IBM Research Report

On the Singularity of Matrices

Don Coppersmith, Alan J. Hoffman
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

On the Singularity of Matrices

Don Coppersmith* Alan J. Hoffman ${ }^{\dagger}$

March 18, 2004

Abstract

If B is a singular complex matrix, there is a singular C whose entries are the same magnitude as those of B, and all but two of C 's entries are real.

Let M be an $n \times n$ matrix of nonnegative real entries $m_{i j}$. The Camion-Hoffman Theorem [1] gives necessary and sufficient conditions on M guaranteeing that any complex matrix B with $\left|b_{i j}\right|=$ $m_{i j}$ must be nonsingular. Namely, any such B is nonsingular if and only if there is a permutation matrix P and a positive diagonal matrix D such that $M^{\prime}=P M D$ is strongly diagonally dominant: $\forall i, m_{i i}^{\prime}>\sum_{j \neq i} m_{i j}$.

If the Camion-Hoffman condition is not met, so that there is a singular B, we show that in fact there is such a singular C all but two of whose entries are real.

Theorem 1 If B is a singular complex matrix, there is a singular C whose entries are the same magnitude as those of B, and either all entries of C are real, or two entries of C are complex and all others real.

Proof : Let M be a nonnegative $n \times n$ real matrix and B a complex matrix satisfying $\left|b_{i j}\right|=m_{i j}$ and $\operatorname{det}(B)=0$. Fix a nonzero n-vector \mathbf{z} with $B \mathbf{z}=0$.

We will define a sequence of matrices B^{k} and real vectors $\mathbf{x}^{k}, k=0,1, \ldots, n-1$, satisfying these conditions:

1. $B^{k} \mathbf{x}^{k}=0$;
2. $\left|b_{i j}^{k}\right|=m_{i j}$;
3. $\mathrm{x}^{k} \neq 0$;
4. At least k of the rows of B^{k} are entirely real;
5. The other $n-k$ rows have at most two non-real entries each;
6. If $k>0$ and $b_{i j}^{k-1}$ is real, then $b_{i j}^{k}=b_{i j}^{k-1}$.

Define \mathbf{x}^{0} by $x_{j}^{0}=\left|z_{j}\right|$. Define B^{\prime} by $b_{i j}^{\prime}=b_{i j} z_{j} / x_{j}^{0}$ if $x_{j}^{0} \neq 0$, and $b_{i j}^{\prime}=\left|b_{i j}\right|$ if $x_{j}^{0}=0$.
We first compute the matrix B^{0}. For each $i \in\{1,2, \ldots, n\}$ the following procedure gives the i th row of B^{0}. Set $a_{j}=\left|b_{i j}^{\prime} x_{j}\right|, j=1,2, \ldots, n$. Suppose the two largest entries are $a_{\ell} \geq a_{m}$. As

[^0]j ranges sequentially though $\{1,2, \ldots, n\} \backslash\{\ell, m\}$, we select $\epsilon_{j} \in\{-1,+1\}$ to bring the cumulative sum of $\epsilon_{j} a_{j}$ as close as possible to a_{ℓ} : if $\sum_{h<j, h \notin\{\ell, m\}} \epsilon_{h} a_{h}<a_{\ell}$ then $\epsilon_{j}=+1$, otherwise $\epsilon_{j}=-1$.

Because $0=(B \mathbf{z})_{i}=\sum_{j} b_{i j} z_{j}$, we see that the cumulative sum will eventually get as large as $a_{\ell}-a_{m}$, and thereafter it must remain in the interval $\left[a_{\ell}-a_{m}, a_{\ell}+a_{m}\right.$] because the addends a_{j} are no larger than a_{m}.

The three quantities a_{ℓ}, a_{m}, and $\sum_{j \notin\{\ell, m\}} \epsilon_{j} a_{j}$ satisfy the triangle inequality. So if we set $b_{i j}^{0}=\epsilon_{j} b_{i j}^{\prime}$ for $j \neq \ell, m$, we can find complex entries $b_{i \ell}^{0}$ and $b_{i m}^{0}$ satisfying $\sum_{1 \leq j \leq n} b_{i j}^{0} x_{j}^{0}=0$. Our conditions 1-5 are satisfied; 6 is inapplicable.

Now let $k \in\{1,2, \ldots, n-1\}$, and suppose we have constructed B^{k-1}. We will construct B^{k}.
Let B_{R} consist of those rows of B^{k-1} whose entries are all real. If B_{R} has more than $k-1$ rows, set $B^{k}=B^{k-1}$ and $\mathbf{x}^{k}=\mathbf{x}^{k-1}$. Otherwise, consider the space Y of real vectors orthogonal to $B_{R} ; Y$ has dimension at least $n-k+1 \geq 2$. For each of the $n-k+1$ rows i not in B_{R}, consider the $4=2 \times 2$ possible rows \mathbf{r} obtainable from $B_{i *}^{k-1}$ by replacing its two non-real entries with real entries (either the corresponding entry of M or its negative). If \mathbf{r} is orthogonal to all of Y, then \mathbf{r} is in the linear span of the rows of B_{R}, and we can extend $B_{R} \| \mathbf{r}$ to a singular matrix C with all real entries, finishing the problem. So assume that the subspace of Y orthogonal to \mathbf{r} has co-dimension 1. Then we can select nonzero $\mathbf{y} \in Y$ avoiding all these $4(n-k+1)$ subspaces, as well avoiding the multiples of \mathbf{x}^{k-1}.

