IBM Research Report

On the Singularity of Matrices

Don Coppersmith, Alan J. Hoffman IBM Research Division Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, NY 10598

On the Singularity of Matrices

Don Coppersmith*

Alan J. Hoffman[†]

March 18, 2004

Abstract

If B is a singular complex matrix, there is a singular C whose entries are the same magnitude as those of B, and all but two of C's entries are real.

Let M be an $n \times n$ matrix of nonnegative real entries m_{ij} . The Camion-Hoffman Theorem [1] gives necessary and sufficient conditions on M guaranteeing that any complex matrix B with $|b_{ij}| = m_{ij}$ must be nonsingular. Namely, any such B is nonsingular if and only if there is a permutation matrix P and a positive diagonal matrix D such that M' = PMD is strongly diagonally dominant: $\forall i, m'_{ii} > \sum_{j \neq i} m_{ij}$.

If the Camion-Hoffman condition is not met, so that there is a singular B, we show that in fact there is such a singular C all but two of whose entries are real.

Theorem 1 If B is a singular complex matrix, there is a singular C whose entries are the same magnitude as those of B, and either all entries of C are real, or two entries of C are complex and all others real.

Proof: Let M be a nonnegative $n \times n$ real matrix and B a complex matrix satisfying $|b_{ij}| = m_{ij}$ and det(B) = 0. Fix a nonzero n-vector \mathbf{z} with $B\mathbf{z} = 0$.

We will define a sequence of matrices B^k and real vectors \mathbf{x}^k , $k = 0, 1, \dots, n-1$, satisfying these conditions:

- 1. $B^k \mathbf{x}^k = 0$;
- 2. $|b_{ij}^k| = m_{ij};$
- 3. $\mathbf{x}^{k} \neq 0$:
- 4. At least k of the rows of B^k are entirely real;
- 5. The other n-k rows have at most two non-real entries each;
- 6. If k > 0 and b_{ij}^{k-1} is real, then $b_{ij}^{k} = b_{ij}^{k-1}$.

Define \mathbf{x}^0 by $x_j^0 = |z_j|$. Define B' by $b'_{ij} = b_{ij}z_j/x_j^0$ if $x_j^0 \neq 0$, and $b'_{ij} = |b_{ij}|$ if $x_j^0 = 0$.

We first compute the matrix B^0 . For each $i \in \{1, 2, ..., n\}$ the following procedure gives the ith row of B^0 . Set $a_j = |b'_{ij}x_j|, j = 1, 2, ..., n$. Suppose the two largest entries are $a_\ell \ge a_m$. As

^{*}IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA. email: dcopper@us.ibm.com.

[†]IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA. email: ajh@us.ibm.com.

j ranges sequentially though $\{1, 2, \dots, n\} \setminus \{\ell, m\}$, we select $\epsilon_i \in \{-1, +1\}$ to bring the cumulative

sum of $\epsilon_j a_j$ as close as possible to a_ℓ : if $\sum_{h < j, h \notin \{\ell, m\}} \epsilon_h a_h < a_\ell$ then $\epsilon_j = +1$, otherwise $\epsilon_j = -1$. Because $0 = (B\mathbf{z})_i = \sum_j b_{ij} z_j$, we see that the cumulative sum will eventually get as large as $a_{\ell}-a_{m}$, and thereafter it must remain in the interval $[a_{\ell}-a_{m},a_{\ell}+a_{m}]$ because the addends a_{j} are no larger than a_m .

The three quantities a_{ℓ} , a_m , and $\sum_{j\notin\{\ell,m\}}\epsilon_j a_j$ satisfy the triangle inequality. So if we set $b_{ij}^0 = \epsilon_j b_{ij}'$ for $j \neq \ell, m$, we can find complex entries $b_{i\ell}^0$ and b_{im}^0 satisfying $\sum_{1 \leq j \leq n} b_{ij}^0 x_j^0 = 0$. Our conditions 1-5 are satisfied; 6 is inapplicable.

Now let $k \in \{1, 2, \dots, n-1\}$, and suppose we have constructed B^{k-1} . We will construct B^k .

Let B_R consist of those rows of B^{k-1} whose entries are all real. If B_R has more than k-1rows, set $B^k = B^{k-1}$ and $\mathbf{x}^k = \mathbf{x}^{k-1}$. Otherwise, consider the space Y of real vectors orthogonal to B_R ; Y has dimension at least $n-k+1 \geq 2$. For each of the n-k+1 rows i not in B_R , consider the $4 = 2 \times 2$ possible rows **r** obtainable from B_{i*}^{k-1} by replacing its two non-real entries with real entries (either the corresponding entry of M or its negative). If \mathbf{r} is orthogonal to all of Y, then \mathbf{r} is in the linear span of the rows of B_R , and we can extend $B_R||\mathbf{r}$ to a singular matrix C with all real entries, finishing the problem. So assume that the subspace of Y orthogonal to $\bf r$ has co-dimension 1. Then we can select nonzero $\mathbf{y} \in Y$ avoiding all these 4(n-k+1) subspaces, as well avoiding the multiples of \mathbf{x}^{k-1} .

