
RC23140 Declassified 11/16/2004 (W0403-060) March 8, 2004
Computer Science

IBM Research Report

Similarity-Based Alignment and Generalization:
A New Paradigm for Programming by Demonstration

Daniel Oblinger, Vittorio Castelli, Tessa Lau, Lawrence D. Bergman
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Similarity-Based Alignment and Generalization:

A New Paradigm for Programming By Demonstration

Daniel Oblinger oblio@us.ibm.com

Vittorio Castelli vittorio@us.ibm.com

Tessa Lau tessalau@us.ibm.com

Lawrence D. Bergman bergmanl@us.ibm.com

IBM T.J. Watson Research, New York

Abstract

We present an approach to learning pro-
cedural knowledge by demonstration called
similarity-based alignment and generaliza-

tion. Key to our approach is the ability to
induce complex procedure structure (loops
and conditional branches) by aligning mul-
tiple unannotated demonstrations of a pro-
cedure. We present an implemented instance
of a similarity-based alignment and general-
ization algorithm that relies on the known
Input-Output Hidden Markov Models, and
describe an extension, the SimIOHMM, that
significantly improves the algorithm’s per-
formance. We present an empirical evalu-
ation that demonstrates our system’s scal-
ing performance and quantifies the perfor-
mance increase obtained through the use of
the SimIOHMM extension.

1. Introduction

Knowledge-based organizations expend significant re-
sources on capturing, disseminating, and reusing pro-
cedural knowledge. Procedural knowledge acquisition
techniques, such as programming by demonstration
(PBD) (Cypher, 1993b; Lieberman, 2001), hold great
promise for such organizations. With PBD, one or
more experts demonstrate the procedure and the sys-
tem learns a model that can be used to execute that
same procedure again on a different system. The key
feature of PBD is automatically generalizing from one

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

or more concrete demonstrations to an abstract model
of the procedure.

In PBD systems, a demonstration is typically a
recorded sequence of user actions and changes to the
Graphical User Interface (GUI). One or more of these
demonstrations is used to induce a model of the un-
derlying procedure. For procedures executed on a
GUI, a step typically represents a single user action,
such as clicking on a button. Previous PBD systems
work well when there is a fixed number of steps in
the procedure (Lau et al., 2000) or when the proce-
dure author can identify the specific step to be gen-
eralized (Maulsby & Witten, 1997). However, these
assumptions are violated when a procedure grows to a
large number of steps and contains complex structure
such as conditional branches.

For example, consider the task of configuring an e-mail
client for the employees of an organization. The ex-
act sequence of actions taken may vary depending on
the user’s operating system configuration and on the
configuration of the mail client. A procedure demon-
strated in a particular environment may contain con-
ditional steps that have no analogue in other demon-
strations. Thus, a PBD system cannot simply assume
that the ith step in one demonstration corresponds
to the ith step in all the other demonstrations. One
possible approach to this problem is to use action sim-
ilarity to identify similar steps in the procedure (Mo,
1989). This has limited applicability, however. One
may need to click the same button at several different
points in a given procedure, yet it would be a mistake
to simply map all of these actions to the same point
in the induced procedure based only on that surface
similarity.

For the purposes of this paper, we define program-

ming by demonstration as the problem of taking a set
of demonstrations and generating a procedure model
consistent with those demonstrations. Each demon-
stration is a sequence of events, including user actions
as well as changes to the applications’ GUI. A pro-
cedure model is consistent with a demonstration if it
correctly predicts the actions in the sequence given the
prior events in that sequence. This paper presents an
approach to the problem of programming by demon-
stration inspired by sequence alignment algorithms.
Specifically, in this paper:

• We apply traditional sequence alignment algo-
rithms to the problem of programming by demon-
stration to learn procedures with complex struc-
ture.

• We define the SimAlignGen class of algorithms.
This class extends traditional Hidden Markov
Models by adding an additional source of bias:
a similarity function over the inputs.

• We present an instance of an SimAlignGen class,
called SimIOHMM, which has been implemented
as part of a programming by demonstration sys-
tem on the Windows platform.

• We provide an empirical evaluation of
SimIOHMM’s ability to learn a real-world
procedure from demonstrations, and show that
the addition of the similarity function results in
a significant performance improvement.