For each of the $4(n-k+1)$ rows \mathbf{r} mentioned above, there is one value of the real parameter t making $\mathbf{x}^{k-1}+t * \mathbf{y}$ orthogonal to \mathbf{r}. Let t_{0} be such a t with smallest absolute value, corresponding to row \mathbf{r} obtained from row i by assigning signs s_{1}, s_{2}. Set $\mathbf{x}^{k}=\mathbf{x}^{k-1}+t_{0} * \mathbf{y}$. Obtain B^{k} from B^{k-1} by replacing the i th row by \mathbf{r}, thereby replacing the two non-real entries of $B_{i *}^{k-1}$ by real entries of the same magnitude. For each row h outside B_{R} other than the i th row, imagine the phases of the two non-real entries $b_{h \ell}, b_{h m}$ varying continuously with t to maintain orthogonality with $\mathbf{x}^{k-1}+t * \mathbf{y}$ as t ranges from 0 to t_{0}. At $t=0$ the triangle inequality holds among the three values $\left|b_{h \ell}^{k-1} x_{\ell}^{k-1}\right|$, $\left|b_{h m}^{k-1} x_{m}^{k-1}\right|$, and $\left|\sum_{j \notin\{\ell, m\}} b_{h j}^{k-1} x_{j}^{k-1}\right|$. By minimality of $\left|t_{0}\right|$, we know that t does not pass through any of the four critical values of t for this row (which would turn a triangle inequality into an equality and then to a violation), so the triangle inequality continues to hold, and we can assign to these two entries complex values of the correct magnitude which maintain orthogonality of the new row $B_{h *}^{k}$ to the vector \mathbf{x}^{k}. (Caveat: if several values of t tie for minimality, then each of several rows B^{k} may reach, but not pass through, a critical value, so that each will become totally real during this step.) The new \mathbf{x}^{k} is trivially still orthogonal to all rows in B_{R}; it is also orthogonal to the newly changed row i. The other conditions are clearly satisfied.

When this procedure is over, $C=B^{n-1}$ is the desired matrix: C 's entries have absolute value as prescribed by M, with at most two non-real entries, and C is singular.

If C has exactly one non-real entry, its cofactor must be zero (since $\operatorname{det}(C)=0$ is real), so we could make that entry real without changing the determinant. So the number of non-real entries can be taken to be either 0 or 2 .

Remark For any $n \geq 3$, this result is best possible. Set $M=2 J-I$ of order n. Allowing complex entries, there is a singular C with $\left|c_{i j}\right|=m_{i j}$. (Since each row of M has $n-1$ entries of 2 and one entry of 1 , the largest entry does not exceed the sum of the other entries; for each i we can build an n-gon with sides of length $m_{i j}$, interpret the sides as complex numbers $c_{i j}$, and remark that the resulting C annihilates the vector of all 1 s .) If we insist on real entries, for any C with entries chosen from $\pm m_{i j}$, its determinant must be an odd integer, thus nonzero. If C has exactly one non-real entry, if $\operatorname{det}(C)$ is real then the cofactor of this entry must vanish, so that the determinant would not change if we replaced that non-real entry by a real one, reducing to the
previous case. So any singular C with magnitudes of entries prescribed by this M, must have at least two non-real entries.

Remark We can compute the initial B from M by following some suggestions in [1]. We wish to find a positive diagonal matrix $D=\operatorname{diag}\left(d_{j}\right)$ such that in each row of $M D$, no element is "dominant" (larger than the sum of the others in its row). This requirement can be expressed as a system of linear inequalities which d_{j} must satisfy. Let K be a matrix of order n with $k_{i i}=1$, $k_{i j}=-1$ for $i \neq j$. Consider the system of n^{2} inequalities in the positive variables $\left\{d_{j}\right\}$:

$$
\sum_{j} m_{i j} k_{j \ell} d_{j} \leq 0, \quad i, \ell=1, \ldots, n .
$$

Linear programming finds such a solution $\left\{d_{j}\right\}$ if one exists. For each i, we can find complex numbers $a_{i j}$ with $\left|a_{i j}\right|=m_{i j} d_{j}$ and $\sum_{j} a_{i j}=0$ (since no $m_{i j} d_{j}$ is dominant). Then A is singular, since it annihilates the vector of all 1s. $B=A D^{-1}$ is also singular, and $\left|b_{i j}\right|=m_{i j}$ as required.

References

[1] Paul Camion and A. J. Hoffman, "On the nonsingularity of complex matrices," Pacific J. Math. 17 (1966) 211-214.

[^0]: *IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA. email: dcopper@us.ibm.com.
 ${ }^{\dagger}$ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA. email: ajh@us.ibm.com.

