since it is possible to eliminate global stall signals, and hence critical
paths from the design. In trading off lower cycle time incurred over all execution
cycles, and CPI degradation which can be held low if carefully managed, we have
optimized for overall execution time.

4 The BOA microarchitecture

We have used the principles outlined in the previous section in the design of the
BOA microarchitecture. The BOA processor architecture is specifically targeted
as the execution engine for the BOA binary translation system and contains a vari-
ety of optimizations for this purpose. The underlying architecture was designed as
a simple in-order variable-width VLIW architecture with an ultra-high frequency
design target. The BOA dynamic compiler implements the PowerPC instruction
set as a software-based virtual machine layer on this high performance execution
engine.

BOA’s binary translator can schedule operations to execute in a different or-
der than the original PowerPC code, and BOA’s system software can recover the
proper in order PowerPC state when needed. Thus, while the underlying microar-
chitecture implements an in-order model, code can be aggressively rescheduled
out-of-order with respect to the original PowerPC code.

The BOA processor architecture contains support for the dynamic compilation
system as described in [3], and has the following execution pipelines:

� 1 Branch unit (uses some fixed point resources, and thus its presence limits
the number of fixed point unit instructions which can be issued to 3 fixed
point instructions)

� 2 Dedicated Load/Store units

� 4 Fixed point units

� 2 Floating point units

As depicted in Figure 4, individual BOA operations are encoded in bundles
of three. However, these bundles are an encoding abstraction only. When the
instruction stream is decoded, stop bits are interpreted to identify boundaries of
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Bundle Bundle

(LSU) (FXU) (FPU) (BRU)
Memory Memory Integer Integer Integer Integer Float Float Branch

Packet Packet Packet
Op Op Op

STOP STOP STOP

(a) Packet with 6 parallel ops

(b) with 3 sequential ops/packets

Figure 4: BOA instructions

packets. In BOA, packets represent parallel operations which are issued together
and can contain one to six operations for the nine execution pipelines. The se-
mantics of parallel operations in a packet are parallel, i.e., all operations within
a packet read the same values even if an operation’s input within a packet refers
to another operation’s output within that same packet. (Unlike in scalable VLIW
architectures [14], there is no intergenerational compatibility impact due to this
decision, as the code for the architecture is generated by the system-specific and
system-resident binary translation and optimization system.)

As shown in Figure 4, a single packet can span multiple bundles (up to 3), or
multiple packets can be contained within a bundle. Packet encoding is positional.
For example, a branch operation must be the first operation in its packet. Since
this positional encoding is internal to the binary-translation system surrounding
the core this does not lead to compatibility issues, but does simplify instruction
Decode and Issue. In particular, it reduces the switch which aligns and distributes
operations to their respective pipelines.

BOA bundles are 128 bits and as already stated, encode 3 basic BOA opera-
tions. Bundles must be aligned on 128-bit boundaries. BOA can issue a packet
consisting of up to 6 BOA operations each (in two bundles), as shown in Fig-
ure 4(a). To achieve good code density and manage code explosion, packets can
straddle bundle boundaries, and a packet can contain instructions from multiple
bundles as in Figure 4(a). However, branch target addresses must be aligned at
double-bundle boundary to simplify instruction decoding and formatting after a
branch.

BOA decouples the decoding of bundles and the issuing of packets through
the use of the decoupled fetch/execute architecture depicted in Figure 5. The
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Figure 5: BOA decoupled fetch/execute pipeline.

Fetch and Decode portions of the pipeline are responsible for fetching bundles
and aligning them into packets under the control of the instruction encoding’s
Stop Bits (See Figure 4(b)) in several pipeline stages. The instruction Fetch unit
also implements static branch prediction. Branch prediction instructions are en-
coded as branch unit instructions which are defined to be the first operation within
a bundle, reducing the hardware necessary to decode and execute static branch
prediction instructions in the Fetch unit.

In the BOA architecture, packets are an atomic execution unit, and all opera-
tions within a packet are either committed to the architecture state, or all write-
backs are suppressed. This decision simplifies control sequencing and allows a
wide issue architecture to execute with little control overhead.

Each pipeline contains a separate copy of the appropriate register file to reduce
the number of ports required. To ensure consistent architectural state, writes are
performed to all register file copies, and a full broadcast cycle is allocated for
write results to propagate to all function units. Since one write port is allocated
for each execution pipeline, this requires a maximum of 6 write ports, and three
read ports (for fused-multiply-add and store X-form instructions). This decision
has allowed to reduce the number of required ports, and the wire delay incurred
to access the register file during the register file read stage.

To simplify the implementation and hold the number of write ports low, the
BOA binary translator and optimizer cracks update memory instructions from the
PowerPC instruction set architecture into a memory operation and an add instruc-
tion which can be scheduled independently. This allows to hold the number of
required ports to one per execution pipeline.