2. PBD architecture

Before formally describing the learning algorithm un-
derlying SimAlignGen, we will briefly discuss the main
components and processes in our approach to PBD.
Figure 1 provides a block diagram of our PBD system.

Learning

Human User

Application GUI

Instrumentation Automated Execution

Abstraction
Pairs

State−Action

Demonstration
Repository

Learned Procedure

Underlying Apps

Figure 1. Block diagram of the SimAlignGen approach.

The complete data flow includes: recording proce-
dure demonstrations, learning a procedure model from

multiple demonstrations, and automatically executing
steps of the induced procedure.

A human user demonstrates procedures by performing
actions, such as clicking the mouse or pressing key-
board keys, on an application’s graphical user inter-
face. In response, the system performs actions, such
as creating or deleting windows. The instrumentation
component captures both user and system actions.

An abstraction component converts the stream of
events recorded by the instrumentation into a sequence
of state-action pairs, called a trace. Logically, a state-
action pair represents the complete state of the GUI
at a point in time, coupled with the action the user
took in that state. This state-action representation is
natural for use with inductive learning since it reduces
the problem of learning a procedure to the problem of
predicting the user action from the state of the GUI
(and perhaps its history). The abstracted representa-
tion differs from the original event representation in
four ways. First, the widget hierarchy is flattened in a
similar manner to flattening of the DOM by XPath ex-
pressions (XML Path Language, 1999). Second, using
heuristics, a subset of window features (such as the
window title) is selected from the full set available.
Third, the incremental changes to the GUI reflected
in the event stream are converted into snapshots of
the system state. Fourth, low-level events, such as
”mouse down” are heuristically grouped into higher-
level actions, such as ”double click”.

Abstracted demonstrations are stored in a demonstra-
tion repository and then provided as input to the learn-
ing component, described in detail in the next section.
The executable procedure induced by this component
can be thought of as a graph representing the proce-
dure underlying the demonstrated traces, along with
the decision support necessary to determine appropri-
ate graph transitions and generate actions for each pro-
cedure step based on the current state of the GUI.

The induced procedure is used to drive automatic ex-
ecution at playback. The playback component ac-
cepts a sequence of GUI states from the current ex-
ecution environment (supplied by the instrumenta-
tion/abstraction components) and previously executed
actions, and attempts to predict the next action in
that sequence. Once this action is predicted it can be
executed (at the user’s discretion) on the GUI.

3. Similarity-Based Alignment and

Generalization

The learning component takes as input a set of demon-
strations and aligns them to produce an executable

procedure model.

Formally, the alignment of a set of demonstration
traces is a partition of the state-action pairs in all the
traces. A useful alignment for our purposes is one that
groups together similar state-action pairs, such that
each set of the partition corresponds to what a human
would think of as a step in the procedure model.

The SimAlignGen approach induces a procedure
model consistent with demonstrated training se-
quences by simultaneously employing three sources of
bias in its search for this model.

1. The alignment of the steps in the demonstra-
tions should preserve transitions between succes-
sive steps. For example, let demonstration 1 con-
sist of step A followed by step B and demonstra-
tion 2 consist of step A′ followed by B′; then
aligning A with A′ and B with B′ is a good align-
ment, since it preserves the ordering of transitions
within the demonstrations.

2. The alignment of state-action pairs should also
yield sets that can be generalized—within a parti-
tion set, actions should be predictable from their
corresponding states by an appropriately induced
mapping function.

3. The states in aligned state-action pairs should be
similar according to some domain-specific similar-
ity metric.

Constructing a learner with the first two biases—
transition preservation and generalization—is a dif-
ficult problem for which no optimal algorithm ex-
ists. One solution consists of iteratively alternating
two steps: finding the best alignment of the train-
ing data consistent with a given transition and gen-
eralization structure, and finding the best transition
and generalization structure consistent with a given
alignment of the training data. If we represent the
alignment by associating an integer with each state-
action pair (the index of the partition set to which
it belongs) or, more generally, a probability distribu-
tion over the partition sets, we can immediately re-
duce the iterative algorithm to the Baum-Welch al-
gorithm (Baum et al., 1970). Baum-Welch is an
expectation-maximization (E-M) algorithm used to in-
duce discrete Hidden Markov Models from sequences
of symbols (Rabiner & Juang, 1986). We interpret
the expectation step as a way of determining the best
alignment of the sequences relative to a given Markov
model, and the maximization step as a way of inducing
the best procedure model given an alignment.