For each of the 4(n-k+1) rows **r** mentioned above, there is one value of the real parameter t making $\mathbf{x}^{k-1} + t * \mathbf{y}$ orthogonal to \mathbf{r} . Let t_0 be such a t with smallest absolute value, corresponding to row **r** obtained from row *i* by assigning signs s_1, s_2 . Set $\mathbf{x}^k = \mathbf{x}^{k-1} + t_0 * \mathbf{y}$. Obtain B^k from B^{k-1} by replacing the *i*th row by **r**, thereby replacing the two non-real entries of B_{i*}^{k-1} by real entries of the same magnitude. For each row h outside B_R other than the ith row, imagine the phases of the two non-real entries $b_{h\ell}$, b_{hm} varying continuously with t to maintain orthogonality with $\mathbf{x}^{k-1} + t * \mathbf{y}$ as t ranges from 0 to t_0 . At t=0 the triangle inequality holds among the three values $|b_{h\ell}^{k-1}x_{\ell}^{k-1}|$, $|b_{hm}^{k-1}x_m^{k-1}|$, and $|\sum_{j\notin\{\ell,m\}}b_{hj}^{k-1}x_j^{k-1}|$. By minimality of $|t_0|$, we know that t does not pass through any of the four critical values of t for this row (which would turn a triangle inequality into an equality and then to a violation), so the triangle inequality continues to hold, and we can assign to these two entries complex values of the correct magnitude which maintain orthogonality of the new row B_{h*}^k to the vector \mathbf{x}^k . (Caveat: if several values of t tie for minimality, then each of several rows B^k may reach, but not pass through, a critical value, so that each will become totally real during this step.) The new \mathbf{x}^k is trivially still orthogonal to all rows in B_R ; it is also orthogonal to the newly changed row i. The other conditions are clearly satisfied.

When this procedure is over, $C = B^{n-1}$ is the desired matrix: C's entries have absolute value as prescribed by M, with at most two non-real entries, and C is singular.

If C has exactly one non-real entry, its cofactor must be zero (since det(C) = 0 is real), so we could make that entry real without changing the determinant. So the number of non-real entries can be taken to be either 0 or 2. \square

Remark For any $n \geq 3$, this result is best possible. Set M = 2J - I of order n. Allowing complex entries, there is a singular C with $|c_{ij}| = m_{ij}$. (Since each row of M has n-1 entries of 2 and one entry of 1, the largest entry does not exceed the sum of the other entries; for each iwe can build an n-gon with sides of length m_{ij} , interpret the sides as complex numbers c_{ij} , and remark that the resulting C annihilates the vector of all 1s.) If we insist on real entries, for any C with entries chosen from $\pm m_{ij}$, its determinant must be an odd integer, thus nonzero. If C has exactly one non-real entry, if det(C) is real then the cofactor of this entry must vanish, so that the determinant would not change if we replaced that non-real entry by a real one, reducing to the previous case. So any singular C with magnitudes of entries prescribed by this M, must have at least two non-real entries.

Remark We can compute the initial B from M by following some suggestions in [1]. We wish to find a positive diagonal matrix $D = diag(d_j)$ such that in each row of MD, no element is "dominant" (larger than the sum of the others in its row). This requirement can be expressed as a system of linear inequalities which d_j must satisfy. Let K be a matrix of order n with $k_{ii} = 1$, $k_{ij} = -1$ for $i \neq j$. Consider the system of n^2 inequalities in the positive variables $\{d_j\}$:

$$\sum_{j} m_{ij} k_{j\ell} d_j \le 0, \quad i, \ell = 1, \dots, n.$$

Linear programming finds such a solution $\{d_j\}$ if one exists. For each i, we can find complex numbers a_{ij} with $|a_{ij}| = m_{ij}d_j$ and $\sum_j a_{ij} = 0$ (since no $m_{ij}d_j$ is dominant). Then A is singular, since it annihilates the vector of all 1s. $B = AD^{-1}$ is also singular, and $|b_{ij}| = m_{ij}$ as required.

References

[1] Paul Camion and A. J. Hoffman, "On the nonsingularity of complex matrices," *Pacific J. Math.* 17 (1966) 211-214.