The BOA architecture does not support back-to-back dependent operations,

13



since forwarding would impose significant cycle time degradation if performed
across an entire BOA core encompassing the branch unit, two load-store units and
four fixed-point execution units. As a result, the effective latency for simple ALU
operations is 2 cycles, for the operation execution (EX) and result broadcast (BC).

The binary translation system is expected to schedule instructions to cover this
latency. While no hardware support is provided for two-cycle latency basic opera-
tions, a limited form of scoreboarding is provided in the Issue stage to implement
stall-on-use semantics for memory operations and variable latency floating-point
operations. Thus, BOA stalls on a cache miss only if a subsequent operation needs
the (LOAD) result of a data cache miss.

Unlike traditional scoreboarding architectures, dependencies are only detected
for instructions after a first dead cycle to reduce critical paths and hence frequency
inhibitors which can be addressed in software. In particular, this reduces the cru-
cial time to read the scoreboard bits, analyze them, and update them. Since the
register files are distributed, scoreboards are also distributed, and an update to re-
mote scoreboards is assumed to take a cycle. Thus, dependent operations cannot
be in back-to-back packets, reducing the need to deal with wire delay in a mod-
erately aggressive ILP architecture without frequency penalty [15]. The net effect
is that predictable latencies are dealt with by software, but unpredictable latencies
such as memory access and variable-latency floating point operations are handled
by hardware. Using the provided scoreboarding facility, memory operations do
not have to incur stall-on-miss penalties, which would penalize performance re-
gardless stall the machine even if a cache-miss value being loaded was not used
until many cycles in the future (or incur the cost of recirculating dependent op-
erations). Similarly, providing scoreboarding for variable-latency floating point
operations allows to schedule for typical execution latency, without the need to
schedule the code for worst case latencies – possibly by introducing explicit NOP
packets –, or incurring the cost of recirculating dependent operations.

4.1 Exception handling in BOA

To avoid the need to perform state rollback to the previous checkpoint on frequent
events such as TLB misses, the BOA architecture offers precise behavior on most
memory faults. To this end, the pipelines are architected to perform address gener-
ation and TLB access before a packet containing memory operations is committed
(see Figure 6. Thus, if such a packet incurs a TLB miss (or page fault), the entire
packet can be canceled and TLB reload can be attempted.

After address translation has been performed, a load operation is enqueued
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Figure 6: The integer pipelines are matched in depth such that any exception con-
ditions are detected before a packet is committed to the processor state. This de-
cision eliminates history buffers and other mechanisms to resolve race conditions
between different pipeline depths and ensure in-order semantics.

into a decoupling FIFO at the head of the load store units.2 At this point, the op-
eration is architecturally considered as having executed, even if the result is not
available (which would cause a recirculation condition for any dependent packet).
When a memory slot becomes available, load operations are resolved from the
memory hierarchy, and store results are stored in the store CAM which imple-
ments a multiprocessor-capable gated store buffer [16].

Since all architectural faults have been resolved previously during address
translation, the only exceptions which can occur are related to bus errors and ECC
failures. These can be caught as asynchronous exceptions and their handling de-
ferred until a convenient break point at which precise PowerPC state can easily
be materialized. Transitions between groups of translated code fragments provide
such convenient break points. Synchronous exceptions such as page faults are re-
quired to be precise by the PowerPC architecture. Such exceptions can be handled
by rolling back to a previous checkpoint (start of the current translated group) and
interpreting PowerPC instructions until the error is re-encountered.

When a BOA exception occurs, the exception target is neither the PowerPC
2FIFO entry availability can be checked either during the issue phase for load operations, or

load instructions finding a full FIFO can be rejected and recirculated.
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exception address nor its translation, but a BOA stub which sets up the exception
context. This BOA stub sets up registers as expected by the PowerPC architec-
ture. For example, the stub places the effective address of the excepting PowerPC
instruction in register SRR0, and the contents of the PowerPC Machine State
Register (MSR) prior to the exception in register SRR1. Some exceptions require
additional setup of this type by the stub. Only after this setup is complete, does
the stub branch to the translation of the PowerPC exception handler.

5 Implementation using a Recirculation Buffer

High frequency in BOA is achieved by eliminating expensive wiring to imple-
ment the synchronous operation of the pipeline using global stall and exception
conditions. Instead, the pipelines are implemented as dataflow elements. Correct
operation is achieved through the use of the recirculation buffer.

Instead of checking for the existence of a stall before proceeding, the pipeline
is automatically advanced every cycle. Upon issuing a new packet, the packet is
both issued and copied into the recirculation buffer, which holds a copy of the
contents of every packet currently executing. The existence of a stall in the execu-
tion pipeline may then be determined late in the execution process and indicated
to the appropriate packets prior to their committing results during the Writeback
stage.