For use in PBD, however, it is not sufficient to sum-
marize the user’s actions as a probability distribution

over the space of actions as a traditional HMM would
do. We cannot simply learn that two-thirds of users
press the “Add” button and the remaining users press
“Remove” at some particular procedure step; we must
learn a function that predicts when each is appropri-
ate. In our approach, we assume this choice may de-
pend on features observed in the GUI, that is, both the
next node and the next action conditionally depend on
the current state of the GUI given the current node.
Frasconi and Bengio (Frasconi & Bengio, 1994) intro-
duced an extension to HMMs, called the Input-Output
Hidden Markov Model, or IOHMM, that satisfies this
assumption. IOHMMs predict the next node and the
next output symbol as a function of the current node
and of the current input symbol. In the PBD context
the input symbol is the state, and the output symbol
is the action in a state-action pair.

The third bias, similarity of aligned steps, is not em-
ployed by HMM or IOHMM algorithms, yet it is a
natural form of knowledge in the PBD domain. This
can be clearly seen when considering a procedure that
involves actions taken on the Microsoft Window’s con-
trol panel, as well as actions on a browser window. The
control panel states and associated actions are clearly
distinct from those in the browser; an induced proce-
dure model that separates state-action pairs based on
this surface similarity will tend to be better than one
that does not. We capture this domain knowledge as
a similarity bias in the form of a similarity metric over
state-action pairs.

We have developed an algorithm, SimIOHMM, that
extends the IOHMM by incorporating this similarity
bias. SimIOHMM extends the Baum-Welch algorithm
to incorporate a similarity metric over the space of
state-action pairs. This additional bias is (1) readily
available in the PBD context, (2) cannot be expressed
within either the HMM or IOHMM frameworks, and
(3) has a large impact on reducing training time as
demonstrated in Section 5.

4. The SimIOHMM

In this section we first recall the Baum-Welch algo-
rithm for classical HMMs, then we describe how to
modify it for the SimIOHMM, to incorporate the third
sources of bias. The following notational conventions
are used throughout. Plain-text upper case charac-
ters denote random variables, while plain-text lower
case characters denote values. The training set con-
tains M traces. Let Ot be a shorthand notation for
the state-action pair (St, At) observed at time t; the
state St is the IOHMM input and the action At is the
output. To specify the trace r to which an observation

belongs we use a superscript in parenthesis, as in O(r)

(for sake of clarity, we will use this notation explic-
itly only when unclear from the context). We wish to
stress that in this paper the term state is a description
of the state of the application GUI used as input to
the IOHMM, not the state of the HMM, for which we
use the term node. Let Ob

a be the sequence of obser-
vations between time a and b. Let Qt be the HMM
node at time t, taking values in [1,N]. Let θ̂ describe
the set of parameters of the model obtained during the
previous M-step (these parameters are explicit if the
selected model is parametric and implicit otherwise. In
our implementation, described later, these parameters
are the internal variables of the action and transition
classifiers). The length of a training sequence is de-
noted by T . Using the standard notation for HMMs
we define:

πn = P
θ̂

(

Q1 = n
)

is the initial probability distribution over the nodes,

bn(ot) = P
θ̂

(

Ot = ot | Qt = n
)

is the conditional probability of observing ot given
that the node is n,

αn(t) = P
θ̂

(

Ot
1 = ot

1, Qt = n
)

is the probability of observing ot
1 as the first t ob-

servations, and being in state n at time t,

βn(t) = P
θ̂

(

OT
t+1 = oTt+1 | Qt = n

)

is the conditional probability of observing oTt+1 as
the last T − t observations, given that the node at
time t is n,

γn(t) = P
θ̂

(

Qt = n | OT
1 = oT1

)

is the conditional probability of being in node n
at time t given that the entire sequence of obser-
vations is oT1 . This is the alignment.

ξi,j(t) = P
θ̂

(

Qt = i, Qt+1 = j|OT
1 = oT1

)

is the conditional probability that the node at time
t is i and that the node at time t + 1 is j given
that the entire sequence of observations is oT1 .

ai,j(t + 1) = P
θ̂

(

Qt+1 = j | Qt = i, Ot+1 = ot+1

)

is the transition probability, more specifically, the
conditional probability of being in node j at time
t + 1 given that the node at time t is j and that
the observation at time t + 1 is ot+1.

