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On the Singularity of Matrices

Don Coppersmith∗ Alan J. Hoffman†

March 18, 2004

Abstract

If B is a singular complex matrix, there is a singular C whose entries are the same magnitude
as those of B, and all but two of C’s entries are real.

Let M be an n × n matrix of nonnegative real entries mij. The Camion-Hoffman Theorem [1]
gives necessary and sufficient conditions on M guaranteeing that any complex matrix B with |bij | =
mij must be nonsingular. Namely, any such B is nonsingular if and only if there is a permutation
matrix P and a positive diagonal matrix D such that M ′ = PMD is strongly diagonally dominant:
∀i,m′

ii >
∑

j �=i mij.
If the Camion-Hoffman condition is not met, so that there is a singular B, we show that in fact

there is such a singular C all but two of whose entries are real.

Theorem 1 If B is a singular complex matrix, there is a singular C whose entries are the same
magnitude as those of B, and either all entries of C are real, or two entries of C are complex and
all others real.

Proof : Let M be a nonnegative n × n real matrix and B a complex matrix satisfying |bij | = mij

and det(B) = 0. Fix a nonzero n-vector z with Bz = 0.
We will define a sequence of matrices Bk and real vectors xk, k = 0, 1, . . . , n − 1, satisfying

these conditions:

1. Bkxk = 0;

2. |bk
ij | = mij;

3. xk �= 0;

4. At least k of the rows of Bk are entirely real;

5. The other n − k rows have at most two non-real entries each;

6. If k > 0 and bk−1
ij is real, then bk

ij = bk−1
ij .

Define x0 by x0
j = |zj |. Define B′ by b′ij = bijzj/x

0
j if x0

j �= 0, and b′ij = |bij | if x0
j = 0.

We first compute the matrix B0. For each i ∈ {1, 2, . . . , n} the following procedure gives the
ith row of B0. Set aj = |b′ijxj |, j = 1, 2, . . . , n. Suppose the two largest entries are a� ≥ am. As
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j ranges sequentially though {1, 2, . . . , n}\{�,m}, we select εj ∈ {−1,+1} to bring the cumulative
sum of εjaj as close as possible to a�: if

∑
h<j,h/∈{�,m} εhah < a� then εj = +1, otherwise εj = −1.

Because 0 = (Bz)i =
∑

j bijzj , we see that the cumulative sum will eventually get as large as
a� − am, and thereafter it must remain in the interval [a� − am, a� + am] because the addends aj

are no larger than am.
The three quantities a�, am, and

∑
j /∈{�,m} εjaj satisfy the triangle inequality. So if we set

b0
ij = εjb

′
ij for j �= �,m, we can find complex entries b0

i� and b0
im satisfying

∑
1≤j≤n b0

ijx
0
j = 0. Our

conditions 1-5 are satisfied; 6 is inapplicable.
Now let k ∈ {1, 2, . . . , n − 1}, and suppose we have constructed Bk−1. We will construct Bk.
Let BR consist of those rows of Bk−1 whose entries are all real. If BR has more than k − 1

rows, set Bk = Bk−1 and xk = xk−1. Otherwise, consider the space Y of real vectors orthogonal
to BR; Y has dimension at least n− k + 1 ≥ 2. For each of the n− k + 1 rows i not in BR, consider
the 4 = 2 × 2 possible rows r obtainable from Bk−1

i∗ by replacing its two non-real entries with real
entries (either the corresponding entry of M or its negative). If r is orthogonal to all of Y , then r is
in the linear span of the rows of BR, and we can extend BR||r to a singular matrix C with all real
entries, finishing the problem. So assume that the subspace of Y orthogonal to r has co-dimension
1. Then we can select nonzero y ∈ Y avoiding all these 4(n − k + 1) subspaces, as well avoiding
the multiples of xk−1.

For each of the 4(n− k + 1) rows r mentioned above, there is one value of the real parameter t
making xk−1 + t ∗y orthogonal to r. Let t0 be such a t with smallest absolute value, corresponding
to row r obtained from row i by assigning signs s1, s2. Set xk = xk−1+t0∗y. Obtain Bk from Bk−1

by replacing the ith row by r, thereby replacing the two non-real entries of Bk−1
i∗ by real entries of

the same magnitude. For each row h outside BR other than the ith row, imagine the phases of the
two non-real entries bh�, bhm varying continuously with t to maintain orthogonality with xk−1 + t∗y
as t ranges from 0 to t0. At t = 0 the triangle inequality holds among the three values |bk−1

h� xk−1
� |,

|bk−1
hm xk−1

m |, and |∑j /∈{�,m} bk−1
hj xk−1

j |. By minimality of |t0|, we know that t does not pass through
any of the four critical values of t for this row (which would turn a triangle inequality into an
equality and then to a violation), so the triangle inequality continues to hold, and we can assign
to these two entries complex values of the correct magnitude which maintain orthogonality of the
new row Bk

h∗ to the vector xk. (Caveat: if several values of t tie for minimality, then each of several
rows Bk may reach, but not pass through, a critical value, so that each will become totally real
during this step.) The new xk is trivially still orthogonal to all rows in BR; it is also orthogonal to
the newly changed row i. The other conditions are clearly satisfied.

When this procedure is over, C = Bn−1 is the desired matrix: C’s entries have absolute value
as prescribed by M , with at most two non-real entries, and C is singular.

If C has exactly one non-real entry, its cofactor must be zero (since det(C) = 0 is real), so we
could make that entry real without changing the determinant. So the number of non-real entries
can be taken to be either 0 or 2. �

Remark For any n ≥ 3, this result is best possible. Set M = 2J − I of order n. Allowing
complex entries, there is a singular C with |cij | = mij . (Since each row of M has n − 1 entries
of 2 and one entry of 1, the largest entry does not exceed the sum of the other entries; for each i
we can build an n-gon with sides of length mij , interpret the sides as complex numbers cij , and
remark that the resulting C annihilates the vector of all 1s.) If we insist on real entries, for any
C with entries chosen from ±mij, its determinant must be an odd integer, thus nonzero. If C has
exactly one non-real entry, if det(C) is real then the cofactor of this entry must vanish, so that
the determinant would not change if we replaced that non-real entry by a real one, reducing to the
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previous case. So any singular C with magnitudes of entries prescribed by this M , must have at
least two non-real entries.

Remark We can compute the initial B from M by following some suggestions in [1]. We
wish to find a positive diagonal matrix D = diag(dj) such that in each row of MD, no element is
“dominant” (larger than the sum of the others in its row). This requirement can be expressed as
a system of linear inequalities which dj must satisfy. Let K be a matrix of order n with kii = 1,
kij = −1 for i �= j. Consider the system of n2 inequalities in the positive variables {dj}:

∑

j

mijkj�dj ≤ 0, i, � = 1, . . . , n.

Linear programming finds such a solution {dj} if one exists. For each i, we can find complex
numbers aij with |aij | = mijdj and

∑
j aij = 0 (since no mijdj is dominant). Then A is singular,

since it annihilates the vector of all 1s. B = AD−1 is also singular, and |bij | = mij as required.
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