Several approaches are possible to implement instruction streaming and re-
circulation. The main idea is to return the instruction to the issuable state if the
instruction is canceled due to execution hazards. In its simplest form, this may
involve returning the instruction address to the Issue stage and re-fetching the in-
struction. However, this approach has the disadvantage of increasing the penalty
when a recirculation event occurs.

Thus, a better implementation choice buffers instructions which have previ-
ously been issued and which may need to be recirculated. Some implementations
may propagate the instruction bits with the dataflow, but this will result in more
state to be carried in the datapath. A better implementation of this concept log-
ically passes the instructions along the pipeline stages, but physically keeps this
information closer to the Issue stage by conceptually clustering the instruction
portion of the pipeline registers in a recirculation buffer.

Thus, when packets are cancelled, the first dependent packet and all sub-
sequent packets can be reissued from the recirculation buffer. The recirculat-
ing packets will repeat the process of issuing, progressing down the execution
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pipeline. While the stall condition remains during reissue, the packets are con-
tinually canceled and reissued from the recirculation buffer until the processor
stall completes. This assumed pipeline advancement strategy simplifies pipeline
control. [17]

Although the conceptual picture implies that instructions which fail are re-
transmitted to the issue stage, the implementation of this approach is optimized
with the recirculation buffer. The recirculation buffer keeps track and maintains a
copy of instructions as they progress through the pipeline.

In BOA, we track a packet as the basic unit of instruction control. Since in-
structions are issued in packet, packets are the most natural way to track instruc-
tions. Notably, due to the decoupled fetch/execute pipeline, only mispredicted
branches and exceptions need go further back than the Issue stage. Instead of
reissuing on branch mispredictions and exceptions, BOA flushes the recircula-
tion buffer and the Fetch/Issue stage and directs the Issue stage to fetch from the
new address, which has either the correct branch target or the exception target, as
appropriate.

Managing recirculation is particularly simple if the pipeline structure has been
planned carefully so as to have predictable and matched pipeline depths (see Fig-
ure 6. For example, in the BOA design study, the Issue stage was followed by a
register file access stage, an execution stage, and a Broadcast stage responsible
for propagating the results of the execution stage throughout the entire chip (see
Figure 5). Thus, after three stages it is known if any instruction cancel and reissue
condition has been detected.

Figure 7 shows the recirculation buffer consisting of the issue queue and the re-
issue queue. The reissue queue matches three stages following Issue in the Fixed-
Point pipe in Figure 6. After an instruction has been issued by the Issue logic, it is
also copied into the recirculation buffer. Then, every cycle, the recirculation buffer
progresses one cycle, matching the progress of the instructions in the execution
pipeline. As can be seen in the Figure below, after three cycles (at the end of the
Broadcast cycle), it is decided whether a recirculation condition is present. If
so, the recirculation buffer contents are issued by the issue queue, otherwise the
contents are retired from the recirculation buffer when the results of an instruction
are committed to the processor state.

Introducing the recirculation buffer as an issue stage recirculation point re-
duces the recirculation penalty of aborted instructions by several cycles and helps
to reduce the overhead of recirculation based pipeline management.

Referring to figure 6, this reduces the penalty for re-executing an instruction
from 8 to 5 cycles. Figure 8 shows a possible execution sequence for a BOA-like
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Figure 7: The recirculation buffer consists of the issue and re-issue queues. The
issues queue holds as yet unissued packets (labeled 4 through 9), whereas the re-
issue queue holds a copy of the packets in the register file stage (packet 3), the
execute/address generation phase (packet 2), and the broadcast stage (packet 1).
If a stall condition had occurred in packet 1, the results of packets 1 through 3
would not be committed and instead be re-issued from the re-issue queue.

recirculation-buffer based pipeline management scheme. The figure assumes a
one cycle latency to distribute the control signal to cancel a packet. In the next
cycle, state changes are disabled during the aborted operation’s writeback phase,
and packet reissue from the recirculation buffer is activated. Packet re-issue starts
in the following cycle. According to this exemplary timing, the net CPI degrada-
tion for a 3 cycle stall event is 2 cycles.3 Also, any stall conditions which have
a latency longer than the exemplary 5 cycle recirculation penalty do not result in
any penalty for this specific implementation.

This scheme impacts the design of the overall pipeline in several ways. First,
if a resource is not available, an instruction does not remain in that processing
element until the resource is available. Instead, the instruction is aborted and

3Aggressive upper level metal distribution of a few select cancel signals may allow the cancel
signal to arrive early enough to start packet re-issue one cycle earlier.
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Figure 8: Pipeline diagram for recirculation-based pipeline management using the
recirculation buffer.

immediately passed to the downstream pipeline stage. As a result, each instruction
can remain in a pipeline stage for exactly one cycle. If the instruction cannot
complete by that time, it is aborted.