4.1. Baum-Welch algorithm for HMMs

The Baum-Welch algorithm alternates the E-step and
the M-step until convergence.
The E-step consists of the backward-forward proce-
dure, followed by the computation of the alignment of
the demonstrations with the HMM graph. The for-
ward procedure is governed by the equations

αi(0) = πi

αn(t + 1) = bn(Ot+1)
∑T

j=1 αj(t)aj,n(t + 1),
where we assume that there is a unique starting node.
The backward procedure follows the equations

βi(T) = 1 for terminal nodes
= 0 otherwise

βi(t) =
∑N

n=1 βn(t + 1)ai,n(t + 1)bn(Ot+1).

Finally, the alignment is described by the set of proba-
bility distributions over the nodes, recomputed in each
iteration as

{

γ
′

n(t) =
αn(t) βn(t)

∑N

j=1 αj(t) βj(t)

}T

t=1

,

where the quantities on the right hand side come from
the previous iteration, and the transition probabilities,
recomputed as

{

a
′

i,j =

∑T −1
t=1 ξ

′

ij(t)
∑

t=1 T − 1γ
′

i(t)

}N

i,j=1

, where

ξ
′

i,j(t) =
γi(t) ai,j(t + 1) bj(Ot+1) βj(t + 1)

βi(t)
.

The M-step consists of computing the initial probabil-
ity distribution and node transition probabilities that
maximize the likelihood of the data given the align-
ment computed in the E-step.

4.2. The SimIOHMM

In a traditional HMM, ot consist of just the output

At, and the term bn(ot) equals P
θ̂

(

At = at | Qt = n
)

In IOHMMs, where ot contains both state and action,

bn(ot) is replaced by P
θ̂

(

At = at | St = st, Qt = n
)

,

and hence the algorithm models the conditional dis-
tribution of the possible actions (output) given the
current state (input) and node. SimIOHMMs, on the
contrary, estimate bn(ot), and therefore models their
joint distribution.
The E-step of a SimIOHMM learning algorithm dif-
fers from those of the HMM and IOHMM in the esti-
mation of bn(ot). Using Bayes rule we can write

P
θ̂

(

St = st |Qt = n
)

= P
θ̂

(

Qt = n |St = st

)P
θ̂

(

St = st

)

P
θ̂

(

Qt = n
) .

There are three terms on the right hand side:

P
θ̂

(

Qt = n
)

is the unconditional probability that the

node at time t is node n and can be estimated as
P

θ̂

(

Qt = n
)

= 1
M

∑M

i=1 γn(t).

P
θ̂

(

St = st

)

is the probability that the state at time

t is st and can be estimated in two ways:

• as a constant, which then becomes immate-
rial in the derivation because of the normal-
ization of the probabilities;

• as the fraction of training sequences where
the state at time t is equal to st, namely, as

P
θ̂

(

St = st

)

=
1

M

M
∑

r=1

δ
(

S
(r)
t , st

)

,

where we have used the Dirac delta notation.

P
θ̂

(

Qt = n | St = st

)

is the probability that the

node at time t is node n given the state st, and
its estimation is the main topic of this section.

Among the parameters θ̂ induced during the M-step,
described later, are the representative states {rk}M

k=1

associated with the N nodes of the HMM. Let d(·, ·) be
a distance function defined over the set of states, and
let K(·) be a one-dimensional kernel function, such as
a Gaussian density function. We use the Nadaraya-
Watson kernel density estimation (Hastie et al., 2000,
Ch. 5) to convert distances into conditional probabil-
ities:

P
θ̂

(

Qt = n | St = st

)

=
K

(

d(st, rn)
)

∑N

i=1 K
(

d(st, ri)
) . (1)

The M-Step for SimIOHMMs consists of building for
each node a transition model, an action model, and a
representative state using the alignment produced by
the E-step. The IOHMM, in contrast, only requires
the construction of the transition and action models.
Currently, each node of the HMM has a traditional
classifier for transition and one for actions. Classi-
fiers compatible with the SimIOHMM learning algo-
rithm must have two characteristics: they must allow
weighted inputs and produce a probability distribution
on the outputs. These classifiers roughly maximize
the class-label posterior distribution given a weighted
training set. This in general ensures that the objec-
tive function maximized by the E-M algorithm does
not decrease from one iteration to the next.

For each trace r, the E-step computes the alignments

γ
(r)
n (t) and the transition probabilities a

(r)
i,j (t+1). The

training set for the action classifier of node n consists of

all state-action pairs O
(r)
t having γ

(r)
n (t) ≥ ε/N , where

N is the number of nodes in the HMM and ε is a value
smaller than 1.1 In practice, we found that values of
ε between 0.3 and 0.001 yield similar desirable results.
Each sample is assigned a weight proportional to the
corresponding value of γn, where the proportionality
constant is a large number chosen to match the way in

1Values greater than 1 could result in the degenerate
condition where all data is removed from the training set.

which weighted inputs are managed by the classifier.
The same samples are also used to construct the tran-
sition classifier. Here, the “class label” is the index
of the next node, and therefore each observation can
appear multiple times in the training set with different

labels. More specifically, the training sample (O
(r)
t+1, j)

appears in the training set for the transition classifier

of node n if γ
(r)
n (t) ≥ ε/N , and an,j(t + 1) > 0.

During the M-step the representative samples of the
nodes are also updated. For each node n all the train-
ing traces are analyzed, and the state-action pair O∗

is selected, that has the largest probability γn(t) of be-
ing aligned with node n. After possible ties are broken
randomly, O∗ becomes the new representative state for
node n.

5. Experimental Results

We evaluate our SimIOHMM algorithm in two ways:
via an empirical assessment of the system’s scaling per-
formance on a PBD problem as the amount of training
data increases, and through an analysis of the improve-
ment in training time over IOHMMs.

5.1. Materials and methods

The data for the experiments consists of eleven traces
of one expert performing a procedure (shown in Fig-
ure 2) for modifying and verifying a system DNS net-
working configuration, described in detail in a web
document taken from a corporate helpdesk website.
The eleven traces were each recorded on a system with
a different initial configuration; thus, each trace fol-
lows a different path through the procedure graph.
In some cases, extraneous DNS servers had to be re-
moved; in some, the correct server had to be added,
and so on. Each trace is composed of 15 to 38 demon-
strated actions, the average being just above 22. The
SimIOHMM used in the experiments is been imple-
mented in Java using the J48 classifier (an imple-
mentation of C4.5) from the Weka library (Witten
& Frank, 1999). States are represented as vectors of
categorical features. As a distance function we use
the Hamming distance between pairs of states, and
consider only the following attributes: the applica-
tion owning the window with focus, and the title of
the window with focus. The kernel density estima-
tor used to convert distances into probabilities relies
on the quadratic kernel function: f(x) = (1 − x)2 for
|x| < 1, f(x) = 0 otherwise. The width of the ker-
nel is set to 1.5, which implies that a state-action pair
can be aligned with a node only if at least one of the
two attributes used in the distance function matches

suffix
Add

suffix
Add

verify
Close &

Exit

Exit

Remove
servers

Remove
servers

Add
servers

TCP/IP
Properties

Start
IP=

9.x.x.x?

Click
Advanced

Static
IP?

NO

YES

register
Uncheck

Set
domain

NO YES

Figure 2. Network configuration procedure. Ovals denote
user actions; stacked ovals represent sequences of repeated
actions; shaded ovals denote actions that are executed only
for certain initial configurations.

the corresponding attribute of the representative state
of the node. All the HMMs constructed in the ex-
periments have 25 nodes, the value that optimizes the
training time of the IOHMM while maintaining zero
classification error. The parameter ε used to select the
training sets for the action and transition classifiers
are 0.2, but the algorithm is somewhat insensitive to
the value of this parameter.

The experiments were run on a machine with two 2.4
GHz Xeon processors, with 4 GB of main memory,
running under the Linux operating system.

5.2. Experiment 1 – SimAlignGen efficacy

We evaluate the performance of our system by ran-
domly dividing the corpus into a training set and a
test set, and study how the accuracy of the algorithm
increases as the size of the training set increases. For
each split, we train our system on the training set and
we compute the accuracy as the ratio of the number of
correctly predicted actions in all test traces over the to-
tal number of actions in those traces. More specifically,
to compute the prediction accuracy on a specific trace,
we present the next state to the SimIOHMM, obtain a
prediction of the next action, compare it with the ac-
tion taken by the expert, and notify the SimIOHMM
of the action taken by the expert. For each training set
size, we perform 10 independent repetitions. The ini-
tial alignments of the SimIOHMM are computed by a
similarity-based algorithm not described in this paper.