Aborted instructions continue to pass through the processor pipeline until they
reach a pipeline stage which checks for aborted instructions. When this stage
encounters an instruction which has been aborted, it recirculates this instruction
back to the Issue stage which then re-issues the instruction. Recirculation can
take multiple cycles using staging buffers, and thus wire delay for communication
between the stage deciding which instructions to recirculate and the Issue stage is
non-critical.

Second, the operation of the recirculation buffer leads to a design in which
updates of the processor state are centralized.

Third, this scheme integrates exception and stall handling in a single structure,
so that no separate mechanisms have to be maintained. Just as we have described
for stalls, all pertinent state describing exception conditions is saved, and the in-
struction passes downstream in the pipeline.

6 Related Work

In high frequency design, the guTS test site led to the first GHz processor design.
The guTS design employed novel, self-resetting dynamic logic that resulted in
high circuit performance. However, guTS was a test system which implemented
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the basic architecture for a processor core, but not a fully compatible POWER
architecture. By contrast, Rivina and BOA were architected as fully POWER
compliant designs. To achieve full compatibility while maintaining the design
simplicity needed to achieve high performance, Rivina and BOA use different
methods to deal with complex aspects of the PowerPC architecture. Rivina relies
on traps into microcode where complex functions are implemented for full Pow-
erPC compatibility. Other microarchitecture techniques were used in Rivina to
achieve compatibility without burdening the implementation’s critical path. For
example, Rivina employs dependency prediction to avoid a full dependence anal-
ysis in the critical path. By contrast, BOA resolves this problem during software
rescheduling in the binary translation phase. As discussed in Section 4, BOA’s
instruction format tells the hardware what operations may execute in parallel.

Current processor control mechanisms have been adapted in a number of ways
for complex, high-frequency designs. For example, partitioning of a design allows
simpler smaller subdesigns. [18].

An alternative approach has been described in [8] which uses backup registers
for the entire processor state. Global communication signals are distributed during
the subsequent computation cycle, in parallel with continued processing. If the
controller determines that any stall or exception conditions were encountered, the
controller can back out any changes and revert the processor state to the previous
cycle using the backup registers. This leads to complicated stall and exception
logic, which is undesirable.

Sutherland describes an approaches for pipeline control without a central con-
troller based on micropipelines and counterflow pipelines [19]. Micropipelines
use only communication with adjacent pipeline stages, eliminating the need for
a global controller. This has made this approach attractive for implementation in
asynchronous designs. Eliminating global control does not remove the cost of the
wire delay, since the wire delay now ripples through successive elements in the
pipeline.

Several asynchronous processor designs are based on the micropipeline pro-
cessor concept referenced previously. Unlike synchronous processor designs,
these designs do not use a global processor clock to synchronize processor oper-
ation. This eliminates the need to allocate time for communication in each clock
cycle, and communication time is only allocated when it is actually required.

The AMULET processor described by Woods et al [20] is an asynchronous
implementation of an in-order processor. The processor uses a scoreboard for
determining operand availability [21]. Other resource availability requests are
resolved using stalls which can propagate through the processor. Exception han-
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Figure 9: BOA CPI

dling in this processor is performed using a scheme based on squashing operations
after an exception has occurred using “color bits.” These prevent any operations
from committing until the exception handler starts to pass through the pipeline.

The Fred processor described by W. Richardson and E. Brunvand [22] imple-
ments an asynchronous out-of-order processor. Stalls and resource management
are similar to the AMULET1 processor implementation, but the exception mech-
anism relies on maintaining a buffer of out-standing instructions which may raise
exceptions in an issue buffer. When an instruction encounters an abnormal situa-
tion, it returns to the issue buffer and raises an exception.

7 Performance Results and Conclusion

We have presented the BOA high-frequency pipeline architecture and high-frequency
design constraints influenced the overall processor structure. The architecture uses
binary translation to layer the PowerPC architecture on a simpler EPIC core and
uses a novel pipeline management approach to reduce the impact of wire delay on
the processor control functions.

To investigate the impact of the binary translation approach and the two-cycle
latency for even simple ALU operations, we have performed a detailed CPI anal-
ysis based on instruction traces for SPECint95 and TPC-C (see figure 9), which
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have previously been reported in [12, 3, 13].
To eliminate the impact of wire delay, we have opted for a pipeline control

mechanism using only local communication. The centerpiece of this architecture
approach is the recirculation buffer, which is responsible for issuing and track-
ing instructions. When a pipeline hazard occurs, compromised instructions are
aborted and re-issued by the recirculation buffer. This design approach allows the
design of a dataflow-like architecture in the datapath, and reduce the cost of global
synchronization to interlock the system during stall and exception handling.
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