Figure 3 shows the results of this experiment. For
each split, the prediction accuracy is represented by
a “∗” symbol. For each training set size, the average
accuracy over the 10 repetitions is also plotted using
the “◦” symbol, and these averages are connected by
a line.

1 2 3 4 5 6 7 8 9 10 11
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Set Size
Te

st
 S

et
 C

or
re

ct
 R

at
e

Figure 3. Correct prediction rates on test set as a function
of the training set size. For each training set size, 10 in-
dependent repetitions are plotted. The averages of the 10
repetitions are plotted connected by a solid line.

The figure shows that accuracy is an increasing func-
tion of the number of traces in the training set. This is
not surprising, since the coverage of steps in the test-
ing set increases with the training set size. However, of
the eleven traces, only two are completely predictable
given the remaining 10. Hence, only when 10 traces
are used for training (i.e., when leave-one-out cross-
validation is used) do we observe 100% accuracy. The
relatively high accuracy observed with small training
sets indicates that a sizable fraction of the actions in
the procedure are common to all procedures, such as
the clicks required to open particular control panel di-
alogs.

We note that there are often outliers, namely, cases
where the average correct prediction rate is unusually
low (evident, for example, when the training set size is
4 or 8). This is due to the fact that the SimIOHMM
becomes confused when presented with an expert ac-
tion that was not observed in the training set: here,
the SimIOHMM produces a warning notification that
the future predictions are generally unreliable. If a
previously unseen action occurs early in a test trace,
the error rate for that trace is usually very high.

5.3. Experiment 2: SimIOHMM training time

A benefit of SimIOHMM over IOHMMs is a substan-
tial reduction in training time and better scalability
as a function of training set size. Figure 4 shows
the average training time as a function of the num-
ber of training traces. Each point is the average of

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

number of traces

tra
in

in
g

tim
e

(m
in

)

IOHMM
SimIOHMM

Figure 4. Training time for IOHMM and SimIOHMM as a
function of the number of training traces.

10 independent repetitions; the variance was too small
to be worth plotting. Here, the initial alignment of
both SimIOHMM and IOHMM are computed using
the same randomized algorithm.

In the figure, it is apparent that the from the viewpoint
of training time, the SimIOHMM scales much better
than the IOHMM, and that the ratio of the IOHMM
training time to the SimIOHMM training time is su-
perlinear in the number of training traces.

The faster training time of the SimIOHMM is due to
the fact that the training sets used to train the node
classifiers tend to be smaller. The main reason is that a
state-action pair can be aligned only with nodes having
similar representative samples. A way of measuring
this effect is by analyzing the dispersion of the align-
ment distributions γn(t) for the training traces once
convergence is reached. A measure of dispersion of a
probability distribution is its entropy. Figure 5 shows
the average entropy (in bits) of the alignment at con-
vergence as a function of the number of training traces.
The experiments are the same used for Figure 4. Due
to the similarity bias, the SimIOHMM yields substan-
tially more concentrated alignment probabilities than
the IOHMM, and the difference between these aver-
ages entropies is an increasing function of the number

of traces. As the number of traces required to learn
a procedure grows, inaccuracies in the induced model
stem from both incomplete training datasets and mis-
alignments during training. We anticipate that the
more concentrated alignment probabilities produced
by the SimIOHMM will reduce these misalignments
and thus improve predictive accuracy as well as train-
ing performance.

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

number of training traces

al
ig

nm
en

t e
nt

ro
py IOHMM

SimIOHMM

Figure 5. Alignment entropy (in bits) for IOHMM and
SimIOHMM as a function of the number of training traces.

6. Related work

Fasconi and Bengio (Frasconi & Bengio, 1994) intro-
duced the concept of IOHMM. Our work differs from
this and later work on IOHMMs by introducing the
use of a similarity metric. Sequence alignment algo-
rithms have been widely developed and applied to spa-
tial sequences in domains such as computational biol-
ogy (Krogh et al., 1993), and temporal sequences in
domains such as speech recognition. (Rabiner, 1989)

Our work differs from prior work in the field of pro-
gramming by demonstration primarily in the way that
alignment information is obtained. Approaches such
as SMARTedit (Lau et al., 2000) and Eager (Cypher,
1993a) implicitly align demonstrated steps using posi-
tion within the sequence itself. In these systems, the
procedure is assumed to consist of one or more iter-
ations of the same fixed-length loop body. Thus, the
alignment can be trivially determined using each step’s
position within the sequence. A later approach (Lau
et al., 2003) uses version space algebra to find an align-
ment when the length of the loop body is not known.

However, none of these approaches are able to learn
procedures with conditionally performed steps.

7. Conclusions and future work

Programming by demonstration promises to be an ef-
fective method for acquiring procedural knowledge.
A challenge in this field is learning complex proce-
dures that include conditional branches, in which the
demonstrations contain different steps depending on
the paths followed. This paper presents an approach
to this problem based on the idea of similarity-based
alignment and generalization, and makes the following
contributions:

• A novel approach to programming by demonstra-
tion based on similarity-based alignment and gen-
eralization;

• The SimAlignGen class of algorithms that extend
traditional sequence alignment algorithms by the
addition of a third bias based on a similarity met-

ric;

• An instance of an SimAlignGen algorithm, called
SimIOHMM, which has been implemented as part
of a programming by demonstration system on the
Windows platform; and

• An empirical evaluation of SimIOHMM’s perfor-
mance which demonstrated its effectiveness on
traces gathered from a real-world procedure, and
results showing significant speedup in training
time due to the addition of the similarity metric.

Future work includes the exploration of properties of
the algorithm itself, including noise tolerance, scaling
of accuracy and of training time, etc. We are inves-
tigating the sensitivity of the algorithm to the choice
of distance function, of kernel, and of kernel width.
We are extending the SimIOHMM in several direc-
tions by constructing algorithms for initialization, au-
tomatic selection of the number of nodes, and adap-
tive node-dependent feature selections for the classi-
fiers. We are also investigating new types of learning
algorithms that would replace the current statistical
action classifiers.
Finally, we believe that this similarity knowledge is
not unique to PBD, but may serve as a useful bias in
many other domains.

References

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970).
A maximization technique occuring in the statstical
analysis of probabilistic functions of Markov chains.
Annals of Math. Statistics, 41, 164–171.

Cypher, A. (1993a). Eager: Programming repetitive
tasks by demonstration. In A. Cypher (Ed.), Watch

What I Do: Programming by Demonstration, 205–
217. Cambridge, MA: MIT Press.

Cypher, A. (Ed.). (1993b). Watch what I do: Pro-

gramming by demonstration. Cambridge, MA: MIT
Press.

Frasconi, P., & Bengio, Y. (1994). An EM approach to
grammatical inference: Input/Output HMMs. Proc.

IEEE Int. Conf. Pattern Recognition, ICPR ’94 (pp.
289–294). Jerusalem.

Hastie, T., Tibshirani, R., & Friedman, J. (2000). The

elements of statistical learning. Springer Series in
Statistics.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K., &
Haussler, D. (1993). Hidden Markov Models in com-

putational biology: applications to protein modeling

(Technical Report UCSC-CRL-93-32).

Lau, T., Domingos, P., & Weld, D. S. (2000). Version
space algebra and its application to programming
by demonstration. Proc. Sevententh Int. Conf. on

Machine Learning (pp. 527–534).

Lau, T., Domingos, P., & Weld, D. S. (2003). Learning
programs from traces using version space algebra.
Proc. 2nd Int. Conf. on Knowledge Capture.

Lieberman, H. (Ed.). (2001). Your wish is my com-

mand: Giving users the power to instruct their soft-

ware. Morgan Kaufmann.

Maulsby, D., & Witten, I. H. (1997). Cima: an inter-
active concept learning system for end-user applica-
tions. Applied Artificial Intelligence, 11, 653–671.

Mo, D. H. (1989). Learning Text Editing Procedures
from Examples. Master’s thesis, Univ. of Calgary.

Rabiner, L. (1989). A tutorial on Hidden Markov Mod-
els and selected applications in speech recognition.
Proc. IEEE, 77, 257–286.

Rabiner, L. R., & Juang, B. H. (1986). An introduction
to Hidden Markov Models. IEEE ASSP Magazine,
4–15.

Witten, I. H., & Frank, E. (1999). Data mining:

Practical machine learning tools and techniques with

Java implementations. Morgan Kaufmann.

XML Path Language (1999).
http://www.w3.org/tr/xpath.

